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Abstract

A common approach for sequence tagging
tasks based on contextual word representations
is to train a machine learning classifier directly
on these embedding vectors. This approach
has two shortcomings. First, such methods con-
sider single input sequences in isolation and are
unable to put an individual embedding vector
in relation to vectors outside the current local
context of use. Second, the high performance
of these models relies on fine-tuning the embed-
ding model in conjunction with the classifier,
which may not always be feasible due to the
size or inaccessibility of the underlying feature-
generation model.
It is thus desirable, given a collection of embed-
ding vectors of a corpus, i.e. a datastore, to find
features of each vector that describe its relation
to other, similar vectors in the datastore. With
this in mind, we introduce complexity measures
of the local topology of the latent space of a
contextual language model with respect to a
given datastore.
The effectiveness of our features is demon-
strated through their application to dialogue
term extraction. Our work continues a line of
research that explores the manifold hypothesis
for word embeddings, demonstrating that lo-
cal structure in the space carved out by word
embeddings can be exploited to infer semantic
properties.

1 Introduction

The prevailing approach to sequence tagging tasks
such as named entity recognition or dialogue term
extraction involves a two-step process: start with
a general contextual vector representation for text
sequences, for instance the embedding vectors cre-
ated by a pretrained language model, then train a
separate tagging model on top of the vector repre-
sentations (Lample et al., 2016; Ramshaw and Mar-
cus, 1995). Optionally, assuming differentiability
of the model and target function, one can fine-tune

the representation model such that its embeddings
are more suitable for the tagging task (Panchen-
drarajan and Amaresan, 2018). While highly effec-
tive, the representations may be expensive to com-
pute, and fine-tuning a language model is not al-
ways feasible, for instance if the underlying model
is hidden behind an application programming inter-
face (API). Thus, it is desirable to develop tagging
methods which achieve the best performance on the
given representations. In fact, the performance of
prompting-based approaches with large language
models (LLMs) on named entity recognition tasks
has lagged behind that of supervised sequence tag-
ging approaches (Wang et al., 2023). Additionally,
this leads to problems such as hallucinations and
potential dataset contamination, which prevent a
fair evaluation.

A more fundamental limitation of the prevailing
paradigm is that the relation of a single input se-
quence to other sequences in the dataset cannot be
taken into account. Both the representation module
and the tagging module commonly have a limited
maximum context length. They cannot process
the entire dataset at once, but rather need to be
provided with single sentences or paragraphs at a
time. The limited context can lead to suboptimal
performance (Amalvy et al., 2023). For example,
consider named entity recognition for an isolated
sentence such as Prince was prominently featured
at the event. The word Prince is ambiguous. In a
corpus containing news articles, Prince or Prince
Harry likely appear in many articles related to the
British royal family. In a different corpus, the term
Curry Prince might appear frequently in the con-
text of restaurant reviews. So only with regard to
the entire corpus under consideration, an informed
choice on how to tag Prince in the example sen-
tence could be made.

In this work, we show that the relation between
the representation of a single token and its contain-
ing corpus can be captured by studying the latent
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space – the collection of the language model’s hid-
den states – surrounding the corresponding embed-
ding vector. The geometry of these hidden states
is known to capture both syntactic and semantic
properties of the underlying text. For instance, Co-
enen et al. (2019) find that distances between the
contextual vectors of bidirectional encoder repre-
sentations from transformers (BERT) (Devlin et al.,
2019) correspond to parse tree embeddings based
on the grammatical structure of the input phrases.
Here, we study neighborhoods of embedding vec-
tors from a topological viewpoint, and introduce
descriptors of the shapes of these neighborhoods
that are stable under symmetries such as permuta-
tions, translations, and rotations. In particular, we
define descriptors based on persistent homology, a
well-established tool of topological data analysis
(Carlsson and Vejdemo-Johansson, 2021).

1.1 Contribution
Consider the latent space of a language model in
the neighborhood of a given contextual embedding
vector. For instance, the neighborhood of an em-
bedding of the word cheap in the context I am
looking for options for cheap dinner contains other
occurrences of the word cheap in different contexts,
but also different words expressing a similar mean-
ing (inexpensive, good-value) and words connected
to the center word, such as restaurant. In this work,
we show that:

(a) this neighborhood contains information that is
not present in the language model next-token
prediction distribution, and that cannot be ‘dis-
tilled’ into the language model via naive fine-
tuning,

(b) this additional information can be used to im-
prove the performance of sequence tagging
tasks, and

(c) this information can be efficiently summa-
rized using low-dimensional topological fea-
ture descriptors.

Our topological descriptors are codensity at mul-
tiple scales (Carlsson et al., 2008; Carlsson, 2014),
topological singularity measures based on Wasser-
stein norms (Cohen-Steiner et al., 2010), and vec-
torized persistence modules. Towards (a), we
show that several of our one-dimensional numer-
ical measures show minimal correlation with lan-
guage model perplexity, indicating that they con-
tain independent information. Towards (b) and

(c), we empirically demonstrate improvements on
the natural language processing task of variants
of term extraction. In each case, we build the la-
tent space through a masked language model from
a dialogue corpus. As a baseline, we employ a
tagging model trained directly on the original lan-
guage model vectors, and compare with models
that take as input a combination of the language
model vectors with our topological descriptors of
the neighborhood within the latent space of a con-
textual language model. Furthermore, we compare
with models trained on features from Vukovic et al.
(2022), which are based on neighborhoods in a
static word embedding space. We show that uti-
lizing the contextually augmented vectors yields
statistically significant improvements.

Observation (a) is not completely new. For ex-
ample, it is present in the idea of k-nearest neigh-
bor language models (Khandelwal et al., 2020;
Xu et al., 2023), where the current hidden state
is augmented by the nearest neighbors from a data-
store. Our low-dimensional descriptors, on the
other hand, have not been deployed before, and
our experiments for (b) provide the first application
of contextual topological features to token level
sequence tagging tasks. Note with reference to
point (c) that summarizing a collection of vectors
in a permutation-invariant way is a challenging
problem in representation learning (Zaheer et al.,
2017), which we tackle in this work via tools from
persistent homology.

Our work is complementary to other recent appli-
cations of topological methods to the study of con-
textual embedding spaces. Tulchinskii et al. (2023)
demonstrate that the topology of a point cloud de-
rived from a text paragraph can be utilized in a
sequence classification task, namely to differenti-
ate human-written from artificially generated para-
graphs. Their approach takes into account solely
the given paragraph’s embedding vectors, and does
not explore how these reside within the larger la-
tent space. Another approach involves constructing
filtered graphs from the attention scores in a trans-
former model, followed by sequence-level classifi-
cation based on persistent homology (Kushnareva
et al., 2021; Perez and Reinauer, 2022). However,
this approach only applies to supervised sequence
classification tasks, and does not yield local fea-
tures required for tagging. In a more qualitative
direction, Valeriani et al. (2023) investigate the in-
trinsic dimension of the latent space through the
different layers of a transformer, and Ethayarajh
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(2019) and Cai et al. (2021) identify isolated clus-
ters and low dimensional manifolds in the latent
spaces of various language models. However, they
do not apply their quantitative local analysis to a
practical task.

2 Background and Methods

2.1 Latent Spaces of Contextual Language
Models

We consider the encoder part of a contextual lan-
guage model, which can be thought of as a map

e : (Rd)×N → (Rh)×N .

Here, d is the dimension of the input layer, h is the
hidden dimension (h ≪ d), and N is the maximum
sequence length, after which sequences will be trun-
cated. This maximum length is usually fixed and
finite. The input of the encoder is a sequence of vec-
tors X ∈ (Rd)×N representing a tokenized context.
Tokenization describes the process in which an in-
put string is decomposed into a sequence of vectors.
In our setting, tokenization can be thought of as a
lookup layer converting short text segments to vec-
tors (together with position information). Typically,
longer words are split into several token vectors in
this process.

The output of the encoder is a sequence of so-
called hidden states. Commonly, these hidden
states are inputs to the “prediction head” of the
language model, which produces a probability dis-
tribution over the token space for the corresponding
token location.

We think of a language corpus C as a collec-
tion of tokenized portions of text. From the point
of view of a language model, each instance i of a
particular token appears in a specific context X(i).
These contexts are filled with padding tokens so
that they always have length N , permitting con-
struction of the embedding sets e(X(i)).

Definition 2.1 Given an encoder e derived from
a pretrained language model, the ambient corpus
datastore with respect to a corpus C is the multi-
set1/point cloud of all the embeddings e(X(i)) of
all instances i of all tokens in C.

Note that we cannot explore the entire latent
space of the language model, but only the subspace
“carved out” by the datastore under consideration,

1We write multi-set to allow for repetitions/multiplicities.
This is relevant in our setting, because strings might appear
multiple times in the corpus.

as in Definition 2.1. In other words, by selecting
the task-dependent ambient corpus for sampling
the language model hidden states, we are making
a choice of how we explore the hidden state space.
This choice of ambient corpus may have a big im-
pact on the derived features.

2.2 Local Topological Measures
All our topological measures are based on neigh-
borhoods of a given contextual embedding vector
v with respect to a collection of contextual em-
bedding vectors coming from an ambient corpus
datastore. Given an integer n ≥ 1, we define the
neighborhood Nn(v) as the multi-set consisting
of v and its (n − 1) nearest neighbors. To avoid
adding another copy of the query center vector v
when building the neighborhood from the datastore,
we first check for similarity to existing vectors in
the datastore with a Euclidean distance threshold
of 10−4, and take a possible match as center vec-
tor if applicable. For a schematic illustration of
the neighborhood extraction process and the fea-
ture computation, see Figure 1. We consider the
following local features:

Persistence Images For a positive integer d, per-
sistent homology of degree d associates with
a point cloud a multi-set that encodes “d-
dimensional topological features” of the cloud.
We refer to Edelsbrunner and Harer (2010) or
Otter et al. (2017) for introductions. Various
vectorizations of this multi-set have been de-
veloped for subsequent use in machine learn-
ing. Persistence images are introduced in
Adams et al. (2017) as a refined, higher-
dimensional vectorization of persistent homol-
ogy. We define PId(v) ∈ R100 as a persistent
image vector of the degree d persistent ho-
mology of Nn(v), scaled by a factor of 1

n·100 .
The parameter n is not included in this no-
tation, as it will be fixed to 128 throughout
all experiments. For detailed definitions, see
Appendix A.1. The factor 1

n·100 appearing in
our definition of the persistence image is not
important at this point. It is included to avoid
instabilities in the training of the BIO-tagger
discussed in Section 3, which may otherwise
arise from the vastly different scales of the
coordinates of the language model embedding
vectors and these additional coordinates.

Wasserstein Measure A simple one-dimensional
vectorization is the Wasserstein norm. We
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Topological Feature Extraction

AmericanTake me to the Au try Museum of the West
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Figure 1: Schematic illustration of the local topological feature extraction and of our topological deep learning
pipeline: The blue box illustrates the extraction of neighborhoods Nn(v) in the contextualized embedding space,
followed by the computation of each neighborhood’s topological features, resulting in a contextualized persistence
image vector. Note the color coding of the different occurrences of the token ’the’; contextuality leads to different
language model embedding vectors and persistence images depending on whether it is part of the term ’Autry
Museum of the American West’ or used as a non-content word. For each token, the language model embedding
(Emb) and persistence image vectors (PI) are encoded (E), combined (

∑
), and then serve as input to our BIO-tagging

transformer (green), which is trained on the token-level term labels (B-TERM (begin), I-TERM (inside), O (outside)).

define Wd
n(v) ∈ R as the Wasserstein norm

of the degree d persistent homology of Nn(v).

Codensity We define the n-th codensity
codenn(v) ∈ R as the radius of Nn+1(v).
Higher codensity corresponds to regions
where the vectors are farther spread apart.

There are several reasons why we fix the car-
dinality n of the neighborhoods rather than, say,
their radius. Firstly, fixing the cardinality takes
into account sample density of the ambient cor-
pus from the latent space of the language model.
If we took a fixed radius, sparse regions of the
ambient corpus space would be underrepresented.
Secondly, some of the topological features we con-
sider are more readily comparable when computed
on fixed cardinalities. Indeed, a reasonable com-
parison of Wasserstein norms of neighborhoods
of different cardinalities seems difficult, and our
multiscale definition of (co)density could also not

easily be emulated for neighborhoods of fixed ra-
dius. Finally, computational complexity limits the
feasibility of approaches that allow for unlimited
cardinalities of neighborhoods. For instance, in
Von Rohrscheidt and Rieck (2023), where neigh-
borhoods of fixed radii are employed, an additional
sampling step is necessary. More on this is dis-
cussed in Appendix A.1.

3 Application of Local Topology
Measures to Token Level Tagging Task

We perform a correlation analysis of local features
and conduct a case study to explore the efficacy
of local topology measures. Specifically, we apply
our proposed topological feature augmentations to
the task of dialogue term extraction.

3.1 Set-Up
Data For the term extraction case study, we re-
sort to the MultiWOZ2.1 (Budzianowski et al.,
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2018; Eric et al., 2020) and schema-guided dia-
logue (SGD) (Rastogi et al., 2020) task-oriented di-
alogue datasets. Here, the ambient reference corpus
C is built solely from the language model hidden
states for the training corpus of MultiWOZ2.1, so
that the local measurements are comparable across
both datasets.

BIO-Tagging For the sequence tagging tasks, we
employ a beginning (B), inside (I), outside (O) la-
beling schema, as in Qiu et al. (2022). To keep
the comparison between our different models fair
and to obtain statements about the quality of the
underlying features, we choose the architectures so
that the trainable BIO-tagging components have a
similar number of adjustable parameters. In this
way, we can safely attribute any increase in perfor-
mance to our topological augmentation of the input
features rather than a stronger tagging component.

In all cases, the BIO-tagging transformer fol-
lows the RoBERTa architecture (Liu et al., 2019)
and uses 8 attention heads, 2 hidden layers, and
512 maximum position embeddings. The language
model vectors and augmenting feature vectors are
fed into the BIO-tagging component through sepa-
rate two-layer fully connected encoding networks
with subsequent individual layer normalization,
whose purpose is down- or up-scaling the feature di-
mension (768 for the language model vectors, 100
for persistence images) to the hidden size (512) of
the tagging transformer. For a schematic of our
BIO-tagging setup, see Figure 1.

Features For creating the language model em-
beddings, we use the second to last hidden states
(at layer 11) of the pretrained RoBERTa base model
(Liu et al., 2019), which returns 768-dimensional
vectors, with L2-normalization. Note that on unit
vectors, the cosine distance is proportional to the
square of the Euclidean distances, thus for the rela-
tive order in which the nearest neighbors occur, it
does not matter whether we search with respect to
the cosine or the Euclidean distance.

We decide on the second-to-last hidden state of
the language model, as opposed to another inter-
mediate layer, for two reasons: Cai et al. (2021)
show that the local intrinsic dimension tends to in-
crease with the depths in the transformer, thus the
resulting neighborhoods should be more expressive.
Moreover, Peters et al. (2018) and Tenney et al.
(2019) find that deeper layers in language models
tend to capture more of the semantic properties,
while earlier layers tend to capture the syntax. For

feature based learning, Devlin et al. (2019) report
that among single-layer features, the second-to-last
layer leads to the highest performance. Note that
our setup is not specific to the RoBERTa model or
tokenizer. Our contextualized topological features
can be computed for any (masked or causal) embed-
ding model, extraction layer, datastore produced by
the model, and query dataset.

As a baseline in our term extraction experiments,
we use the language model hidden state vectors
described in Section 3 as input for the BIO-tagging
model. We test these against augmentation of the
hidden states with our local persistence image de-
scriptors introduced in Section 2.2.

3.2 Correlation Analysis of Local Features
We begin by collecting statistical observations on
the correlation between the different local topolog-
ical feature types, as well as their correlation with
pseudo-perplexity, on the example of the Multi-
WOZ2.1 and SGD datasets. The perplexity of a
causal language model is a model intrinsic mea-
surement of the surprise of seeing the next token,
defined as the exponentiation of the cross-entropy
between the model prediction and the corpus data.
While causal perplexity is not available here, in
our the masked language model setting, we apply
a pseudo-likelihood score by masking tokens one
by one, and computing the prediction loss of the
masked out token following Salazar et al. (2020).

In addition to the non fine-tuned version of the
language model, here we also include the perplexity
of the fine-tuned version for comparison, which
uses the MultiWOZ2.1 training portion (fine-tuning
for 5 epochs, 0.15 masking proportion, selecting
the best model on MultiWOZ2.1 validation loss).
All local features are based a non fine-tuned version
of the language model.

Note that we cannot directly compute correla-
tions between the vector-valued persistence images
and the perplexity measures. For this reason, we
are relying on selected codensities codenn(v) with
values n ∈ [1; 127; 511] and Wasserstein norms as
numerical proxy estimates of the neighborhoods’
topological complexity. Our term extraction mod-
els will take only the persistence images as input, as
they provide the most powerful and comprehensive
representation of the local topology. The neural
network feature extraction model can learn directly
from the persistence images to estimate complex-
ity measures approximating the Wasserstein norms,
which avoids manual feature engineering.
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Figure 2: Kendall’s rank correlation coefficients be-
tween various local estimates and language model (LM)
perplexity for the SGD test dataset. FT stands for LM
fine-tuned on the MultiWOZ2.1 training split. All cor-
relations have p < 10−6.

The results of Kendall’s rank correlation are
given in Figure 2. The Wasserstein measures are
strongly positively correlated with the codensities.
More importantly, the codensities and Wasserstein
norms are only weakly correlated with the perplex-
ity, indicating that these topological measures (and
thus persistence images) capture information that
is not present in the language model masked-token
prediction distribution, and that cannot be ‘distilled’
into the language model via naive fine-tuning.

3.3 Case Study: Term Extraction in
Task-Oriented Dialogue Data

3.3.1 Task Definition
We approach dialogue term extraction as a transfer
learning problem. Here, MultiWOZ2.1 serves as
our source dataset used for training a term extrac-
tor. The trained model is then applied to the SGD
dataset, necessitating sufficient transfer learning ca-
pabilities to properly handle the distributional shift
in the data. We label all phrases in all utterances
that match an entry in the respective dataset’s on-
tology, i.e., that match a value in a non-categorical
slot of the current turn’s dialogue state or a value
in the current turn’s dialogue act. The dataset on-
tology entities are normalized and matched to the
occurrences in the respective utterances by apply-
ing the TripPy-R label map (Heck et al., 2022) and
the SGD canonical value mapping. The ontology
comprises names of entities, their domains, prop-
erties (slots), and values of these slots. We refer to
these labelled phrases as dialogue terms.

These tagged spans for the dialogue datasets are
encoded for the BIO-tagger, resulting in the three

labels: O (outside), B-TERM, I-TERM (begin and
inside a term). Since our BIO-tagging model oper-
ates on the token-level of the underlying language
model, we re-align the tags with the tokenization
using the IOB2 schema: for a word with B-tag, the
first subtoken is tagged with B, its remaining subto-
kens with I. For a word with I-tag, all its subtokens
are tagged with I; and analogously for the O-tag.

While we employ token-level cross-entropy loss
as the differentiable target function in the model
training, the objective of term extraction within
the context of this work is to retrieve each unique
target dialogue term at least once. That is, we
do not require the tagger to find all occurrences:
We normalize the predicted phrases and ground
truth by lower-casing, and deduplicate the resulting
collections. A term is considered a true positive if
it is identical to exactly one ground truth term. If a
term cannot be assigned to any ground truth term,
e.g., comprises several ground truth terms or is an
incomplete substring of a ground truth term, it is
considered a false positive. The left-over ground
truth terms without a matched prediction are the
false negatives. We call the resulting prediction,
recall and F1-scores the phrasal results.

We train the BIO-tagger for 10 epochs, using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with learning rate 5 ·10−5, linear warm-up for 10%
of training steps and batch size of 48. The model
predictions on the held-out MultiWOZ2.1 valida-
tion set are evaluated every 100 batches for the
first 3 000 global steps, and the model checkpoint
with the best phrasal results on the validation set is
selected as the final model.

Our goal is to show that injecting our local
topological features into the model yields statis-
tically significant improvements over the original
language model embeddings. We run statistical
tests over multiple different random seeds for ini-
tialization and check for significant changes in eval-
uation scores on the transfer set, which we take as
the full collection of 463 284 utterances from the
SGD dataset comprising 20 domains.

Training Data In the full data setting, we train on
all 113 556 utterances of the MultiWOZ2.1 training
split, the results are included in Table 1.

To demonstrate that the contextual topological
features are useful in settings with reduced data
and might help in mitigating overfitting, we create
a variation of the transfer task by restricting train-
ing to subsets of the MultiWOZ2.1 dataset. This is



350

a more realistic transfer setting, since a good model
checkpoint needs to demonstrate that it can gener-
alize to the unseen left-out domain which it encoun-
ters in the MultiWOZ2.1 validation split for the first
time. Given one of the five major domains D ∈
[attraction; hotel; restaurant; taxi; train] in the train-
ing split, we exclude those utterances contained in
dialogues from D in the tagger training, which
leaves [71 768; 59 222; 58 156; 86 568; 66 736] ut-
terances respectively. Model selection is performed
based on phrasal F1-score on the 14 748 validation
utterances, which span over all five domains. We re-
port results of this cross-validation setup by macro
averaging the phrasal scores on the SGD dataset
over 10 seeds for each of the five left out data folds
in Table 2.

Static Topological Features Baseline We eval-
uate term extraction performance on the level of
phrase predictions. The phrase-level evaluation al-
lows a comparison with Vukovic et al. (2022), who
present a method that employs static topological
descriptors in sequence tagging tasks. The main
differences to our approach with contextual topo-
logical features are as follows:

• Our local persistent homology descriptors are
defined on token level with respect to the to-
kenization of the language model. This is
essential for combining our new features with
the language model embeddings to create fu-
sion models which can provide predictions on
token-level. The static topological features of
Vukovic et al. (2022) operate on word level,
and they only gained contextuality in the BIO-
tagging component of the model. Note that
in this and our work, the context of an input
sequence is a single dialogue utterance.

• Vukovic et al. (2022)’s features were based
on neighborhoods in an ambient static word
space composed of the 100 000 most common
words in the English language. Thus, their
method depends both on having a word-level
separation of the input data, and on a given
dictionary. Our contextualized features on
the other hand can be defined without any
additional external data.

For a comparison between static and contex-
tual features, we align the static topological fea-
tures with the roberta-base tokenization in our
BIO-tagging setup, and train BIO-taggers with the

Input features Precision ↑ Recall ↑ F1 ↑

LM roberta-base 48.89 56.61 52.39

LM roberta-base
⊕static PI0

49.33 58.82 53.62

LM roberta-base
⊕contextual PI0 50.26⋆ 58.44 53.97⋆

Table 1: Phrasal-level performance comparison for
term extractors trained on the MultiWOZ2.1 training
split and evaluated on the full SGD dataset. Results are
averages over 15 seeds. ⋆ indicates statistically signifi-
cant differences (one-sided independent t-test) w.r.t. the
baseline LM roberta-base with p < 0.05.

Input features Precision ↑ Recall ↑ F1 ↑

LM roberta-base 47.97 56.07 51.67

LM roberta-base
⊕static PI0

47.92 56.85 51.94

LM roberta-base
⊕contextual PI0 48.92⋆LM

⋆stat 56.23 52.24

Table 2: Cross-validated phrasal-level performance
on SGD for term extractors trained on Multi-
WOZ2.1 training split without selected domain in
[attraction; hotel; restaurant; taxi; train] averaged over
10 seeds for each of the five folds. ⋆ indicates statis-
tically significant difference with p < 0.05, w.r.t. the
baseline LM roberta-base (LM) and augmentation
with static persistence images (stat).

same architecture and data as in the contextual
topological feature setting. To that end, the first
constituent subtoken of each word is augmented
with the word’s corresponding 100-dimensional
H0-persistence image feature vector of Vukovic
et al. (2022).

3.3.2 Results
Quantitative Analysis Table 1 lists the term ex-
traction performance for the pure language model
baseline, our proposed method of augmenting with
contextual topological features, and the alternative
approach by augmenting with the static topological
features from Vukovic et al. (2022). The main ob-
jective of said work was the maximization of recall,
and to that end they proposed separate language
model and topological feature taggers, with a sub-
sequent union of predictions. In contrast, we show
that our unified model augmented with contextual
topological features can increase precision, recall,
and F1 over the language model baseline.

Table 2 presents averaged results for the models
trained on a reduced dataset constructed by omit-
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Ground Truth Terms LM roberta-base
(our baseline)

LM roberta-base
⊕static PI0

LM roberta-base
⊕contextual PI0

“cafe jolie” “cafe jolie” “cafe jolie” “cafe jolie”

“angelina jolie” – “angelina jolie” “angelina jolie”

“yellow chilli”
“the yellow chilli by chef sanjeev kapoor”

“yellow chilli”
“the yellow chilli”

“the yellow chilli by”
“sanjeev kapoor”

“yellow chilli”
“the yellow chilli”

“the yellow chilli by chef”
“sanjeev kapoor”

“yellow chilli”
“the yellow chilli”

“the yellow chilli by chef sanjeev kapoor”

“water seed”
“water seed concert”

“water seed”
“the water seed”

“water seed event”
“water seed” “water seed”

“water seed concert”

“be alright” – “alright”
“be alright” “alright economy”

Table 3: Representative examples of predictions where the baseline model fails to retrieve the correct term, while a
local topology feature augmented model succeeds. We indicate true positives and false positives by color.

ting a given domain in the MultiWOZ2.1 training
set. Here, on average, the augmentation with the
contextual persistence images is again better than
the language model vector baseline.

Qualitative Analysis To obtain explicit exam-
ples, we select a model checkpoint for each feature
type after 1 100 global steps, and inspect the differ-
ences between predicted normalized phrase sets. In
Table 3 we see examples where the topologically
augmented model succeeds in finding complete
multi-word terms, whereas the baseline model cuts
off before the end of a term or misses proper names
that should follow a preposition. Such informa-
tion is highly dependent on the context of a term,
and the contextual topological model is able to find
long terms more consistently. All models identify
the restaurant name “Cafe Jolie” correctly, but only
the topological models recognize the actress “An-
gelina Jolie”. Similarly, the song title “Be alright”
containing the frequent word “alright” is not rec-
ognized by the language model alone, but can be
detected by a topological model.

3.4 Relation to the Manifold Hypothesis

At first glance, our results may appear to be at
odds with the manifold hypothesis, a common as-
sumption underlying many representation learning
paradigms. While this hypothesis has been ques-
tioned for static word embeddings (Jakubowski
et al., 2020), it remains uncontested for contextual
embeddings. It posits that the latent space of a
trained machine learning model is clustered around
a disjoint union of lower-dimensional manifolds
(Bengio et al., 2013; Brown et al., 2023). This im-
plies that, from a purely topological perspective,
the local structure of the latent space is constant,

at least along connected components – every point
should have a neighborhood topologically identi-
cal to an open ball in some Euclidean space. How
then is it possible that we can extract meaningful
information from variations of the local topology?

There are at least two answers to this. First, all
our measures depend on the way data is sampled.
There is no reason to assume that the embeddings
drawn from a given corpus provide a uniform sam-
ple of the latent space. On the contrary, the dis-
tribution of these samples will depend heavily on
the corpus. And within a given corpus, we might
expect the neighborhoods of latent vectors of con-
tent words to be “more spread-out” and of higher
dimension than those of non-content words, since
there are more plausible possibilities for filling in
content words in a text than for non-content words.
Second, our measures are based on persistent ho-
mology, which is known to detect not only topolog-
ical properties but also differentiable structure such
as curvature (Bubenik et al., 2020). Thus, even on
a uniformly sampled manifold, these measures are
expected to vary.

3.5 Computational Complexity

In this section, we address the computational over-
head coming from our proposed method of aug-
menting a sequence tagger with contextual topo-
logical information of a given corpus. The one-off
computational costs for the datastore, in our study
derived from the MultiWOZ2.1 training dataset,
and the query datasets (MultiWOZ2.1 training &
validation dataset, and SGD dataset) involve a sin-
gle embedding model forward pass for each input
sequence.

For each query dataset relative to the datas-
tore, assuming a constant and small neighborhood
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size n, the asymptotic complexity of the neigh-
borhood search depends on the tokenized cardi-
nality of the query dataset |Q|, the tokenized car-
dinality of the datastore |C|, and the embedding
dimension d. The runtime complexity using the
exact search implementation from (Johnson et al.,
2021) is O(|Q||C|d), and the storage complexity
for neighborhood indices is O(|Q|n).

The persistent homology computation in dimen-
sion 0 for each query vector depends on the neigh-
borhood size n as well. For degree 0, the number
of simplices in the Vietoris-Rips complex can be
upper-bounded by n2. Thus, the persistence di-
agram for each neighborhood can be computed
in O(n2ω), where ω < 2.4 is the matrix mul-
tiplication exponent (Milosavljević et al., 2011).
There are at most n generators in the 0-dimensional
persistence diagrams, so the computation of the
Wasserstein norms can be achieved in O(n3) (La-
combe et al., 2018). Empirically, the computation
of the persistence images is observed to be very
quick compared to the computation of the persis-
tence diagrams.

Once computed and cached, these topological
features can be reused for different training objec-
tives on the given query dataset. The only overhead
in transitioning from the baseline tagger (approxi-
mately 35.65 million parameters) to the tagger with
input LM roberta-base⊕contextual PI0 involves
a few additional parameters (roughly 60 000) for
the encoding module of the 100-dimensional con-
textual persistence image. Consequently, once the
topological features have been cached, the training
and inference of the topologically augmented BIO-
tagger are only negligibly slower than the baseline
BIO-tagger. Appendix A.1 discusses the software
packages used in the implementation and how we
handle caching of the precomputed neighborhoods
and resulting contextual topological features.

4 Conclusion

In this work, we introduce a topological deep learn-
ing approach to enrich feature learning-based se-
quence tagging methods with contextual topolog-
ical data. Our methods do not depend on access
to the underlying feature creation method, nor on
external knowledge bases. Once these local topo-
logical descriptors are computed, they offer the po-
tential for reuse across different tasks, thereby mit-
igating the initial computational investment. One
limitation lies in our method still requiring labels

on the seed dataset. Though our results in the case
study hint at a correlation between dialogue terms
and higher Wasserstein norms, we have yet to es-
tablish a clear-cut purely feature based criterion for
distinguishing terms from non-terms in dialogue
data.

Looking ahead, we conjecture that the utility of
our approach extends beyond the term extraction
task investigated in this study. Given its generic
design and challenge, it is plausible that it is ap-
plicable to other language models and modalities.
Although our empirical evaluations have been con-
fined to masked language models, the difficulty of
the term extraction task provides optimism that our
method could be advantageous in other scenarios
where understanding the relation between individ-
ual data points and a datastore is critical.

Reproducibility Statement The MultiWOZ2.1
and SGD datasets are publicly available through the
ConvLab-3 unified data format (Zhu et al., 2023),
and we release our preprocessing, local topological
feature computation and tagging model training
code.2

5 Limitations

The experiments have been confined to a small
masked language model (RoBERTa base model).
Our proposed method can be applied to embedding
spaces derived from causal LLMs (BehnamGhader
et al., 2024), but current state-of-the-art models
typically produce latent spaces with significantly
larger embedding dimension. This has great influ-
ence on the computational complexity required to
generate the contextual topological features. While
our BIO-tagger can be trained on a single V100
GPU with 16 GB of VRAM in 2 hours, one should
note that for efficiently precomputing the nearest
neighbors in the contextual topological feature ex-
traction, the embedded datastore needs to fit into
the graphic card memory. This one-off neighbor-
hood computation is not an issue for the Multi-
WOZ2.1 training set datastore, but might limit ap-
plications to larger corpus sizes. One possible rem-
edy could be given by applying embedding space
dimension reduction techniques such as (Kusupati
et al., 2024) to the datastore before computing our
topological features.

2https://gitlab.cs.uni-duesseldorf.de/general/
dsml/tda4contextualembeddings-public

https://gitlab.cs.uni-duesseldorf.de/general/dsml/tda4contextualembeddings-public
https://gitlab.cs.uni-duesseldorf.de/general/dsml/tda4contextualembeddings-public


353

Acknowledgments
BMR and RV are supported by funds from the
European Research Council (ERC) provided un-
der the Horizon 2020 research and innovation pro-
gramme (Grant agreement No. STG2018 804636)
as part of the DYMO project. CVN and HL are
supported by the Ministry of Culture and Science
of North Rhine-Westphalia within the framework
of the Lamarr Fellow Network. MH and SF are
supported by funding provided by the Alexander
von Humboldt Foundation in the framework of the
Sofja Kovalevskaja Award endowed by the Federal
Ministry of Education and Research. Computa-
tional infrastructure and support were provided by
Google Cloud. We want to thank the anonymous
reviewers whose comments improved the quality
of our paper.

References
Henry Adams, Tegan Emerson, Michael Kirby, Rachel

Neville, Chris Peterson, Patrick Shipman, Sofya Che-
pushtanova, Eric Hanson, Francis Motta, and Lori
Ziegelmeier. 2017. Persistence Images: A Stable
Vector Representation of Persistent Homology. Jour-
nal of Machine Learning Research, 18(8):1–35.

Arthur Amalvy, Vincent Labatut, and Richard Dufour.
2023. The Role of Global and Local Context in
Named Entity Recognition. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
714–722, Toronto, Canada. Association for Compu-
tational Linguistics.

Ulrich Bauer. 2021. Ripser: efficient computation of
Vietoris-Rips persistence barcodes. J. Appl. Comput.
Topol., 5(3):391–423.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. LLM2Vec: Large Language Mod-
els Are Secretly Powerful Text Encoders. Preprint,
arXiv:2404.05961.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation Learning: A Review and New
Perspectives. IEEE Trans. Pattern Anal. Mach. In-
tell., 35(8):1798–1828.

Bradley CA Brown, Anthony L. Caterini, Bren-
dan Leigh Ross, Jesse C Cresswell, and Gabriel
Loaiza-Ganem. 2023. Verifying the Union of Man-
ifolds Hypothesis for Image Data. In The Eleventh
International Conference on Learning Representa-
tions.

Peter Bubenik, Michael Hull, Dhruv Patel, and Ben-
jamin Whittle. 2020. Persistent homology detects
curvature. Inverse Problems, 36(2):025008, 23.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - A
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Nikola Milosavljević, Dmitriy Morozov, and Primož
Škraba. 2011. Zigzag persistent homology in ma-
trix multiplication time. In Computational geometry
(SCG’11), pages 216–225. ACM, New York.

Nina Otter, Mason A Porter, Ulrike Tillmann, Peter
Grindrod, and Heather A Harrington. 2017. A
roadmap for the computation of persistent homology.
EPJ Data Science, 6(1).

Rrubaa Panchendrarajan and Aravindh Amaresan. 2018.
Bidirectional LSTM-CRF for named entity recogni-
tion. In Proceedings of the 32nd Pacific Asia Con-
ference on Language, Information and Computation,
Hong Kong. Association for Computational Linguis-
tics.

Ilan Perez and Raphael Reinauer. 2022. The Topo-
logical BERT: Transforming Attention into Topol-
ogy for Natural Language Processing. Preprint,
arXiv:2206.15195.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Liang Qiu, Chien-Sheng Wu, Wenhao Liu, and Caim-
ing Xiong. 2022. Structure Extraction in Task-
Oriented Dialogues with Slot Clustering. Preprint,
arXiv:2203.00073.

Lance Ramshaw and Mitch Marcus. 1995. Text Chunk-
ing using Transformation-Based Learning. In Third
Workshop on Very Large Corpora.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,

https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.1162/tacl_a_00513
https://doi.org/10.1162/tacl_a_00513
https://aclanthology.org/2020.starsem-1.11
https://aclanthology.org/2020.starsem-1.11
https://doi.org/10.1109/TBDATA.2019.2921572
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.18653/v1/2021.emnlp-main.50
https://doi.org/10.18653/v1/2021.emnlp-main.50
https://doi.org/10.18653/v1/2021.emnlp-main.50
https://dl.acm.org/doi/10.5555/3600270.3602462
https://dl.acm.org/doi/10.5555/3600270.3602462
https://dl.acm.org/doi/10.5555/3327546.3327645
https://dl.acm.org/doi/10.5555/3327546.3327645
https://doi.org/10.18653/v1/N16-1030
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/1998196.1998229
https://doi.org/10.1145/1998196.1998229
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://aclanthology.org/Y18-1061
https://aclanthology.org/Y18-1061
https://arxiv.org/abs/2206.15195
https://arxiv.org/abs/2206.15195
https://arxiv.org/abs/2206.15195
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://arxiv.org/abs/2203.00073
https://arxiv.org/abs/2203.00073
https://aclanthology.org/W95-0107
https://aclanthology.org/W95-0107
https://doi.org/10.1609/AAAI.V34I05.6394
https://doi.org/10.1609/AAAI.V34I05.6394
https://doi.org/10.1609/AAAI.V34I05.6394


355

AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8689–8696. AAAI
Press.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked Language Model Scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

The GUDHI Project. 2015. GUDHI User and Reference
Manual. GUDHI Editorial Board.

Eduard Tulchinskii, Kristian Kuznetsov, Laida
Kushnareva, Daniil Cherniavskii, Sergey I.
Nikolenko, Evgeny Burnaev, Serguei Barannikov,
and Irina Piontkovskaya. 2023. Intrinsic Dimension
Estimation for Robust Detection of AI-Generated
Texts. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello,
Alessandro Laio, Alessio Ansuini, and Alberto Caz-
zaniga. 2023. The geometry of hidden representa-
tions of large transformer models. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Julius Von Rohrscheidt and Bastian Rieck. 2023. Topo-
logical Singularity Detection at Multiple Scales. In
Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Renato Vukovic, Michael Heck, Benjamin Ruppik,
Carel van Niekerk, Marcus Zibrowius, and Milica
Gašić. 2022. Dialogue Term Extraction using Trans-
fer Learning and Topological Data Analysis. In Pro-
ceedings of the 23rd Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
564–581, Edinburgh, UK. Association for Computa-
tional Linguistics.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin
Wang. 2023. GPT-NER: Named Entity Recog-
nition via Large Language Models. Preprint,
arXiv:2304.10428.

Frank F. Xu, Uri Alon, and Graham Neubig. 2023. Why
do Nearest Neighbor Language Models Work? In
Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh,
Barnabás Póczos, Ruslan Salakhutdinov, and Alexan-
der J Smola. 2017. Deep sets. In Proceedings of the
31st International Conference on Neural Information
Processing Systems, NIPS’17, page 3394–3404, Red
Hook, NY, USA. Curran Associates Inc.

Qi Zhu, Christian Geishauser, Hsien-chin Lin, Carel van
Niekerk, Baolin Peng, Zheng Zhang, Shutong Feng,
Michael Heck, Nurul Lubis, Dazhen Wan, Xiaochen
Zhu, Jianfeng Gao, Milica Gašić, and Minlie Huang.
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A Appendix

A.1 Implementation Details

In our term extraction applications, the ambient
vector datastore comprises a collection of vectors
with cardinality in the millions, making the com-
putation of neighborhoods a major computational
bottleneck. To alleviate this issue, we employ the
Facebook AI Similarity Search (faiss) module
(Johnson et al., 2021) to precompute neighborhood
indices using GPU acceleration. These indices can
be reused in subsequent computations of our lo-
cal measurements at varying scales. We obtain the
neighborhood indices and distances for 1 024 neigh-
bors using the faiss.IndexFlatL2 build from
the MultiWOZ2.1 training datastore. This neigh-
borhood cache allows extraction of the codensity
measurements and the vectors required to subse-
quently compute persistence images for neighbor-
hood size n = 128. Loading the 2 739 744 many
768-dimensional vectors from the roberta-base
MultiWOZ2.1 training datastore into the faiss in-
dex requires approximately 8 GB of GPU memory.

The faiss library does not currently offer GPU
support for range-based nearest neighbor search.
This makes it infeasible to compute range-based
neighborhoods at the scale of our dataset for the
methods described in Von Rohrscheidt and Rieck
(2023). This limitation is especially critical be-
cause our BIO-tagger requires topological features
for each input token in each context.

Another computational challenge lies in the local
persistent homology computations, which become
a bottleneck when the goal is training a BIO-tagger
based on the resulting features. To address this,
we precompute and store the topological features
and their vectorizations, including both persistence
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images and Wasserstein norms. We use the Ripser
library (Bauer, 2021) for computing the persistence
modules for H0 and H1 with F2-coefficients w.r.t.
cosine distance from the precomputed neighbor-
hoods, and GUDHI (The GUDHI Project, 2015;
Dlotko, 2017) for the vectorization and persistence
representation. The Wasserstein norms, i.e., the
order-1 Wasserstein distances between the neigh-
borhood persistence diagrams and the empty dia-
gram with Euclidean ground metric, are computed
separately for the H0 and H1 persistence diagrams
using the GUDHI library.

For the persistence image vectorization of the
H0-persistence module, we decide on a bandwidth
of 0.01, image range on the y-axis of [0.0, 1.0],
resolution of 1 × 100 and weight each persis-
tence homology generator by its y-value. We re-
strict our computations to 0-dimensional and 1-
dimensional persistent homology. This is not only
due to Ripser’s optimizations, which result in a
faster runtime, but also to circumvent the potential
exponential increase in the number of simplices
in the filtered complex when considering higher
dimensional Vietoris-Rips complexes on a point
cloud.
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