DialBB: A Dialogue System Development Framework as an Educational
Material

Mikio Nakano!? and Kazunori Komatani?

'C4A Research Institute, Inc., 1-13-12 Umegaoka, Setagaya, Tokyo, Japan
2SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan

mikio.nakano @c4a.jp, komatani @sanken.osaka-u.ac.jp

Abstract

We demonstrate DialBB, a dialogue system de-
velopment framework, which we have been
building as an educational material for dialogue
system technology. Building a dialogue system
requires the adoption of an appropriate archi-
tecture depending on the application and the
integration of various technologies. However,
this is not easy for those who have just started
learning dialogue system technology. There-
fore, there is a demand for educational materi-
als that integrate various technologies to build
dialogue systems, because traditional dialogue
system development frameworks were not de-
signed for educational purposes. DialBB en-
ables the development of dialogue systems by
combining modules called building blocks. Af-
ter understanding sample applications, learners
can easily build simple systems using built-in
blocks and can build advanced systems using
their own developed blocks.

1 Introduction

To build a dialogue system, it is generally necessary
to adopt an appropriate architecture according to
the application and integrate various technologies.
While the advancements in large language models
have led some to believe that dialogue systems can
be developed solely with these models and that the
developers do not need to know about architecture
and elemental technologies, there are issues such
as hallucinations, so it is not always practical to
build dialogue systems with only large language
models, depending on the application.

Over the years, research into dialogue systems
has evolved, accumulating knowledge on what kind
of dialogue systems should be built with what tech-
nologies and what architectures. However, it is not
easy for people who are learning dialogue system
technology to acquire this knowledge. An educa-
tional material that allows people to learn dialogue
system technology while building various dialogue
systems would be helpful.

In learning about dialogue system technology, it
is important to understand various elemental tech-
nologies such as language understanding and dia-
logue management, as well as an architecture based
on appropriate modularization, extensibility which
facilitates improving systems, and domain portabil-
ity. It is also crucial to understand the importance
of robustness in intention understanding and in-
teraction design through running actual dialogue
systems.

As an educational material that is useful for such
learning, a dialogue system development frame-
work with the following features is beneficial: (1)
including various elemental technologies of dia-
logue systems, (2) appropriately modularized, (3)
highly extensible, (4) including sample applica-
tions that help learners’ understanding of dialogue
system technology, and (5) making it possible to de-
velop simple applications without extensive skills
or knowledge in system development, enabling the
acquisition of various technologies while improv-
ing the system. In addition, it is desired that its
source code is available.

There are several dialogue system development
tools whose source codes are available. PyDial
(Ultes et al., 2017), OpenDial (Lison and Kenning-
ton, 2016), ConvLab-3 (Zhu et al., 2023), and AD-
VISER (Ortega et al., 2019) focus on statistical di-
alogue models for task-oriented dialogue systems,
while we think educational materials should sup-
port state-transition network-based dialogue man-
agement which is often used for building practical
dialogue systems. Although Rasa Open Source
(Bocklisch et al., 2017) is highly extensible, it does
not support state-transition network-based dialogue
management by default. Botpress' supports state-
transition network-based dialogue management,
but replacing its internal modules with custom-
made ones is not easy. MMDAgent (Lee et al.,

"https://botpress.com

664

Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 664—668
September 18-20, 2024. ©2024 Association for Computational Linguistics

mailto:mikio.nakano@c4a.jp
mailto:komatani@sanken.osaka-u.ac.jp

2013) also supports state-transition network-based
dialogue management, but it is not easy to extend
it.

We have been building a dialogue system de-
velopment framework called DialBB (Dialogue
system development framework with Building
Blocks)? intended for use as an educational ma-
terial in dialogue system development. DialBB is
written in Python, and supports the development of
English and Japanese applications.

2 Overview of DialBB

Here, we give an overview of DialBB. For more
details, please refer to its document.’

2.1 Architecture

DialBB allows the development of dialogue sys-
tems by combining modules called Building Blocks
(hereafter referred to as "blocks"). Figure 1 shows
the architecture of DialBB applications.

The main module of DialBB works as follows.
First, it receives input containing user utterances
in JSON format through a method call of the class
API or via a Web API. This input is then stored
in the blackboard.* Next, it calls each block in
the order specified in the configuration file, using
parts of the blackboard as input for these blocks.
The output from the blocks is used to update the
blackboard. By sequentially driving each block
in this manner, the system generates and returns
a response. Additionally, the input and output of
the main module can include not only utterance
strings but also additional information, so that it
is possible to handle multimodal information such
as speech recognition confidences, user emotion
estimation results, and gesture commands.

Which blocks each application uses is specified
by describing the block classes in the application’s
configuration file (a YAML file). The configura-
tion file also specifies what type of data each block
receives and sends. Furthermore, the values of pa-
rameters used within the blocks and the knowledge
description files used by the blocks can also be
specified in the configuration file.

’DialBB is publicly available for non-commercial use at
https://github.com/c4a-ri/dialbb. This paper is based on its ver.
0.8.

3https://c4a-ri.github.io/dialbb/document-en/build/html/

*We call it a ‘blackboard’ in analogy to the blackboard
model (Erman et al., 1980), but unlike the blackboard model,
each block is called in the order written in the configuration
file.

|
—_—>| |
User Access Built-in or :
utterance & custom block |
additional Update ‘
information) :
Main Access | Built-in or p
module custom block | ! Ecess

(with Update ! ow
System blackboard) :
utterance & A — |
additional CCeSS | Built-in or |
information custom block :
PE— Update v

Figure 1: Architecture of DialBB applications.

DialBB Application Frontend

= Hello!. I'm sandwich bot. If you don't mind, could you tell
me your name?

Hello, I'm John 5

[El Thank you John! Let me ask you about sandwich. Do you
have sandwiches very often?

Yes, | have sandwiches three times a week 5
E You like sandwich.

Yes, | like sandwich very much! 5]

Figure 2: A snapshot of the frontend.

DialBB includes a frontend for engaging in dia-
logues via a Web API (Figure 2).

2.2 Built-in Blocks

To make it easier for learners to build conversa-
tional systems, DialBB has built-in building blocks
listed in Table 1. For simplicity, only those for
English applications are listed. Below we explain
knowledge to be written by developers for use in
some built-in blocks.

Language Understanding Knowledge Snips
Understander Block and ChatGPT Understander
Block use language understanding knowledge
which consists of a collection of utterance exam-
ples that are annotated with intents and slots like
the following.

Intent Example utterance

I love (chicken salad sand-
wiches) [favorite-sandwich]
Definitely

tell-favorite-
sandwich
acknowledge

Here, “[favorite-sandwich]” indicates a slot name,
and “(chicken salad sandwiches)” indicates a slot

665

Block Input Output

Task

Simple Canonicalizer user utterance string

canonicalized user utter-
ance string

Canonicalizes the input string (convert
uppercase to lowercase, etc.).

canonicalized user utter-
ance string

Whitespace Tokenizer

token list

Performs tokenization based on white
spaces.

Snips Understander’® token list

intent and slots

Performs language understanding using
Snips NLU (Coucke et al., 2018) to ob-
tain the intent and slots.

ChatGPT Understander user utterance string

intent and slots

Performs language understanding us-
ing the JSON mode of OpenAI’s Chat-
GPT.°Creates few-shot examples to em-
bed in prompts from language under-
standing knowledge.

spaCy-Based NER user utterance string

named entities

Performs named entity recognition using
spaCy.”

STN Manager user utterance string, in- system utterance string ~ Manages dialogues using a state-
tent, slots, and named transition network.
entities (all are optional)

ChatGPT Dialogue user utterance string system utterance string Generates a system utterance using Chat-
GPT based on a prompt including sys-
tem persona, situation, and dialogue his-
tory.

Table 1: List of built-in blocks. Only important inputs and outputs are shown.
management is often used in practical dialogue
conditions: , systems. Figure 3 illustrates a part of the state-
intent: tell-favorite-sandwich, | love chicken . . K
_eq(#favorite_sandwich, salad transition network. Each state is assigned a system
" A PR — . .
chiken salad sandwich’) A sangwiches, utterance that is generated in that state. The state
|
too! transitions to another state according to the input
What kind of conditions: user utterance. Transitions can be accompanied
| sandwich do intent: tell-favorite-sandwich, by conditions for the transition and actions to be
you like’ unknown (#favorite_sandwith)

action:
_set(topic_sandwich,
#favorite_sandwich)

What is a
{topic_sandwich} —>
like?
no conditions
(default
transition) I'm sorry | couldn't

understand.

Figure 3: A part of an example state-transition network.
Transitions above are given priority.

value. In addition, the knowledge used for language
understanding includes a list of synonyms.

State-Transition Network STN Manager block
uses a state-transition network (STN, also called a
scenario). State-transition network-based dialogue

>Snips Understander Block will be deprecated in DialBB
ver. 0.9 because Snips does not work with Python 3.9+. In-
stead DialBB ver. 0.9 will have a built-in block for language
understanding that utilizes logistic regression and conditional
random fields.

®https://openai.com/index/chatgpt

"https://spacy.io/

performed during the transition. Conditions are
based on the intent of the user utterance and func-
tion calls. Actions are function calls. Functions
used in conditions and actions are referred to as
scenario functions. Within the definition of sce-
nario functions, it is possible to use slots extracted
in language understanding and named entity recog-
nition results (for example, #favorite_sandwich
in Figure 3 is a slot value). Scenario functions can
also access contextual information, which consists
of data that the system remembers as the dialogue
progresses, such as user requests and preferences
(topic_sandwich in Figure 3 is an example of
this). Contextual information can be used in system
utterances, as in “What is a {topic_sandwich}
like?” in Figure 3. It is also possible to access
separately operating databases or external APIs in
scenario functions.

Additionally, STN Manager block includes built-
in scenario functions, which can reduce the effort
of defining functions. For instance, there is a built-
in function that compares if strings are identical
(_eq in Figure 3), and a built-in function that sets a
value to a variable (_set in Figure 3). Furthermore,
there are built-in functions that use ChatGPT. One

666

is for determining if conditions written in natural
language (e.g., “Is the user bored with the conversa-
tion?”) are satisfied, and the other is for generating
utterance strings based on instructions written in
natural language (e.g., “Generate a response to the
user’s utterance in less than 30 words™). These
functions call ChatGPT by incorporating into the
prompt the dialogue history and the situation and
persona settings specified in the configuration file.

Language understanding knowledge and state-
transition networks can be described using spread-
sheets.

STN Manager block has additional functional-
ities for handling speech recognition results. A
DialBB application can receive speech recognition
confidence together with the speech recognition
result of the user utterance. STN Manager block
can make an utterance to ask for repetition or re-
quest confirmation depending on the configuration.
It is also possible to process barge-in utterances
differently from ordinary utterances. In addition,
reacting to a long silence after a system utterance
is possible.

2.3 Sample Applications

DialBB has several sample English and Japanese
applications that use only these built-in building
blocks. Below are English applications.

Snips+STN Application uses Simple Canonical-
izer, Whitespace Tokenizer, Snips Understander,
and STN Manager blocks and it can engage in a
simple dialogue about sandwiches.

Lab Application uses Simple Canonicalizer,
ChatGPT Understander, spaCy NER, and STN
Manager Blocks and it can also engage in a sim-
ple dialogue about sandwiches, but it demonstrates
various advanced features of the built-in blocks.

ChatGPT Application uses only ChatGPT Dia-
logue block. It can engage in a dialogue using Chat-
GPT based on a prompt template that describes the
dialogue situation and system persona.

To serve as a reference for learners, these sam-
ple applications, the built-in blocks, and the main
module of DialBB are written in code that is as
readable as possible.

2.4 Custom Blocks

Developers can create and use their own custom
blocks. A block’s class can be created by inheriting
from an abstract class AbstractBlock and imple-
menting the necessary methods. The created class
can then be specified in the configuration file for

use. This enables using different language under-
standing and dialogue management than those of
built-in blocks.

3 Learning Dialogue System Technology
Using DialBB

Using DialBB, learners can learn about dialogue
system technology through the following steps.
First, by understanding the sample applications,
they learn the basic architecture of a dialogue sys-
tem. Next, by looking at the change in behaviors
after modifying the knowledge used in the sample
applications, they understand elemental technolo-
gies. Then they deepen their understanding of the
elemental technologies by building a new applica-
tion using built-in blocks. Next, they understand
the necessity of extensibility by creating and using
their own custom blocks. Finally, by having people
other than themselves use the system they built,
they understand the importance of robustness in
intention understanding and interaction design.

4 Usage Example of DialBB

DialBB was utilized in student projects and for sys-
tem development for competitions. For instance, it
was used to develop the system that won third place
(Kubo et al., 2022) in the Dialogue Robot Competi-
tion 2022 (Minato et al., 2022) and the system that
won second place (Yanagimoto et al., 2023) in the
Dialogue Robot Competition 2023 (Minato et al.,
2024). They are conversational robots that can rec-
ommend tourist destinations. DialBB applications
work as their dialogue processing components. The
dialogue processing component of the 2023 system
incorporates the built-in Japanese Canonicalizer
Block and the built-in STN Manager Block, along
with a custom block that performs keyword-based
language understanding, sentiment analysis, and
affirmative/negative utterance classification.

5 Concluding Remarks

This paper presented DialBB, a framework for de-
veloping dialogue systems. DialBB serves as an
educational material for dialogue system technol-
ogy.

Currently, we are building a GUI-based editor
for state-transition networks. Future improvements
include adding new built-in blocks. Additionally,
we plan to develop new sample applications, in-
corporating useful examples such as frame-based

667

dialogue management, database access, and han-
dling speech and multimodal input/output.

We will demonstrate sample applications and
explain their configuration files and knowledge for
language understanding and dialogue management,
to show how DialBB is useful in learning dialogue
system technology.

Acknowledgements

We would like to thank those who used the earlier
versions of DialBB and gave us useful feedback.

This work was partly supported by JSPS KAK-
ENHI Grant Number JP22H00536.

References

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language
understanding and dialogue management. Preprint,
arXiv:1712.05181.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maél Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-by-
design voice interfaces. Preprint, arXiv:1805.10190.

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser,
and D. Raj Reddy. 1980. The Hearsay-II speech-
understanding system: Integrating knowledge to
resolve uncertainty. ACM Computing Surveys,
12(2):213-253.

Yuki Kubo, Ryo Yanagimoto, Hayato Futase, Mikio
Nakano, Zhaojie Luo, and Kazunori Komatani. 2022.
Team OS’s system for Dialogue Robot Competition
2022. In Proc. Dialogue Robot Competition 2022.

Akinobu Lee, Keiichiro Oura, and Keiichi Tokuda. 2013.
MMDAgent—a fully open-source toolkit for voice
interaction systems. In Proc. ICASSP, pages 8382—
8385.

Pierre Lison and Casey Kennington. 2016. OpenDial: A
toolkit for developing spoken dialogue systems with
probabilistic rules. In Proceedings of ACL-2016 Sys-
tem Demonstrations, pages 67-72, Berlin, Germany.
Association for Computational Linguistics.

Takashi Minato, Ryuichiro Higashinaka, Kurima Sakai,
Tomo Funayama, Hiromitsu Nishizaki, and Takayuki
Nagai. 2022. Overview of Dialogue Robot Compe-
tition 2022. In Proc. Dialogue Robot Competition
2022.

Takashi Minato, Ryuichiro Higashinaka, Kurima Sakai,
Tomo Funayama, Hiromitsu Nishizaki, and Takayuki
Nagai. 2024. Overview of Dialogue Robot Compe-
tition 2023. In Proc. Dialogue Robot Competition
2023.

Daniel Ortega, Dirk Vith, Gianna Weber, Lindsey Van-
derlyn, Maximilian Schmidt, Moritz Volkel, Zorica
Karacevic, and Ngoc Thang Vu. 2019. ADVISER: A
dialog system framework for education & research.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 93-98, Florence, Italy. Asso-
ciation for Computational Linguistics.

Stefan Ultes, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Ifigo Casanueva,
Pawet Budzianowski, Nikola Mrksi¢, Tsung-Hsien
Wen, Milica Gasi¢, and Steve Young. 2017. PyDial:
A multi-domain statistical dialogue system toolkit. In
Proceedings of ACL 2017, System Demonstrations,
pages 73-78, Vancouver, Canada. Association for
Computational Linguistics.

Ryo Yanagimoto, Yunosuke Kubo, Miki Oshio, Mikio
Nakano, Kenta Yamamoto, and Kazunori Komatani.
2023. User-adaptive tourist information dialogue
system with yes/no classifier and sentiment estimator.
In Proc. Dialogue Robot Competition 2023.

Qi Zhu, Christian Geishauser, Hsien chin Lin, Carel
van Niekerk, Baolin Peng, Zheng Zhang, Michael
Heck, Nurul Lubis, Dazhen Wan, Xiaochen Zhu,
Jianfeng Gao, Milica Gasi¢, and Minlie Huang.
2023. ConvLab-3: A flexible dialogue system
toolkit based on a unified data format. Preprint,
arXiv:2211.17148.

668

https://arxiv.org/abs/1712.05181
https://arxiv.org/abs/1712.05181
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://doi.org/10.1145/356810.356816
https://doi.org/10.1145/356810.356816
https://doi.org/10.1145/356810.356816
https://arxiv.org/abs/2210.09928
https://arxiv.org/abs/2210.09928
https://doi.org/10.1109/ICASSP.2013.6639300
https://doi.org/10.1109/ICASSP.2013.6639300
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/P16-4012
https://arxiv.org/abs/2210.12863
https://arxiv.org/abs/2210.12863
https://arxiv.org/abs/2401.03547
https://arxiv.org/abs/2401.03547
https://doi.org/10.18653/v1/P19-3016
https://doi.org/10.18653/v1/P19-3016
https://aclanthology.org/P17-4013
https://aclanthology.org/P17-4013
https://arxiv.org/abs/2312.13787
https://arxiv.org/abs/2312.13787
https://arxiv.org/abs/2211.17148
https://arxiv.org/abs/2211.17148

	Introduction
	Overview of DialBB
	Architecture
	Built-in Blocks
	Sample Applications
	Custom Blocks

	Learning Dialogue System Technology Using DialBB
	Usage Example of DialBB
	Concluding Remarks

