
Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 66–77
September 18–20, 2024. ©2024 Association for Computational Linguistics

66

Dialog Flow Induction for Constrainable LLM-Based Chatbots

Stuti Agrawal*, Pranav Pillai*, Nishi Uppuluri*, Revanth Gangi Reddy, Zoey Li,
Gokhan Tur, Dilek Hakkani-Tur, Heng Ji

University of Illinois Urbana-Champaign
{stutia3, nu4, ppillai3, revanth3, shal2}@illinois.edu

{gokhan, dilek, jih}@illinois.edu

Abstract

LLM-driven dialog systems are used in a di-
verse set of applications, ranging from health-
care to customer service. However, given their
generalization capability, it is difficult to ensure
that these chatbots stay within the boundaries
of the specialized domains, potentially result-
ing in inaccurate information and irrelevant re-
sponses. This paper introduces an unsupervised
approach for automatically inducing domain-
specific dialog flows that can be used to con-
strain LLM-based chatbots. We introduce two
variants of dialog flow based on the availability
of in-domain conversation instances. Through
human and automatic evaluation over various
dialog domains, we demonstrate that our high-
quality data-guided dialog flows1 achieve better
domain coverage, thereby overcoming the need
for extensive manual crafting of such flows.

1 Introduction

The widespread use of Large Language Models
(LLMs) (OpenAI et al., 2023) for chatbots, high-
lighted by their human-like conversational abilities
across many topics, faces challenges in specialized
domains due to their tendency to go off-topic. This
generalization capability, while a strength, neces-
sitates the development of more effective control
mechanisms to ensure chatbots remain within the
desired domain of conversation, especially in spe-
cialized fields such as healthcare or legal advice.
Controlling LLM-based chatbots can be effectively
managed through dialog flows or schemas2 (Bohus
and Rudnicky, 2009; Mosig et al., 2020), which
structure conversations along predefined paths of
dialog actions, acting as directed graphs where
nodes represent actions by the user or bot, and

*denotes equal contribution
1Code is available at https://github.com/

gangiswag/dialog-flows
2We use the terms flows and schemas interchangeably. Our

definition of dialog schemas follows Mosig et al. (2020) to be
analogous to task specifications, different from task slots.

Figure 1: Figure demonstrating how automatically in-
duced domain-specific dialog flows can be used to con-
strain chatbots to produce domain-focused responses.

edges are the transitions between actions. This
structure helps steer the conversation, keeping it
within relevant topics, and also enables chatbots to
adapt to new tasks or domains without prior train-
ing (Zhao et al., 2023).

However, the construction of precise dialog
flows is challenging (Huang et al., 2020), given
the diversity of dialog in different domains. The
most prevalent approaches (Mehri and Eskenazi,
2021; Zhao et al., 2023) use schemas that are care-
fully handcrafted by the dialog system developers.
The design of dialog schemas thus has significant
manual overhead for developers, resulting in scala-
bility and coverage limitations (Zhang et al., 2020).

This paper introduces an unsupervised method
to generate domain-specific dialog flows, exploit-
ing GPT-4’s knowledge to systematically create
detailed dialog flows reflecting conversational pat-
terns in various domains. We begin by prompting
GPT-4 to produce a structured representation of di-
alog interactions between users and bots, and then
further refine this through self-reflective feedback

https://github.com/gangiswag/dialog-flows
https://github.com/gangiswag/dialog-flows
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Figure 2: Figure showing the process for intrinsic flow induction. An initial flow is first generation which is further
refined with feedback, update, and clean-up stages. Detailed prompts for each stage are provided in the appendix.

based on a set of predefined criteria (see figure 2).
Further, when we have domain-specific conversa-

tions, our approach automatically identifies distinct
user and bot dialog actions within these conversa-
tions (see figure 3). These dialog actions, along
with selected conversations that exemplify each ac-
tion, are used to condition the GPT-4 prompt to
ensure the dialog flows are grounded using actual
domain instances. This approach enables the auto-
mated creation of structured dialog flows, facilitat-
ing the development of effective domain-specific
chatbots that adhere to their domain’s conversa-
tional boundaries. Our main contributions are:

• This paper introduces an approach for auto-
matically constructing dialog flows for various
domains in an unsupervised manner.

• The proposed method uses a multi-step frame-
work, that can further leverage domain-
specific dialog instances, leading to a graph-
like flow illustrating the structure of conversa-
tions in the domain.

2 Dialog Flow Induction

A dialog flow is a flowchart comprising nodes
which can be a user or bot dialog action, and edges
that denote logical flow or transitions between these
actions. Dialog flows are tailored to different do-
mains. Figure 2 shows an excerpt of a dialog flow,
with more detailed examples in the appendix. In
this section, we detail our approach for automati-
cally inducing the dialog flow for a given conversa-
tion domain. Specifically, we induce two variants
of dialog flows, namely intrinsic flows (in §2.1) or
data-guided flows (in §2.2) depending on whether
sample conversations in the domain are available.

2.1 Intrinsic Dialog Flow

When domain-specific conversation data is unavail-
able, we propose to induce dialog flows using the
intrinsic domain-related knowledge of LLMs and
their understanding of conversational principles.
Our intrinsic flow induction process starts with
GPT-4 creating an initial flow based on the do-
main’s name. Next, GPT-4 self-evaluates the flow
based on predetermined guidelines, to provide con-
crete actionable feedback for improvement. Using
this feedback, GPT-4 then suggests a set of edits,
which are automatically applied to the initial flow.
Finally, automated checks are run to identify incon-
sistencies in the flow, which GPT-4 then handles in
the end clean-up stage. Figure 2 shows the overall
intrinsic flow induction process, with more details
on each step provided below.

Initial Flow Generation: The flow induction
starts with prompting GPT-4 with a specific gener-
ation prompt to create a dialog flow, as shown in
Figure 2. Along with the domain name, the prompt
includes details on the intended structure of the
dialog flow. After the initial flow is generated, it
undergoes further refinement as detailed next.

Flow Feedback and Updates: The initial flow
often suffers from low coverage along with am-
biguous or repetitive action labels for bot and user
nodes. We address these by leveraging GPT-4 for
self-assessment (Bai et al., 2022) and refining the
dialog flow based on the feedback. The refinement
process starts by obtaining GPT-4 feedback based
on the following aspects:

• Representativeness: Both the bot and user
actions should be relevant to the domain, and
should not be vague or generic.
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Figure 3: Figure showing the methodology for inducing dialog flows using a data-guided approach. Representative
examples from the domain conversation instances are used to condition the GPT-4 prompts.

• Coverage: Ensuring the flow captures a broad
range of conversational possibilities relevant
to the domain.

• Clarity of Dialog Action: Each node should
reflect a clear and meaningful dialog action.

• Optimality: Eliminate redundancy, ensuring
no nodes depict overlapping dialog actions.

Based on the shortcomings identified by the self-
reflective feedback, GPT-4 is then prompted to out-
put a set of concrete updates to be made to the flow,
which can include nodes or edges to add, remove,
or edit. To control for the extent to which the flow
changes, the updates are performed with an auto-
mated Python script rather than directly prompting
GPT-4 to apply the updates3.

Flow Finalization: Finally, the dialog flow un-
dergoes a clean-up stage where trivial inconsisten-
cies, such as dangling non-terminal nodes, bot-bot
or user-user connections, are identified. These are
passed as input to GPT-4 along with a final prompt,
to ensure the flow is structurally correct.

2.2 Data-Guided Dialog Flow

The intrinsic dialog flow induction approach, while
expansive in its scope, relies predominantly on the
model’s inherent knowledge of the typical inter-
actions and transitions that could occur within the
specified conversation domain. However, when dia-
log instances within the given domain are provided,
the intrinsic flow can be updated to include actual
conversational patterns. We call this approach data-
guided flow induction, which aims to mirror real-
world dialog dynamics. Specifically, the approach
conditions the GPT-4 flow generation prompt with

3We hypothesize that this provides the ability to heuristi-
cally control different aspects of the dialog flow, such as depth,
breath, density of edges, etc.

representative examples in the form of action labels
and sample conversations for the domain, which
help ground the flow to real-life conversation data.
Figure 3 gives an overview of data-guided flow in-
duction process, with more details provided below.

Identifying Representative Examples: Given
dialog instances for a domain, the following steps
identify the user and bot actions, along with sample
conversations that are representative of the domain.

• Clustering and Labeling: The user and bot
utterances from dialogs in the domain are clus-
tered separately using SentenceBert (Reimers
and Gurevych, 2019) embeddings. Next, GPT-
4 is prompted to label each cluster with a dia-
log action by providing it with the utterances
closest to each centroid.

• Cluster Merging: Next, we merge clusters
that exhibit significant overlaps in terms of
action intent, based on the cosine similarity
between the labels. This reduces the redun-
dancy in the action labels by grouping clusters
with similar actions.

• Picking sample conversations: Finally, the
conversations that include utterances corre-
sponding to the cluster centroids are picked as
the representative dialog instances to include
in the GPT-4 prompt for flow generation. This
ensures that the conversations encompass a
wide spectrum of dialog actions and user in-
tents specific to the domain.

Flow Generation: As shown in Figure 3, the
flow induction follows a similar generation process
as the intrinsic dialog flow. Firstly, the representa-
tive action labels and sample conversations for the
domain are included in the initial flow generation
prompt. Next, the feedback, update, and clean-up
steps are applied to result in a dialog flow.
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Merging with Intrinsic Flow: The intrinsic flow
approach creates broad, expansive dialog flows, but
can still fall short of reflecting domain-specific pat-
terns from real-world conversations. On the other
hand, solely relying on the domain dialog instances
can hurt extensiveness, as they can have limited
variability. Hence, we adopt a hybrid approach for
the data-guided flow by merging the intrinsic flow
with the flow induced solely from domain-specific
data. This capitalizes on the extensive scope of the
intrinsic flow with the detailed focus from domain
data. This merging step is achieved by prompting
GPT-4 to identify and retain distinctive features
from the intrinsic flow, while removing redundant
elements. We call this final flow, data-guided flow.

3 Experiments

We perform both human and automatic evaluations
to assess the induced dialog flows.

3.1 Datasets

Open-domain dialog can involve a single conver-
sation touching upon different domains, such as
movies, sports, music, etc. Hence, for simplicity,
we consider domains from task-oriented dialog in
our experimental settings, wherein the domains are
distinct and correspond to the end user task, such
as movie tickets, flight booking, restaurant reser-
vations, etc. We consider a dialogs across various
task-oriented domains, comprising 24 domains4

from MetaLWoz (Shalyminov et al., 2019) and 5
domains from MultiWOZ (Budzianowski et al.,
2018). For the data-guided flow induction, for each
domain, we utilized 80% of the data as domain-
specific instances available for training, with the
remaining 20% reserved for evaluating coverage of
the bot-bot transitions (described later in §3.3).

3.2 Human Evaluation of Flow Quality

The evaluators (five undergraduate computer sci-
ence students) were tasked with examining data-
guided and intrinsic flows across the 24 differ-
ent domains from MetaLwoz. The evaluators
were given detailed guidelines (provided in the ap-
pendix), and were instructed to assess each flow on
a scale of 1 to 5 for domain coverage, conclusive-
ness and coherence.

Table 1 shows numbers from human evaluation
of the data-driven and intrinsic dialog flows. The

4We excluded domains that had ambiguous or generic
names, such as Play Times, Catalogue, Agreement Bot, etc.

Intrinsic Data-driven

Domain Coverage 90.7 93.0
Conclusiveness 87.8 87.7
Coherence 84.5 84.8

Table 1: Results from human evaluation (in %) of dif-
ferent aspects of the induced dialog flows

Dataset Intrinsic Data-driven

MetaLWoz 31.6 33.1
MultiWOZ 39.9 43.0

Table 2: Bot-Bot transition coverage (in %) for the pro-
posed variants of dialog flows on the MetalWoz (Sha-
lyminov et al., 2019) and MultiWOZ (Budzianowski
et al., 2018) datasets. Detailed domain-wise numbers
are provided in Table 3 in the appendix.

numbers (expanded to a scale of 20-100) are av-
eraged over all the domains, with flows for each
domain being annotated by 5 evaluators. We can
see that the data-driven flow, on account of lever-
aging domain-specific dialog instances, improves
over the intrinsic flow on domain coverage. Fur-
ther, both dialog flows have similarly high scores
for conclusiveness and coherence, implying our
unsupervised approach, by leveraging GPT-4, can
automatically induce high-quality dialog flows. We
employed Randolph’s kappa to evaluate the multi-
rater agreement. Our findings revealed a kappa
value of 0.32, indicating a fair level of agreement
across the board. Specifically, the domain coverage
metric exhibited the highest kappa value of 0.46,
signifying moderate agreement.

3.3 Automatic Evaluation of Flow Coverage

Next, we automatically evaluated the domain cov-
erage of different dialog flows, by measuring the
coverage on capturing bot-to-bot transitions within
the domain conversations in the test set. We lever-
aged Mistral-7B-Instruct (Jiang et al., 2023) to clas-
sify bot utterances into the most appropriate node
in the dialog flow. We then examined whether
the next bot utterance mapped to the directly suc-
ceeding node in the dialog flow. Essentially, this
metric measures the percentage of bot-bot transi-
tions in domain conversations that conform to the
given dialog flow. Table 2 shows numbers for au-
tomatic coverage evaluation. We can see that the
data-driven dialog flow has better coverage of the
domain’s bot-bot transitions.
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4 Conclusion and Future Work

We introduce a novel method for developing dialog
flows that reflect the combined intrinsic knowledge
of LLMs and existing domain-relevant dialogs. Our
data-driven dialog flow approach achieves better
domain coverage than the intrinsic flow approach
across human and automatic evaluations. Our pa-
per outlines a blueprint (in Figure 1) for integrating
the generated dialog flows into LLM-based chat-
bots, with a primary focus on the methodologies
for dialog flow generation. We believe these dialog
flows can be a springboard for future interactive
dialog systems that maintain a natural conversation
flow within the domain.

Limitations

In this study, our experimentation was confined to
task-oriented dialogs, encompassing a relatively
narrow spectrum of dialog flows. This specializa-
tion may limit the applicability of our findings to
dialog domains characterized by a broader array of
tasks and more open-ended dialogues. Addition-
ally, our methodology relies solely on unsupervised
clustering techniques, bypassing datasets that are
annotated with slot values and user intents, which
could potentially enhance dialog flow induction.
Furthermore, we have not extended our research
to test the performance of chatbots constrained by
the dialog schemas we developed. Therefore, the
efficacy of these schemas in practical chatbot appli-
cations remains an area for future investigation.
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A Appendix

MetaLWoz Intrinsic Data-driven

Alarm set 32.9 42.2
Apartment finder 30.9 45.2
Bank bot 34.2 30.8
Bus schedule 37.2 14.4
City info 29.4 33.4
Edit playlist 44.2 39.4
Event reserve 28.8 30.5
Library Request 35.7 30.1
Movie listings 30.7 34.4
Music suggester 34.0 25.3
Name suggester 43.2 16.7
Order pizza 31.6 36.1
Pet advice 33.8 31.7
Phone plan 31.6 37.8
Restaurant picker 29.4 29.2
Scam lookup 22.6 31.2
Shopping 17.0 22.9
Ski Bot 27.2 32.2
Sports info 36.6 37.1
Store details 35.7 32.4
Update calendar 38.4 28.8
Update contact 32.5 30.3
Weather check 36.1 29.5
Wedding planner 17.0 24.2

Average 31.6 33.1

MultiWOZ Intrinsic Data-driven

Restaurant 31.0 43.9
Hotel 43.2 43.2
Attractions 43.3 53.3
Taxi 75.3 50.5
Train 6.9 24.1

Average 39.9 43.0

Table 3: Bot-Bot transition coverage (in %) for the pro-
posed variants of dialog flows when measured on vari-
ous domains in the MetalWoz (Shalyminov et al., 2019)
and MultiWOZ (Budzianowski et al., 2018) datasets.

MetaLWoz Train Test

Alarm set 1345 336
Apartment finder 399 100
Bank bot 294 73
Bus schedule 718 180
City info 772 193
Edit playlist 459 115
Event reserve 431 108
Library request 1071 268
Movie listings 486 121
Music suggester 356 89
Name suggester 399 100
Order pizza 462 115
Pet advice 341 85
Phone plan 397 99
Restaurant picker 428 107
Scam lookup 1326 332
Shopping 722 181
Ski bot 486 121
Sports info 449 112
Store details 590 147
Update calendar 1593 398
Update contact 522 131
Weather check 441 110
Wedding planner 408 102

Table 4: Statistics of dialogs in various domains in the
MetalWoz (Shalyminov et al., 2019) dataset.
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Figure 4: Figure showing prompts for intrinsic and data-guided dialog flow generation.
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(a)

(b)

Figure 5: Data-driven (a) and Intrinsic (b) flows for the movie listings domain from MetaLWoz.
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(a)

(b)

Figure 6: Data-driven (a) and Intrinsic (b) flows for the order pizza domain from MetaLWoz.



76

(a)

(b)

Figure 7: Data-driven (a) and Intrinsic (b) flows for the order weather domain from MetaLWoz.
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Figure 8: Evaluation Instructions for Human Annotators
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