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Abstract
Dialogue systems need to accurately under-
stand the user’s mental state to generate ap-
propriate responses, but accurately discerning
such states solely from text or speech can be
challenging. To determine which information
is necessary, we first collected human-human
multimodal dialogues using heterogeneous sen-
sors, resulting in a dataset containing various
types of information including speech, video,
physiological signals, gaze, and body move-
ment. Additionally, for each time step of the
data, users provided subjective evaluations of
their emotional valence while reviewing the di-
alogue videos. Using this dataset and focusing
on physiological signals, we analyzed the rela-
tionship between the signals and the subjective
evaluations through Granger causality analysis.
We also investigated how sensor signals differ
depending on the polarity of the valence. Our
findings revealed several physiological signals
related to the user’s emotional valence.

1 Introduction

Most current user-adaptive dialogue systems rely
on text or speech to estimate the user’s state and
generate appropriate responses. However, the
user’s state that can be inferred solely from text
or speech is limited. Consequently, there has been
active research on estimating the user’s state from
multimodal data, particularly focusing on user emo-
tions and engagement through the analysis of facial
expressions, gestures, and gaze (Mittal et al., 2020;
Yu et al., 2015). In recent years, the application
of physiological signals in dialogue systems has
also gained popularity. For example, studies have
been conducted to estimate a user’s sentiment and
emotions from physiological signals (Katada et al.,
2020, 2023; Saffaryazdi et al., 2022). However,
these studies have typically utilized a limited range
of sensors and have not dealt with the real-time
nature of the user’s mental state, which is essential
for dialogue systems.

Therefore, in this study, we used heterogeneous
sensors to collect a variety of data during human-
human dialogues, including speech, video, phys-
iological signals, gaze information, and motion
information. After each dialogue, for each time
step of the data, interlocutors conducted immediate
subjective evaluations of their emotional valence
while watching recordings of the dialogues. As
an analysis, we used Granger causality analysis
to investigate the relationship between the infor-
mation obtained from the heterogeneous sensors
and the subjective evaluation annotations. We also
conducted a statistical test to examine how sensor
signals differ depending on the polarity of valence.
Various sensor signals were collected, but in this
paper, we focus on physiological signals, as these
data are believed to be closely related to mental
states (Russell, 2003). Our key contributions in
this work are as follows:

• We created a Japanese multimodal human-
human dialogue dataset using heterogeneous
sensors, including various types of sensor sig-
nals and subjective evaluations of the inter-
locutors’ emotional valence.

• We analyzed the relationship between various
sensor signals and subjective evaluations and
investigated how sensor signals vary with the
polarity of emotional valence.

• Our findings revealed several physiological
signals associated with emotional valence.

2 Related Work

Several multimodal dialogue corpora have been
constructed that include information such as the
interlocutor’s movements and gaze in addition to
speech. For example, HUMAINE (Douglas-Cowie
et al., 2011) is a multimodal dialogue corpus cov-
ering various topics aimed at eliciting user emo-
tions. The IEMOCAP dataset (Busso et al., 2008)
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Data version Data2312 Data2402
Collection time December 2023 February 2024
Overview Multimodal dialogues between two human interlocutors
Dialogue topic Chit-chat, Narrative, Discussion
Dialogue duration 10 min (Average of 180 utterances) per dialogue
No. of dialogues 27 33
Total utterances 4854 5956
Interlocutors 18 (9 male, 9 female) 22 (12 male, 10 female)

Aged 20 to 50 Aged 20 to 60
9 groups

(3 groups of male pairs,
3 groups of female pairs,
3 groups of both sexes)

11 groups
(4 groups of male pairs,
3 groups of female pairs,
4 groups of both sexes)

Questionnaires Pre-experiment (Demographic information and personality traits scored on 7-point scales: 14 items)
Post-dialogue (Impressions of the dialogue scored on 7-point scales: 24 items)
Follow-up (Impressions of the experiment through free-form: 3 items)

Annotations Subjective evaluations of the interlocutor’s emotional valence at each time step of dialogue
(Continuous values of 0 to 10 represent negative to positive emotional valence)

Language Japanese

Table 1: Summary of collected dataset.

is a script-based human-human dialogue dataset
containing speech, video, and facial information.
SEMAINE (McKeown et al., 2011) is a corpus
containing dialogues between computer graphics
(CG) agents with different personalities and human
subjects. D64 (Oertel et al., 2013) is a multi-party
dialogue corpus designed to capture the natural
reactions and emotions of the interlocutors.

The physiological signals are measured and
quantified by sensors for physiological phenomena
(such as heartbeat, brain waves, pulse, respiration,
and perspiration) and can deal with the real-time
state of the interlocutor. Several multimodal dia-
logue corpora have been constructed that include
the physiological signals of the interlocutor in a
dialogue. For example, RECOLA (Ringeval et al.,
2013) is a human dialogue dataset that includes
physiological signals during a collaborative dia-
logue task. Electrocardiogram (ECG) and electro-
dermal activity (EDA) are utilized as physiologi-
cal signals in RECOLA. The PEGCONV dataset
(Saffaryazdi et al., 2022) comprises discussion dia-
logues and includes galvanic skin response (GSR)
and photoplethysmography (PPG) as physiological
signals during the dialogue. Hazumi (Komatani
and Okada, 2021) is a multimodal dialogue cor-
pus containing dialogues between a human and
a CG agent. The physiological signals include
EDA, blood volume pulse (BVP), skin temperature
(TEMP), and heart rate (HR) data (Katada et al.,
2023).

Although several corpora have been constructed

in this way, none of the corpora contain data that
comprehensively includes movement, gaze, and a
variety of physiological signals. Moreover, to the
best of our knowledge, there has been no research
on estimating the real-time user state required by
dialogue systems from sensor signals in dialogues.

3 Data Collection

The data were collected in two periods, with the
first beginning in December 2023 and the second
in February 2024. To distinguish the two datasets,
we used the year and month of data collection for
naming: “Data2312” for the data collected in De-
cember 2023 and “Data2402” for the data collected
in February 2024.

In these two sets of data collection experiments,
a total of 40 interlocutors (21 male, 19 female), all
native Japanese speakers, participated. They were
recruited from the general public by a recruiting
agency, and each participated in only one data col-
lection experiment. Two interlocutors were paired
into one group and engaged in 10-minute dialogues
on three different topics: “Chit-chat”, “Narrative”,
and “Discussion”. Immediately after each dialogue,
interlocutors annotated their subjective evaluations
related to emotional valence while watching the
recordings of the dialogue. A detailed summary of
the collected dataset is provided in Table 1.

Both data collection experiments were con-
ducted in the same sequence: pre-experiment ques-
tionnaire administration, sensor placement and at-
tachment, dialogue and annotation conduction, sen-
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sor removal, and follow-up questionnaire adminis-
tration. The dialogue and annotation conduction
process was repeated three times for the three top-
ics. For each topic, the following sequence was
repeated: dialogue conduction, post-dialogue ques-
tionnaire administration, and subjective evaluation.
The experiments were approved by the ethics com-
mittee of our institution.

In the following subsections, we describe in de-
tail the multimodal data and heterogeneous sensors,
the three dialogue topics, the questionnaires, and
the subjective evaluation of dialogues.

3.1 Multimodal Data and Heterogeneous
Sensors

We used heterogeneous sensors to collect multi-
modal data including speech, video, physiological
signals, gaze information, and motion information.
The data collection environment is shown in Fig.
1.

Speech: DPA 4088 uni-directional microphones
were worn on the heads of each of the two inter-
locutors to capture audio recordings containing a
single interlocutor’s voice. We used Azure Kinect’s
(hereafter, Kinect) built-in omni-directional micro-
phones to collect audio recordings containing the
voices of two interlocutors. For the audio record-
ings collected by DPA 4088, the close proximity
of the interlocutors and the loudness of the other
interlocutor resulted in data containing faint sounds
from the other interlocutor.

Video: We used Kinect, Logicool C920 Pro HD
Webcam (hereafter, Logi webcam), and GoPro
Hero 10 (hereafter, GoPro) to record the interlocu-
tors’ behavior. In Data2312, two Kinects were
placed between the interlocutors to record RGB
and depth video of their upper bodies. A Logi web-
cam was positioned to the side of the interlocutors,
capturing their full-body RGB video from a side
view. In Data2402, to capture the full-body move-
ments of the interlocutors instead of just the upper
body, two Kinects were positioned between them
to record separate full-body RGB and depth videos.
Additionally, two GoPros were positioned in the
same positions as the Kinects to record full-body
RGB video. Because of the lack of clarity of the
logi webcam, the third GoPro was placed to the
side to capture two interlocutors’ full-body RGB
video from the side. The Kinect and Logi webcam
collected AVI files, while the GoPro recorded MP4
files.

Figure 1: Data collection environments for (a) Data2312
and (b) Data2402. In (a) Data2312, two Kinects and
two millimeter-wave sensors were placed between the
interlocutors, and each interlocutor wore a set of wear-
able sensors. In (b) Data2402, two Kinects, two GoPros,
and two millimeter-wave sensors were placed between
the two interlocutors, and each interlocutor wore a set
of wearable sensors.

Physiological Signals: We collected physiological
signals during the dialogues by using the Embra-
cePlus1 and the Shimmer3 GSR+ 2. The Embra-
cePlus is wireless and worn like a wristwatch. We
used it to collect BVP, EDA, TEMP, and wrist ac-
celeration (ACC). The Shimmer3 GSR+ can collect
EDA using an optical pulse sensing probe attached
to the finger and photoplethysmography (PPG) us-
ing either an ear clip or an optical pulse probe. Due
to the greater stability of data collected through the
former, we chose to collect PPG using the ear clip.

Gaze: The Pupil Core eye tracker3 (hereafter,
Pupil Core) was worn by the interlocutor like
glasses and was used to collect gaze data, pupil
information, and eye video during the dialogue.

Motion: We positioned two IWR1443 BOOST
millimeter-wave sensors between the two interlocu-
tors to capture 3D point cloud and motion data. In
Data2312, we utilized two motion capture devices
called Perception Neuron 3 Body Kit4 (hereafter,
PN3) on the interlocutors’ entire body to gather

1https://www.empatica.com/en-int/embraceplus/
2https://shimmersensing.com/product/

shimmer3-gsr-unit/
3https://pupil-labs.com/products/core
4https://neuronmocap.com/pages/

perception-neuron-3

https://www.empatica.com/en-int/embraceplus/
https://shimmersensing.com/product/shimmer3-gsr-unit/
https://shimmersensing.com/product/shimmer3-gsr-unit/
https://pupil-labs.com/products/core
https://neuronmocap.com/pages/perception-neuron-3
https://neuronmocap.com/pages/perception-neuron-3
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Device name Type of sensor Data

Devices
for

Data2312
and

Data2402

Pupil Core World camera First-person video with gaze measurement
Eye cameras Eye video, pupil and gaze information

DPA 4088 Uni-directional mic Audio containing one interlocutor’s voice
Shimmer3 GSR+ Ear-mounted sensor Photoplethysmography (PPG) 120 Hz
EmbracePlus Wristwatch sensor Blood volume pulse (BVP) 64 Hz

Electrodermal activity (EDA) 4 Hz
Skin temperature (TEMP) 1 Hz
Wrist acceleration (ACC) 64 Hz

IWR1443BOOST Millimeter-wave sensor 3D point cloud and motion data

Devices
for

Data2312

Azure Kinect RGB camera Front upper body RGB video
Depth camera Front upper body depth video
Omni-directional mic Audio containing two interlocutors’ voices

Logi Webcam RGB camera Face-to-face full-body RGB video of two interlocutors
Perception Neuron 3 IMU sensor Skeleton hierarchy information and motion data

Devices
for

Data2402

Azure Kinect RGB camera Front full-body RGB video
Depth camera Front full-body depth video
Omni-directional mic Audio containing two interlocutors’ voices

GoPro Hero 10 RGB camera Front full-body recording
Face-to-face full-body RGB video of two interlocutors

Table 2: Multimodal data collected from devices.

skeleton hierarchy information and motion data.
Due to the time-consuming process of wearing and
calibrating the PN3, as well as interference from
numerous devices affecting the inertial measure-
ment unit (IMU) sensor signals, in Data2402, we
decided not to use the PN3 with the intention of ex-
tracting the interlocutors’ motion information from
video recordings with image processing.

Two computers were used to acquire the sensor
signals, which were streamed from each device.
One computer served as a time server for ensuring
synchronization of timestamps. Since Embrace-
Plus and GoPro do not support real-time streaming,
the timestamps were synchronized post-data acqui-
sition. Table 2 lists the devices and the multimodal
data collected by them.

3.2 Dialogue Topics
To elicit a variety of mental states and gestures
from the interlocutors, the following three topics
were utilized. Example dialogues for each topic
are provided in Table 3.

Chit-chat: Free dialogue with no restrictions on
topics. Serving both as a means to collect dialogue
in normal situations and as an icebreaker.

Narrative: The interlocutor’s own special episode.
Storytelling provides a wealth of gestures (Colletta
et al., 2010), and we can also expect that mental
states will be expressed when discussing a cher-
ished or distressing memory.

Discussion: Topics with different opinions for or
against. We can expect negative mental states to
be expressed during exchanges with an interlocutor
who holds an opposing view. Conversely, we can
also anticipate positive mental states to be experi-
enced when the interlocutors reach an agreement.
Fifteen topics were chosen from a site5 that deals
with discussion topics, which we then translated
into Japanese. Before the data collection experi-
ment, the pairs of interlocutors were asked about
their opinions in favor of or against the 15 topics
and the topics that they had different opinions about
were selected as discussion topics.

3.3 Questionnaires
Each interlocutor completed a pre-experiment ques-
tionnaire before the start of the experiment, a per-
dialogue questionnaire immediately after each dia-
logue, and a follow-up questionnaire after the end
of the experiment. The details of the respective
questionnaires are as follows.

Pre-experiment Questionnaire: Asking about the
interlocutor’s demographic information and per-
sonality traits. Demographic information included
gender, age, educational background, and employ-
ment status. For personality traits, we used a
10-item questionnaire from TIPI-J (Oshio et al.,
2012) to measure the Big Five traits: openness to
ideas/experience, conscientiousness, extraversion,

5https://www.procon.org/

https://www.procon.org/
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“Chit-chat”: Open-domain dialogue with no restrictions on topics.
02F20: What did you have for breakfast?
02M30: I didn’t have breakfast.
02F20: You didn’t eat? Are you the type of person who only eats two meals a day?
02M30: One or two meals a day.
02F20: One meal a day!? Which one do you eat? Breakfast, lunch, or dinner? I’m the type of person who eats three meals a
day, because I often get hungry. So I envy those who only need one meal a day.
02M30: But I may put three meals into one.
“Narrative”: Own personal story that you can’t help but want to tell others about.
04M20: I have done something that people often say is unusual.
04F30: I would like to hear about it.
04M20: People learn various sorts of things, don’t they? Like piano, swimming. I’m often told that the thing I learned was
unusual.
04F30: What was it?
04M20: I used to study Kabuki.
04F30: Huh? Amazing!
04M20: That was from grade six to about high school.
04F30: You were doing it for quite a long time.
“Discussion”: Is obesity a disease?
08M50: I’d like to start by defining the term “obesity”.
08M20: I agree.
08M50: What counts as obesity?
08M20: I’m sorry if I’m being a bit light-hearted here, but in short, a fat person. I don’t mean exactly how many kilos or
more he weighs, but in terms of his appearance, someone who has a bit of a belly.
08M50: Obesity is generally expressed as a certain value, such as BMI, and that value is considered to be equate to obesity.
But I don’t think that certain values equal poor health or disease. What do you think about that?
08M20: I can totally understand. To be honest, I’m not sure if it’s correct or not, because it’s hard to connect a value to disease.

Table 3: Dialogue excerpts on “Chit-chat”, “Narrative”, and “Discussion”. Interlocutor IDs are five characters of
the form “NNGAA”, where “NN” is the group number, “G” is the gender of the interlocutor (“M” for male, “F”
for female), and “AA” is the age of the interlocutor. These excerpts were translated from the original Japanese to
English by the authors.

agreeableness, and emotional stability (Goldberg,
1990).

Post-dialogue Questionnaire: Asking about the
quality of the dialogue and interlocutors’ impres-
sions on a 7-point scale. It consists of 24 items in
total. For the evaluation items relating to the quality
of the dialogue, we used the same six items as the
questionnaire by Yamashita et al. (2023). For the
evaluation items related to the impressions of the
dialogue, we used 18 items from the measurement
items regarding the interpersonal communication
cognition of the interlocutors (Kimura et al., 2005).
The items of the post-dialogue questionnaire are
shown in Table 4.

Follow-up Questionnaire: A free-form question-
naire asking about the content of the dialogue that
left an impression on interlocutors, any issues the
interlocutors encountered during the experiment,
and their opinions and impressions of the overall
experimental process.

3.4 Subjective Evaluations

To obtain the interlocutors’ real-time subjective
evaluation for emotional valence, each interlocutor
annotated the emotional valences of the dialogue
immediately after the end of each dialogue. Con-
tinuous values of 0 to 10 were used, where 0 rep-
resents very negative, 5 represents neural, and 10
represents very positive.

To reproduce the dialogue scene and to help the
interlocutors recall their mental state at the time, we
used video recordings of the other interlocutor as
the annotation videos, rather than their own video
recordings. Specifically, the interlocutor used the
annotation software CARMA (Girard, 2014) and
assigned a numerical value that was considered
appropriate for “their mental state” at each time in
the dialogue while watching the video recording.
A screenshot of the CARMA interface is shown
in Fig. 2. The sampling rate of annotations was 4
Hz. To familiarize the interlocutors with the use of
the annotation software, a five-minute annotation
exercise was conducted before the start of data
collection.
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Dialogue Qualities
1. The dialogue partner was approachable.
2. The dialogue partner’s speech was informative.
3. The dialogue partner’s speech was easy to understand.
4. I was satisfied with the dialogue.
5. I was interested in the topics discussed in this dialogue.
6. I took the initiative to speak.

Dialogue Impressions
1. I was able to coordinate the conversation well.
2. I was bored with the conversation.
3. The conversation proceeded cooperatively.
4. The conversation was harmonious.
5. The conversation was unsatisfactory.
6. The conversation was slow-paced.
7. The conversation went cold.
8. The conversation was awkward.
9. I was absorbed in the conversation.
10. The conversation lacked focus.
11. The partner and I talked with great interest.
12. The conversation was tense.
13. The conversation was friendly.
14. The conversation was lively.
15. The conversation was positive on both sides.
16. The conversation was boring.
17. The conversation was worthwhile.
18. The conversation was drawn out.

Table 4: Items of the Post-dialogue questionnaire, where
“Items enquiring about the quality of the dialogue” refers
to (Yamashita et al., 2023) and “Items enquiring about
the impressions of the dialogue” refers to (Kimura et al.,
2005). The questionnaire was translated from the origi-
nal Japanese to English by the authors

4 Data Analysis

Human emotional mental states, such as happiness
and sadness, are formed through the brain’s pro-
cessing of information from three sources: 1) in-
formation from the body (e.g., HR, sweating, and
other physiological states), 2) information from
the external world (e.g., visual and auditory input,
etc.), and 3) memories stored in the brain (Damasio,
1996; Moriguchi and Komaki, 2013). In our collec-
tion of multimodal data, the physiological signals
obtained from EmbracePlus, Shimmer3 GSR+, and
Pupil Core (e.g., EDA, PPG, pupil diameter) cap-
tured the interlocutors’ physiological states (i.e.,
information from the body), while subjective eval-
uations annotated the emotional valence of the in-
terlocutors.

In this study, EDA and BVP (collected from Em-
bracePlus), PPG (collected from Shimmer3 GSR+),
and pupil diameter (collected from Pupil Core)
were used as physiological signals. We first per-
formed data preprocessing on these signals for
subsequent analysis. We then performed Granger
causality analysis to examine the relationship be-
tween these physiological signals and subjective

Figure 2: Screenshot of annotation interface. Emotional
valence is assigned by manipulating the slide bar on
the right of the screen using the controller while the
interlocutor watches the other interlocutor’s recording.

evaluations of emotional valence, i.e., whether
these physiological signals can be used to predict
subjective evaluations. Finally, we analyzed the dif-
ferences between these physiological signals under
different polarities of valence.

4.1 Data Preprocessing

We extracted the physiological signals of the inter-
locutor during the dialogue on the basis of the start
and end times of the dialogue using timestamps.

For EDA, BVP, and PPG, we used the NeuroKit2
toolbox6 for data preprocessing (denoising, filter-
ing) and feature extraction. We extracted the tonic
skin conductance level (SCL) and phasic skin con-
ductance response (SCR) from the EDA. SCL, also
known as tonic, measures the overall conductivity
of the skin, which reflects the general level of sweat
gland activity. SCR, also known as phasic, mea-
sures the rapid changes in skin conductivity that oc-
cur in response to specific stimuli. The rate (the HR
as measured on the basis of PPG/BVP peaks), peak
(represents the highest point of PPG/BVP, used as
an indicator of the intensity of a heartbeat), and the
R-R intervals (RRI, which reflect the changes in
time between heartbeats, i.e., HR variability) were
calculated from the raw BVP and PPG data. The
subjective evaluation annotations and physiologi-
cal signals of an interlocutor during one minute of
dialogue are shown in Fig. 3.

Pupil diameter data was sampled at a rate of
13–26 Hz, collected by Pupil Core, and the actual
size of the pupil diameter (unit: mm) was derived
by the device’s built-in algorithm. Each timestamp
has a “confidence” value indicating the quality of
the measurement, and data with a confidence > 0.6

6https://neuropsychology.github.io/NeuroKit/

https://neuropsychology.github.io/NeuroKit/
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Figure 3: One-minute subjective evaluations and physio-
logical signals of an interlocutor during dialogue. From
top to bottom: Subjective evaluations (Annotation),
EDA, EDA SCL, EDA SCR, BVP, BVP Rate, PPG,
and PPG Rate.

is considered reliable. Since each individual has a
different pupil diameter, we normalized all pupil
diameter data to 0–1 using the Min-Max normal-
ization.

4.2 Granger Causality Analysis

We computed the Granger causality analysis
(Granger, 1969) to identify physiological signals
or specific features of these signals that are most
indicative of emotional valence changes. This
method is used to evaluate the predictive utility
of one variable for forecasting another and is also
employed to explore the relationship between phys-
iological signals and mental states like emotions
(Gao et al., 2020). A time series X is considered to
Granger-cause another time series Y if past values
of X and Y predict Y significantly better than past
values of Y alone (Granger, 1969).

In this study, the null hypothesis is that the physi-
ological signals or specific features of these signals
fail to Granger-cause changes in emotional valence.

The two time series used for Granger causality
analysis need to be aligned and have the same sam-
pling rate, so as the first step, we resampled all
physiological signal features (SCL, SCR for EDA,
Rate, Peak, RRI for PPG and BVP, and pupil di-
ameter for left and right eyes) such that they had
the same sampling rate as that of the subjective
evaluations at 4 Hz, and then aligned all the data in
accordance with the timestamps.

In addition, the Granger causality test as-
sumes the series to be stationary and linearly re-
lated to make valid results. We therefore con-

ducted the Augmented Dickey Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests
for stationarity and calculated Pearson correlation
for linear relationship assessment. According to
the results of ADF and KPSS tests, most emotional
valence data were nonstationary. Consequently, we
utilized the Toda-Yamamoto causality test 7, which
is an adaptation of the Granger causality test suit-
able for nonstationary data (Toda and Yamamoto,
1995). Regarding the Pearson correlation results,
the pair of EDA SCR and emotional valence ex-
hibited almost no linear relationship. In contrast,
SCL for EDA, Rate, Peak, RRI for PPG and BVP,
and pupil diameter for left and right eyes showed
weak linear relationships with emotional valence.
Therefore, we conducted subsequent causality tests
only on the pairs involving SCL for EDA, Rate,
Peak, RRI for PPG and BVP, and pupil diameter
for both left and right eyes with emotional valence.

For the Granger causality test, including the
Toda-Yamamoto test, the parameter “lag” repre-
sents the number of time delays used in predicting
future time series data from past time series data.
We set the maxlag to 8, corresponding to a max-
imum time delay of 2 seconds, since all data are
sampled at 4 Hz. The analyses were computed for
all lags up to maxlag.

4.3 Comparison of Physiological Signal
Means under Positive and Negative
Valence

To investigate the differences in physiological sig-
nal features depending on emotional valence po-
larities, we performed the Wilcoxon rank-sum
test, which is a nonparametric test also known as
Mann–Whitney U test, between the means of SCL
and SCR of EDA, Rate, Peak, RRI of PPG and BVP,
and pupil diameter for both left and right eyes. We
conducted the tests with the null hypothesis that
two samples of physiological signal features are
drawn from the same distribution under the “pos-
itive” and “negative” emotional valence. Before
conducting the test, we processed the subjective
evaluation annotations; we segmented all annota-
tions into 10-second intervals and calculated the
average emotional valence value for each segment.
The averages greater than 5.5 and less than 4.5
were categorized as “positive” and “negative”, re-
spectively. Those emotional values with averages
in the 4.5–5.5 range were considered “neutral emo-

7https://github.com/nicolarighetti/
Toda-Yamamoto-Causality-Test

https://github.com/nicolarighetti/Toda-Yamamoto-Causality-Test
https://github.com/nicolarighetti/Toda-Yamamoto-Causality-Test
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tional states” and were therefore excluded from this
analysis.

Given the variability of physiological signals
among different interlocutors, we normalized EDA,
BVP, PPG, and pupil diameter for each interlocu-
tor before feature extraction. Specifically, we pro-
cessed EDA, BVP, and PPG with the Z-score nor-
malization, and pupil diameter using the Min-Max
normalization. Then, as mentioned in Section 4.1,
we extracted SCL and SCR from EDA and ex-
tracted Rate, Peak, and RRI from PPG and BVP.
Finally, we performed the Wilcoxon rank-sum tests
on the means of SCL and SCR of EDA, Rate, Peak,
RRI of PPG and BVP, and pupil diameter for both
left and right eyes, comparing them between the
“positive” and “negative” emotional valence.

5 Results

In this section, we present the results of the Granger
causality analysis and the differences in the means
of physiological signals between “positive” and
“negative” valence.

5.1 Results of Granger Causality Analysis

On the basis of the dialogue topics, we grouped the
collected data into four sets: “Chit-chat” (40 dia-
logues), “Narratives” (40 dialogues), “Discussions”
(40 dialogues), and all types of dialogues (120 di-
alogues). The Toda-Yamamoto Granger causal-
ity tests were conducted between the features of
EDA, BVP, PPG, pupil diameter, and subjective
evaluation annotations (e.g., between the RRI of
the PPG and the subjective evaluation annotations)
across these four datasets, with maxlag of 8. Dur-
ing the causality testing between EDA SCL and
emotional valence, we encountered issues with id-
iosyncratic ranks, which prevented the construction
of the model for the causality test. As a result, we
excluded causality analyses between EDA SCL and
emotional valence.

The proportion of dialogues featuring Granger
causality is shown in Table 5. The results show that
the PPG Rate has the highest potential to predict the
interlocutor’s emotional valence in all dialogues.
We also found that PPG Rate is the most useful
feature for predicting emotional valence in all three
topics :“Chit-chat”, “Narrative”, and “Discussion”.

Signal Feature Chit-chat Narrative Discussion All
BVP Rate .28 .23 .08 .19

Peak .05 .10 .18 .11
RRI .10 .18 .08 .12

PPG Rate .45 .48 .30 .41
Peak .10 .13 .18 .13
RRI .10 .18 .08 .12

Pupil
diameter

Left .13 .10 .13 .12
Right .18 .15 .10 .15

Table 5: Results of Toda-Yamamoto causality tests
(maxlag = 8). The proportion of dialogues with a sig-
nificant difference of p < 0.05 in “Chit-chat” (40 dia-
logues), “Narrative” (40 dialogues), “Discussion” (40 di-
alogues), and “All dialogues” (120 dialogues) is shown.
Bold numbers are the highest proportion for the BVP,
PPG, and pupil features, and underlined numbers are
the highest proportion for each topic of dialogue.

5.2 Results of the Differences between
Physiological Signal Means under
Different Valence Polarities

We performed the Wilcoxon rank-sum tests on
SCL, SCR of EDA, Rate, Peak, RRI of PPG and
BVP, and pupil diameter for left and right eyes un-
der “positive” and “negative” emotional valence.
Note that the ratio of sample size between “positive”
and “negative” is around 6:1.

The mean, standard deviation, and results of
the Wilcoxon rank-sum test are shown in Table
6. The results indicate that the means of EDA
SCR, BVP Rate, and BVP RRI were significantly
different (p < 0.05) between the “positive” and
“negative” valence. Specifically, our experimental
results showed significant differences in EDA SCR
under different emotional valences, but not in EDA
SCL. This may be because SCR captures instanta-
neous changes in the skin and is more responsive
to short-term emotional responses, whereas SCL
reflects slower changes in the skin and is more in-
dicative of longer-term emotional states. Addition-
ally, in the “positive” valence during the dialogue,
RRI values (i.e., the interval between heartbeats)
are generally higher than in the “negative” valence,
and the variability of RRI is also greater. This is
probably because positive emotional states such as
relaxation and contentment are associated with a
slower heart rate, resulting in increased RRI values.
Conversely, negative emotional states, such as anx-
iety and stress, are generally linked to a faster heart
rate and consequently shorter RRI values.

6 Conclusion and Future Work

In this study, we collected dialogue data contain-
ing comprehensive multimodal data and subjective
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Positive Negative

Signal Feature Mean Std Mean Std p-value
EDA SCL 1.3e-4 0.01 8.0e-3 0.02 0.229

SCR 1.38 1.70 1.29 1.71 1.3e-7**
BVP Rate 68.4 13.4 69.0 12.8 0.042**

Peak 10.2 2.16 10.3 2.07 0.053
RRI 944 216 933 209 0.045**

PPG Rate 85.2 13.7 85.2 10.5 0.644
Peak 13.2 2.13 13.2 1.67 0.765
RRI 726 118 718 88.3 0.690

Pupil
diameter

Left 0.38 0.23 0.41 0.25 0.115
Right 0.44 0.24 0.42 0.25 0.070

Table 6: Mean, standard deviation (Std), and the p-
value of the Wilcoxon rank-sum test for means under
positive and negative valence (**p < 0.05).

evaluations at each time step during the dialogue
using heterogeneous sensors. Through our analysis
of the relationship between physiological signals
and emotional valence using the Granger causality
analysis, we identified several physiological sig-
nals that could be useful for predicting real-time
emotional valence. We also clarified how physio-
logical signals differ depending on the “positive”
or “negative” polarity of the valence.

However, several limitations of our study should
be acknowledged. First, the relatively small sample
size limits the statistical power of our findings and
reduces the generalizability of the results to a larger
population. Second, the imbalanced ratio of pos-
itive to negative valence samples may potentially
lead to biased conclusions about the relationship
between physiological signals and emotional va-
lence.

Future research needs to apply methodologies
for analyzing imbalanced and small sample size
data. Moreover, we plan to expand our analysis
to include sensor signals, linguistic information,
questionnaires about personality traits, and impres-
sions of the dialogue, in addition to physiological
signals. We will also use the information from the
sensors to predict emotional valence in real-time.
Ultimately, our goal is to achieve a dialogue system
capable of estimating and appropriately responding
to the user’s mental state in real-time.
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