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Abstract

The challenge of defining a slot schema to rep-
resent the state of a task-oriented dialogue sys-
tem is addressed by Slot Schema Induction
(SSI), which aims to automatically induce slots
from unlabeled dialogue data. Whereas previ-
ous approaches induce slots by clustering value
spans extracted directly from the dialogue text,
we demonstrate the power of discovering slots
using a generative approach. By training a
model to generate slot names and values that
summarize key dialogue information with no
prior task knowledge, our SSI method discov-
ers high-quality candidate information for rep-
resenting dialogue state. These discovered slot-
value candidates can be easily clustered into
unified slot schemas that align well with human-
authored schemas. Experimental comparisons
on the MultiWOZ and SGD datasets demon-
strate that Generative Dialogue State Inference
(GenDSI) outperforms the previous state-of-the-
art on multiple aspects of the SSI task.

1 Introduction

Developing Task-Oriented Dialogue (TOD) sys-
tems presents the significant challenge of creat-
ing and maintaining a slot schema, where each
slot defines a type of information that is criti-
cal for successfully completing the dialogue task
(Budzianowski et al., 2018). Traditionally slot
schemas are handcrafted, but manually defining
each slot is time-consuming, especially when task
domains are complicated or the functionality of the
dialogue system is frequently updated. To address
this, Slot Schema Induction (SSI) has been pro-
posed to automatically generate slot schemas from
unlabeled dialogue data (Chen et al., 2013; Min
et al., 2020). This task facilitates the automatic
analysis of dialogue structure (Qiu et al., 2022)
and identifies key types of information that should
be included in dialogue state representations (Min
et al., 2020). By reducing the need for manual

schema creation, SSI expedites developing TOD
systems for new application domains, and enables
continual discovery of new slot types to improve
the coverage of existing slot schemata.

The core challenge of SSI is identifying which
information presented in unlabeled dialogue data
is important for the task domain and should be in-
cluded in the dialogue state. Once the important
information values are identified, a second chal-
lenge is defining a minimal set of slots that cap-
tures the different types of information the values
represent. All previous work on SSI tackles these
challenges in an explicit two-step process involving
(1) candidate value identification and (2) inducing
a slot schema by clustering candidate values into
a set of slot clusters. Identifying value candidates
has been explored using tagging models trained on
other tasks such as NER or SRL (Min et al., 2020;
Hudeček et al., 2021; Qiu et al., 2022; Wu et al.,
2022), or using token attention distributions pro-
duced by a PLM to extract syntactic constituents
(Yu et al., 2022). Inducing slots from value candi-
dates has been explored using out-of-the-box clus-
tering algorithms (Qiu et al., 2022), multi-stage
clustering pipelines specific to SSI (Hudeček et al.,
2021; Wu et al., 2022; Yu et al., 2022), or a neural
latent variable model (Min et al., 2020).

Unlike all previous approaches to SSI, we are the
first to take a generative approach to value candi-
date identification.1 Candidates are identified using
a dialogue state generator model, which is trained
to summarize the key task-related information in
a given dialogue context as a set of state values.
Crucially, this state generator also creates a slot
name for each value, which serves as a candidate
prediction of the name of the slot the value fills.
Value candidates are then clustered in conjunction
with these predicted slot names to induce a uni-

1The code, models, and data for our approach is publicly
available at https://github.com/emorynlp/GenDSI.

https://github.com/emorynlp/GenDSI
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Figure 1: Overview of the GenDSI approach.

fied set of slots. The advantage of this approach is
that the type semantics of each value candidate are
concretely represented using slot name predictions,
whereas previous approaches rely on the similar-
ity of value encodings alone to cluster values into
slot types. Predicting slot names has the additional
benefit of enabling automatic naming of each slot
cluster in the induced schema. We demonstrate
the impact of these benefits by evaluating our ap-
proach on the MultiWOZ (Eric et al., 2020) and
SGD (Rastogi et al., 2020) datasets. Our SSI ap-
proach produces slot schemas that better match
gold reference schemas when compared to the pre-
vious state-of-the-art (SoTA) approaches.

2 Approach

Our SSI approach, Generative Dialogue State In-
ference (GenDSI), induces a slot schema consisting
of a set of slot clusters from an unlabeled set of
dialogues. The induction procedure is performed in
three stages (Fig. 1). First, a dialogue state genera-
tor discovers value candidates for each turn in the
dialogue data and jointly predicts a slot name with
each value. Second, an encoding model produces
a dense vector representation for each slot-value
candidate. Finally, a clustering algorithm uses the
encodings to filter and group candidates into a uni-
fied set of slot clusters.

Dialogue State Generator Our approach formu-
lates the discovery of value candidates from unla-
beled dialogue data as a sequence-to-sequence gen-
eration task. The input is a dialogue context D∗..t,
and the output is a list of slot-value candidates
[(s1, v1), ..., (sk, vk)] represented by the sequence
format s1:v1; s2:v2; ...sk:vk[eos]. Each candidate
includes a value vi that is inferred to belong to the
dialogue state and a slot name prediction si to repre-
sent the type of vi. To enable the model to generate
slot-value pairs that discover important dialogue

state information without any prior knowledge of
the task domain, we fine-tune a pretrained encoder-
decoder transformer on TOD data that covers a
large variety of domains. Section 3 presents an
evaluation of the dialogue state generator in which
two different training datasets are compared.

Value Candidate Encoding Each slot-value can-
didate (si, vi) produced by the dialogue state gen-
erator is encoded into a single dense vector repre-
sentation ei. To do this, we concatenate the slot
name and value candidate with a separator to form
a single token sequence si:vi. We then use the
SBERT encoder (Reimers and Gurevych, 2019) to
independently encode each candidate sequence.

Slot Clustering Given a complete list of all slot-
value candidates [(s1, v1), ..., (sn, vn)] produced
by the dialogue state generator across all turns
of the dialogue dataset, slot-value candidates are
jointly filtered and grouped by applying the HDB-
SCAN algorithm (McInnes et al., 2017) to the can-
didate encodings [e1, e2, ..., en]. As demonstrated
in previous work (Yu et al., 2022), HDBSCAN is a
suitable clustering algorithm because (1) it automat-
ically discovers an appropriate number of slot clus-
ters and (2) it filters out examples in low-density
regions of the encoding space, which are likely to
represent noisy candidates. The result is a set of
slot clusters [S1, S2, ..., Sk] where each cluster Si

is a list of values that fill the slot it represents.

3 State Generator Evaluation

Since our SSI approach relies mainly on the di-
alogue state generator component to infer high-
quality value candidates with appropriate slot
names, we first conduct an evaluation of the per-
formance of this component when discovering slot-
values from dialogues in unseen task domains.



319

Metrics The dialogue state generator is evalu-
ated by human judges, since discovered slot-value
candidates are generated and many surface forms
can be equally correct. We recruit three university
students as volunteers to evaluate two key aspects
of slot value candidate inferences. (1) Complete-
ness measures the proportion of dialogue turns for
which all key information has been captured as
slot-value candidates. (2) Correctness measures
the proportion of slot-value candidates that accu-
rately represent specific information in their corre-
sponding turns. Details of metrics are presented
in Appx. A. This evaluation is performed using a
custom annotation software, which was developed
to optimize the efficiency of the annotation work.
The interface is shown in Appx. C.

To validate our human evaluation metrics, inter-
annotator agreement was calculated between the
three human judges at 0.43 and 0.27 Krippendorff’s
Alpha for Correctness and Completeness respec-
tively. Based on a manual review of the annotation
disagreements for Completeness items, we believe
the lower agreement occurs because judges are re-
quired to consider more information across an en-
tire state update compared to judging the correct-
ness of a single slot-value pair, leading to higher
annotation difficulty and thus some noisy judge-
ments.

Data Since our goal is to train a dialogue state
generator to discover slot-value candidates for un-
seen domains, we experiment with two domain-
diverse datasets for training: SGD (Rastogi et al.,
2020) and D0T (Finch and Choi, 2024). SGD is a
popular TOD dataset that contains 20 domains and
16, 142 dialogues, with gold dialogue state labels.
D0T is a recent dataset that was created using a
fully automatic data generation method based on
GPT-3.5 and GPT-4. It covers a large 1, 003 do-
mains across 5, 015 dialogues, but it contains some
noisy labels from automatic annotation.

We adapt these datasets for slot-value candidate
discovery by simply training on dialogue state up-
dates instead of full dialogue states, which repre-
sent only the slots that are filled by new values.
This avoids training the dialogue state generator to
predict empty slots, which are not useful for can-
didate discovery. Additionally, the special request
value "?" is removed from D0T state updates. We
also replace each slot name in the SGD training
split with a random synonymous name from SGD-
X (Lee et al., 2022), as we found this augmentation

to improve performance.
Both SGD and D0T are also used as evaluation

data by randomly sampling 60 turns from their test
splits, each from a unique dialogue. Crucially, we
only sample turns from domains not included in the
training split. Since the D0T dataset has no native
splits for training and testing, we randomly sample
100 domains out of the total 1, 003 to be held-out
for evaluation. The D0T training split thus includes
only the remaining 4, 515 dialogues.

Models We train two models using T5-3B (Raffel
et al., 2020) as a base model: T5-D0T trained on
D0T and T5-SGD trained on SGD. We also compare
against the GPT-based automatic annotator used to
create silver D0T state update labels (GPT-D0T).
Implementation details presented in Appx. D.

D0T SGD

Model CP CR HM CP CR HM

T5-SGD 32.3 72.6 44.7 69.3 90.8* 78.6
GPT-D0T 93.3* 82.0* 87.3 90.0* 84.7 87.3
T5-D0T 95.7* 81.2* 87.9 94.7† 81.7 87.7

Table 1: Human evaluation of completeness (CP), cor-
rectness (CR), and their harmonic mean (HM) for each
dialogue state generator. */† denote statistical signifi-
cance against unstarred/all results in the same column
(Agresti-Caffo, p < 0.05).

Results As shown in Table 1, T5-D0T exhibits
the best overall performance, achieving approxi-
mately 81% correct slot-value inferences and com-
pletely covering all key information in 95% of
turns. The fact that there was nearly zero per-
formance drop-off on the out-of-distribution SGD
evaluation demonstrates its robustness in discov-
ering useful slot-values for new domains. As ex-
pected, GPT-D0T exhibits similar performance, as it
generated the labels used to train T5-D0T; however,
GPT-D0T is much costlier due to multiple API calls
to GPT3.5 and GPT4. T5-SGD achieves the highest
correctness score when evaluated on held-out SGD
domains, but its completeness score of only 70%
demonstrates it is incapable of fully adapting to
unseen domains. On the out-of-distribution D0T
evaluation, the performance of T5-SGD heavily suf-
fers, achieving only 32% completeness and 73%
correctness. This result demonstrates the difficulty
of discovering state information in unseen domains,
and indicates that SGD is insufficiently diverse as
a training resource for this purpose.
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MultiWOZ SGD
Slot Value Slot Value

Model C P R F1 P R F1 C P R F1 P R F1

DSI 522 96.2 80.7 87.7 41.5 57.4 37.2 11992 - - 92.2 - - 46.2
USI 290 100.0 93.6 96.7 61.3 67.3 58.7 806 - - 77.0 - - 47.5
GenDSI 180 85.6 96.8 90.9 81.4 70.2 70.5 746 92.4 77.9 84.5 65.4 50.0 48.8
- slot names 157 73.9 90.3 81.3 85.2 47.7 55.3 467 76.4 75.6 76.0 70.6 36.3 37.9
+ all domains 161 85.1 96.8 90.6 87.9 68.1 71.0 737 90.8 79.1 84.5 68.0 47.2 47.7

Table 2: Schema induction results showing Precision/Recall/F1 (P/R/F1) for both induced slots and discovered
values, as well as the induced Slot Count (C). Note that the optimal Slot Count would equal the gold slot counts of
31 and 82 for MultiWOZ and SGD respectively. DSI and USI results taken from Yu et al. (2022).

4 Schema Induction Evaluation

To evaluate our SSI approach, we use the bench-
mark defined by Yu et al. (2022) on the validation
splits of MultiWOZ 2.1 (Eric et al., 2020) and SGD
(Rastogi et al., 2020) datasets. This evaluation
method measures the quality of an induced set of
slot clusters by matching it against a gold reference
slot schema.

Matching is performed automatically by com-
puting the centroid of each induced and gold ref-
erence slot cluster using BERT encodings (Devlin
et al., 2019) of their values. Each induced cluster
is mapped to the gold slot whose cluster centroid
is nearest by cosine similarity, or to no cluster if
there is no match of 80% similarity or higher. Sim-
ilarly, in order to evaluate the purity and coverage
of clustered values, discovered values are matched
against the gold value labels that fill each slot. This
value matching is performed between the values
that fill each gold slot and the discovered values of
all induced clusters mapped to that slot using fuzzy
string matching.

Metrics Given the mapping of induced clusters
to gold slots, Slot Precision measures the pro-
portion of induced clusters that were able to be
matched to a gold slot, Slot Recall is the propor-
tion of gold slots that were matched with at least
one induced cluster, and Slot F1 is their harmonic
mean. Since multiple induced slots are allowed to
map to a single gold slot, the induced Slot Count is
also reported to measure redundancy. Value Preci-
sion is the average proportion of discovered values
that matched to gold values, averaged across all
gold slots. Similarly, Value Recall is the average
proportion of gold values that were matched to a
discovered value, and Value F1 is the average F1
score across all gold slots. Equations defining these
metrics are presented in Appx. B.

Models Our SSI approach, GenDSI, uses a T5-3B
model trained on the D0T dataset. Since D0T con-
tains some task domains that are related to travel
domains appearing in MultiWOZ and SGD, we
manually review and filter out 34 domains with
overlap and train our dialogue state generator on all
D0T dialogues in remaining domains. We also eval-
uate the performance when using a model trained
with all D0T domains (GenDSI +all domains),
which simulates extending our approach using the
D0T data generation method to create synthetic
training resources for target domains. Additionally,
we evaluate a version of our approach where value
candidates are encoded without their predicted slot
names (GenDSI -slot names) to measure the ben-
efit of concretely representing value type informa-
tion. Implementation details provided are in Appx.
D. Finally, we compare to two strong baselines
from previous work:

• DSI (Min et al., 2020), which leverages a Part-
of-Speech (POS) tagger, Named Entity Recog-
nition (NER) tagger, and coreference resolu-
tion model to extract value candidate spans
using a set of heuristic rules. Slot clusters
are then assigned to value candidates using a
neural latent variable model.

• USI (Yu et al., 2022), which is the SoTA SSI
approach. It is a fully unsupervised SSI ap-
proach that leverages attention scores between
token spans estimated using a pretrained lan-
guage model to extract value candidates. A
three-step hierarchical clustering procedure is
then used that aims to cluster value types, then
domains, then slots, using HDBSCAN.

Results As shown in Table 2, GenDSI outper-
forms the previous SoTA USI on almost every as-
pect of the SSI task. It contains fewer redundant
slot clusters, superior recall of gold slots, higher
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cluster purity as measured by value precision, and
better coverage of gold slot values. The only met-
ric on which GenDSI did not outperform USI is slot
precision on the MultiWOZ evaluation. This is be-
cause the state generator model learned to predict
boolean slot values from the D0T dataset that repre-
sent intent types, such as greeting and requesting in-
formation, which are considered as precision errors
under this evaluation since gold slots do not encode
intent classes. The performance of GenDSI -slot
names dropped considerably on all metrics other
than slot count, indicating the utility of inferring
concrete slot names when discovering value can-
didates. Surprisingly, GenDSI +all domains did
not afford any meaningful benefit, which may indi-
cate that our approach generalizes to new domains
without the need to generate in-domain resources.

Slot Name Evaluation Our SSI approach is the
first to enable automatic naming of slot clusters.
Simply labeling each cluster with the most fre-
quent candidate slot name achieves 93.5% correctly
named clusters by human evaluation.

5 Conclusion

This work presents a new SoTA for SSI, demon-
strating the power of a generative approach to value
candidate discovery. Our dialogue state generator
model shows excellent performance for discover-
ing key dialogue state information from unlabeled
dialogues without any prior knowledge of the task
domain. Its ability to label discovered values with
appropriate slot names provides rich type informa-
tion, allowing a simple clustering method to induce
a quality slot schema for unseen domains. Despite
this advancement, there is still room to improve
SSI. In particular, current SSI methods produce a
far greater number of induced slots compared to
human-defined schemas. Although our approach
reduces the number of induced slots somewhat,
future work should aim for SSI with minimal re-
dundancies in induced slots to further improve the
utility of SSI in practical settings.
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Large-Scale Multi-Domain Wizard-of-Oz Dataset for
Task-Oriented Dialogue Modelling. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Yun-Nung Chen, William Yang Wang, and Alexander I
Rudnicky. 2013. Unsupervised induction and filling
of semantic slots for spoken dialogue systems using
frame-semantic parsing. In 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding,
pages 120–125. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-
tiWOZ 2.1: A Consolidated Multi-Domain Dia-
logue Dataset with State Corrections and State Track-
ing Baselines. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
422–428, Marseille, France. European Language Re-
sources Association.

James D. Finch and Jinho D. Choi. 2024. Diverse
and effective synthetic data generation for adapt-
able zero-shot dialogue state tracking. Preprint,
arXiv:2405.12468.
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A State Generator Evaluation Details

To facilitate a thorough evaluation of dialogue state
generators, a human evaluation measures the fol-
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portion of predicted state updates that humans have
judged to fully capture the key information in their
associated turns. Human judges are asked to read
each turn within its context and make a binary de-
cision on whether or not any essential information
is missing in the state update such that:

CP =
1

|U|
∑

∀U∈ U
I(complete(U))

U is a list of all state updates across dialogues to
be evaluated and I(x) is 1 if x is true; otherwise, 0.
Note that the judges are not responsible for finding
all missing information but identifying at least one
to assess completeness for efficient evaluation.

Slot Value Correctness measures the proportion
of slot-value pairs that humans have judged to ac-
curately represent specific information in their cor-
responding turns. Judges are asked to mark each
slot-value pair as correct if it makes sense and is
entirely faithful to the content of the associated turn
s.t.:

CR =
1∑

∀U∈ U |U |
∑

∀U∈ U

∑
∀(s,v)∈U

I(correct(s, v))

Note that both the slot name s and value v must be
accurate for I(correct(s, v)) to be 1.

B SSI Evaluation Metrics

An SSI model produces a list of slot clusters Ŝ =
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duced slot ŝi to one or zero gold slots, creating
a mapping M : Ŝ → S ⊕ [none]. This matching is
performed automatically. First, a centroid represen-
tation ci is computed for each induced slot cluster
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(Devlin et al., 2019) encoding of each value:

https://doi.org/10.48550/arXiv.2203.00073
https://doi.org/10.48550/arXiv.2203.00073
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2022.findings-emnlp.462
https://doi.org/10.18653/v1/2022.findings-emnlp.462
https://doi.org/10.18653/v1/2022.naacl-main.86
https://doi.org/10.18653/v1/2022.naacl-main.86


323

ci =

∑
vj∈si BERT(vj)

|si|

Each induced cluster is mapped to the gold clus-
ter whose centroid is closest by cosine distance, or
to none if no gold centroid is within ≥ 0.8 cosine
similarity.

Given the mapping M from predicted to gold
slots, the evaluation metrics are calculated follows:

Slot Precision is the proportion of predicted slots
that were able to be mapped to a gold slot:

SP =

∑
ŝi∈Ŝ 1S(M(ŝi))

|Ŝ|

Slot Recall is the proportion of gold slots for
which there is at least one corresponding predicted
slot:

SR =
|{M(ŝi) : ŝi ∈ Ŝ} − {none}|

|S|

Slot F1 is calculated normally as the harmonic
mean of precision and recall:

S-F1 = 2× precision × recall
precision + recall

Slot Count In the above Slot Precision calcu-
lation, multiple predicted clusters are allowed to
be mapped to a single gold slot. This choice of
formulation was made by previous work to avoid
punishing the schema induction approach for in-
ducing a finer-grained schema than what the gold
schema provides, but fails to reflect the number of
redundant clusters that are induced. To mitigate
this, the number of induced slots is reported as an
additional evaluation metric, where a lower number
of induced slots is considered preferable.

Value Precision is meant to measure the purity of
predicted slot clusters. It is calculated only between
matched predicted clusters Ŝmatched and matched
gold clusters Smatched. For each gold slot with
at least one match si ∈ Smatched, the proportion
of predicted values in the mapped predicted slots
that have a fuzzy match to some gold slot value is
measured using fuzzy match boolean function f :

VPsi =
|{v̂kl:v̂kl∈v̂k,M(ŝk)=si,vij∈si,f(vij ,v̂kl)}|

|{v̂kl:v̂kl∈v̂k,M(ŝk)=si}|

The final Value Precision score is an average across
matched gold slots calculated in this way:

VP =

∑
si∈Smatched

VPsi

|Smatched|
Value Recall is calculated similarly to Value Pre-
cision. For each gold slot with a mapping to one or
more predicted clusters, recall is measured as the
proportion of gold values that have a fuzzy match to
some value in the corresponding predicted clusters:

VRsi =
|{vij :v̂kl∈v̂k,M(ŝk)=si,vij∈si,f(vij ,v̂kl)}|

|si|

The final Value Recall is also averaged across
matched gold slots:

VR =

∑
si∈Smatched

VRsi

|Smatched|

C State Generator Evaluation Interface

Figure 2 shows a screenshot of the interface when
performing completeness annotations, and Figure
3 shows a screenshot of the interface when per-
forming correctness annotations. Note that the ap-
plication interface relies on custom keybindings
(e.g. pressing the y or n keys to indicate “yes"
or “no") for annotators to record their evaluation
judgements.

D Implementation Details

Dialogue State Generator All dialogue state
generator models were trained using the original
version of T5-3B using the huggingface transform-
ers library2. All training was performed using a
learning rate of 1e − 4, weight decay of 5e − 3,
batch size 128, and for exactly 1 epoch, using the
Adam optimizer.

Slot Schema Induction All SSI models used
a T5-3B dialogue state generator model trained
with the configuration presented above. The
all-MiniLM-L6-v2 model from SentenceTrans-
formers3 was used for slot-value encoding. All
HDBSCAN runs used the CUML4 library with a
a min. samples of 5, minimum cluster size 25, and
cluster merge epsilon 0.3.

2https://huggingface.co/docs/transformers
3https://www.sbert.net
4https://docs.rapids.ai/api/cuml/stable/

https://huggingface.co/docs/transformers
https://www.sbert.net
https://docs.rapids.ai/api/cuml/stable/
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Figure 2: Annotation interface with instructions for human evaluation of Completeness of predicted state updates.

Figure 3: Annotation interface with instructions for human evaluation of Correctness of predicted slot-value pairs.
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