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Abstract
Affect recognition, encompassing emotions,
moods, and feelings, plays a pivotal role in
human communication. In the realm of con-
versational artificial intelligence, the ability to
discern and respond to human affective cues is
a critical factor for creating engaging and empa-
thetic interactions. This study investigates the
capacity of large language models (LLMs) to
recognise human affect in conversations, with a
focus on both open-domain chit-chat dialogues
and task-oriented dialogues. Leveraging three
diverse datasets, namely IEMOCAP (Busso
et al., 2008), EmoWOZ (Feng et al., 2022),
and DAIC-WOZ (Gratch et al., 2014), covering
a spectrum of dialogues from casual conver-
sations to clinical interviews, we evaluate and
compare LLMs’ performance in affect recogni-
tion. Our investigation explores the zero-shot
and few-shot capabilities of LLMs through in-
context learning as well as their model capaci-
ties through task-specific fine-tuning. Addition-
ally, this study takes into account the potential
impact of automatic speech recognition errors
on LLM predictions. With this work, we aim
to shed light on the extent to which LLMs can
replicate human-like affect recognition capabil-
ities in conversations.

1 Introduction

Affect refers to the broad range of subjective ex-
periences related to emotions, moods, and feelings
(Russell, 1980). It encompasses the various ways
individuals perceive, experience, and express their
emotional states and is an essential aspect of human
experience and communication (Gross, 2002).

The ability to recognise human affect is an impor-
tant ability of conversational artificial intelligence
(AI, Mayer et al. 1999). It empowers the dialogue
agent to go beyond mere information exchange and
engage users on an emotional level. By leverag-
ing affect recognition techniques, they can discern
the emotional nuances in user inputs, including

sentiment, mood, and subtle cues like sarcasm or
frustration (Picard, 1997). This capability allows
the system to respond with greater sensitivity, em-
pathy, and relevance, leading to more meaningful
and satisfying interactions (Zeng et al., 2009).

Large language models (LLMs) have demonstrated
promising performance in many tasks (Beeching
et al., 2023). They have also shown promising capa-
bility in adapting to new tasks via prompting (Heck
et al., 2023; Sun et al., 2023), in-context learning
(ICL, Zhao et al. 2023), as well as task-specific fine-
tuning (Taori et al., 2023). With the advancement in
LLMs, it is possible to use LLMs as the backend of
dialogue systems (OpenAI, 2022, 2023; Touvron
et al., 2023b). This brings up the question: can
LLMs recognise human affects in conversations in
a similar capacity as human beings?

In the context of conversational AI, dialogues can
be broadly categorised into two classes: 1) chit-
chat or open-domain dialogues where users interact
with the system for entertainment and engagement,
and 2) task-oriented dialogues (ToDs) where users
converse with the system for specific goals (Juraf-
sky and Martin, 2009). Under ToDs, depending
on the type of user goals, dialogues can be further
grouped as information-retrieval, medical consulta-
tions, education, and many more.

Regarding the affective information in conversa-
tions, we are particularly interested in the follow-
ing: (1) categorical emotion classes from generic
emotion models such as “basic emotions” proposed
by Ekman and Friesen (1971), (2) custom categori-
cal emotion classes defined for a particular context,
such as the emotion labels defined by Feng et al.
(2022) to encode task performance simultaneously
in ToDs, and (3) depression, a medical illness that
negatively affects how a person feels, thinks and
acts, and causes feelings of sadness and/or a loss of
interest in activities the person once enjoyed (Amer-
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ican Psychiatric Association, 2020).

The emergence of LLMs has signified a shift of
paradigm from training small models for one spe-
cific task to large models for multiple tasks. There-
fore, in this work, we investigate the affect recogni-
tion ability of a range of LLMs on vastly different
types of dialogues and labels1 to ascertain the va-
lidity of this direction. Specifically,

• We evaluated and compared the ability of a range
of LLMs to recognise human affect under dif-
ferent dialogue set-ups (chit-chat dialogues and
ToDs) and recognition targets (emotion classes
and binary depression diagnosis). We used the
following datasets: IEMOCAP (Busso et al.,
2008), EmoWOZ (Feng et al., 2022), and DAIC-
WOZ (Gratch et al., 2014).

• We investigated into LLMs’ zero-shot and few-
shot capabilities through an array of ICL set-ups
as well as their model capacities through task-
specific fine-tuning.

• We considered text-based LLMs as a part of spo-
ken dialogues systems. Therefore, we also exper-
imented with inputs containing automatic speech
recognition (ASR) errors to investigate the poten-
tial influence of ASR errors on LLM predictions.

2 Related Work

2.1 LLM
Large Language Model (LLM) refers to a type of
pre-trained models designed for natural language
processing tasks. LLMs are characterised by their
enormous number of model parameters and exten-
sive training data.

Some well-known examples of LLMs include Ope-
nAI GPT family models (Radford et al., 2019; Ope-
nAI, 2022, 2023), which can have billions or even
trillions of model parameters. Examples of open-
source text-based foundation models include the
LLaMA family (Touvron et al., 2023a,b; AI@Meta,
2024) and their corresponding chat-optimised mod-
els.These models have demonstrated remarkable
abilities in various natural language understand-
ing and generation tasks, including text comple-
tion, language translation, text summarisation, and
even chatbot applications (Beeching et al., 2023).
They also demonstrate “emergent abilities” such
as few-shot prompting and chain-of-thought rea-
soning, which were not present in their smaller

1The code can be found at https://gitlab.cs.
uni-duesseldorf.de/general/dsml/llm4erc-public/

predecessors (Wei et al., 2022). While there are
also multi-modal LLMs such as SALMONN (Tang
et al., 2024), these are at an earlier stage compared
to uni-modal text-based LLMs, and it is still a com-
mon practice to use text-based LLMs as the text-
processing backend, pipelined with other modules
such as ASR and image generator for more com-
plex applications.

2.2 Affective Capabilities of LLMs
With the growing attention on LLMs from the
research community, there have been several
works investigating the affective abilities of LLMs.
Huang et al. (2023) evaluated the empathy ability
of LLMs by utilising the emotion appraisal theory
from psychology. Wang et al. (2023) assessed the
emotional intelligence of LLMs in terms of Emo-
tional Quotient (EQ) scores. Zhang et al. (2023)
investigated how LLMs could be leveraged for a
range of sentiment analysis tasks under zero-shot or
few-shot learning set-ups. Zhao et al. (2023) inves-
tigated the emotional dialogue ability of ChatGPT
through a range of understanding and generation
tasks. In our work, we focus on the affect recogni-
tion ability of text-based LLMs. Our investigation
spans across different types of dialogues and model
learning set-ups. We also consider real-world appli-
cations of LLMs and consider ASR-inferred noisy
input to models.

3 Methodology

The ability of human-beings to recognise affect
can be reflected in many ways. Yet, being able
to narrate what emotion has been expressed in the
utterances of the other interlocutor is a straightfor-
ward and strong sign of such an ability. Therefore,
we took LLMs’ ability to verbalise the emotion
given the dialogue context as a proxy to both qual-
itatively and quantitatively analyse LLMs’ ability
for affect recognition.

3.1 Affect Recognition using LLMs
The pipeline for affect recognition using LLMs
with the option to take speech as input is illus-
trated in Figure 1. When using the speech input, a
Whisper-medium model was used to transcribe the
speech (see Section 4.5 for details). The prompt
is then constructed as designed and fed into the
LLM to generate a text sequence. For open-source
LLMs, we examined the probability of each class
token and considered the one with the maximum
probability as the final model prediction, as shown

https://gitlab.cs.uni-duesseldorf.de/general/dsml/llm4erc-public/
https://gitlab.cs.uni-duesseldorf.de/general/dsml/llm4erc-public/
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Whisper-medium

Dialogues

...
F: it's the worst when they go 

like that. was he young?
M: kind of

...
F: what's the worst when they 

go like that it was young
M: i know

Speech

OR

Transcript

Top-1 ASR Hypothesis

Prompt Template

Consider the following list of 
concepts, called EMOTIONs: 
[Neutral, Happy, Sad, Angry]

Task Definition

Given ..., the emotion in ... is Happy.

Given ..., the emotion in ... is 

ICL Samples

Query

LoRA

Sad

Emotion Prediction

LLM

Figure 1: A flowchart illustrating the affect recognition pipeline using Whisper and LLM. The designed prompt
comprises parts introduced in Table 1. Low-rank adaptation (LoRA) is used for fine-tuning open-source LLMs.

in Equation 1.

WL∗ = argmax
WL

P (WL|WP ), (1)

where WL belongs to the set of pre-defined labels
and WP is the prompt token sequence.

For commercial models, there is no access to logits
of model outputs and model outputs do not always
follow the format specified in the prompt. There-
fore, we used regular expressions to derive the final
prediction.

3.2 Task-specific Fine-tuning
For efficient training of LLMs, we utilise low-rank
adaptation (LoRA, Hu et al. 2022) to accelerate
the fine-tuning of LLMs while conserving memory.
This is also a common approach for fine-tuning
LLMs as seen in many existing works (Sun et al.,
2023; Zhao et al., 2024).

LoRA hypothesises that the change in weights
during model training has a low “intrinsic rank”.
Therefore, instead of directly updating the full-rank
weight matrices of dense layers during training,
LoRA optimises the low-rank decomposition ma-
trices of those dense layers’ changes while keeping
the pre-trained weights frozen. Specifically, for a
pre-trained weight matrix W0 ∈ Rm×n from a par-
ticular attention block in a transformer-based LLM,
its update ∆W is constrained using a low-rank
decomposition of the update as following:

W0 +∆W = W +AB (2)

where matrices A ∈ Rm×r and B ∈ Rr×n contain
trainable parameters and r ≤ min(m,n). The pre-
trained parameters in W0 are fixed. When r is
set to a much smaller value than the dimensions
of W0, the number of trainable parameters will
be greatly reduced. This leads to greater training

efficiency, less memory requirement, and a lower
chance of over-fitting. Following Hu et al. (2022),
we apply LoRA to the projection matrices of the
self-attention layers of transformer-based LLMs.

LLMs are trained to predict the next token in the
sequence (the label tokens), given the previous to-
kens (the designed prompt). During training, the
input tokens are fed into the model, and the model
predicted the probability distribution of the next
token. The cross-entropy loss is calculated from
the model prediction and the target token.

With LoRA, it takes roughly 30GB memory and 4
hours to train one epoch on the entire EmoWOZ
training set using an Nvidia A100 40GB graphics
card.

4 Experimental Setup

4.1 Datasets and Evaluation

The IEMOCAP dataset (Busso et al., 2008) is a
multi-modal corpus designed for Emotion Recog-
nition in Conversations (ERC) task in chit-chat
or open-domain dialogues. It comprises 151 dia-
logues, containing 10,039 utterances from 10 dis-
tinct speakers involved in 5 dyadic conversational
sessions. Each utterance underwent annotation by
a minimum of three annotators, who assigned one
of nine emotion classes, including sad, neutral, an-
gry, happy, excited, frustrated, surprised, fearful,
disgusted. Annotators could also assign multiple
emotions or use the category “other” if the per-
ceived emotion did not match the predefined op-
tions. Final labels were determined via majority
voting.

Given the absence of an official train-test split, we
adopt leave-one-session-out 5-fold cross-validation
approach and average the results. Our methodology
aligns with the common practices, as discussed
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by Wu et al. (2020), to consider two label sets:
4-way: Sad, Neutral, Angry, and Happy; 5-way:
Sad, Neutral, Angry, Happy, and everything else
as Other. In both set-ups, Excited is merged with
Happy.

Emotion recognition is performed for every speaker
utterance. We report the weighted accuracy (WA)
and unweighted accuracy (UA) for both label sets.

EmoWOZ (Feng et al., 2022) is a text-based ERC
corpus built for emotion recognition in ToDs. It
comprises 10,438 human-human dialogues from
the entire MultiWOZ dataset (Budzianowski et al.,
2018), as well as 1,000 human-machine dialogues
in the same set of domains. It encompasses seven
distinct user emotions, namely: Neutral, Fearful,
Dissatisfied, Apologetic, Abusive, Excited, and Sat-
isfied. These emotion labels are designed to encode
the task performance. Specifically, each emotion
is defined as a valence reaction to certain elicitor
under certain conduct. For example, Dissatisfied is
defined as a negative emotion elicited by the system
expressed in a neutral or polite conduct.

Emotion recognition is performed for each user
utterance. For existing benchmarks reported in
Feng et al. (2022), neutral class was excluded from
calculating the metrics because they take up more
than 70% of the labels in EmoWOZ. To have a
direct comparison, we report macro-averaged F1
and weighted average F1 excluding neutral. We
include the F1, precision, and recall of the neutral
class in Table B3 of Appendix B.

DAIC-WOZ (Gratch et al., 2014) is a speech-
based corpus for depression detection and anal-
ysis. It includes the Patient Health Questionnaire-8
(PHQ-8, Kroenke et al., 2008) scores of 193 clini-
cal interviews, with 35 (12 are labelled depressed)
interviews in the development set and 47 (14 are la-
belled depressed) in the test set. The PHQ-8 score
ranges from 0 to 24 and quantifies the severity of
the patient’s depressive symptoms.

For evaluation metrics, we follow the criteria estab-
lished by the Audio/Visual Emotion Challenge and
Workshop challenge (AVEC2016) (Valstar et al.,
2016) and perform binary classification on the di-
alogue level. Interviewees with PHQ8 ≥ 10 is
considered Depressed and PHQ8 < 10 is consid-
ered Not Depressed. Since patients with PHQ-8
score of 5 to 9 are defined to show mild depressive
symptoms (Kroenke et al., 2008) but considered

Not Depressed in the dataset, we add information
about PHQ-8 level definition and quantisation cri-
teria to the prompt to establish an aligned diagnosis
standard (Table 1) for the model.

Notably, participants in the AVEC2016 challenge
(Yang et al., 2016; Williamson et al., 2016) and
subsequent research efforts (Ravi et al., 2022; Wu
et al., 2023) primarily focused on optimising the F1
score of the Depressed class. We report this metric
in Section 5 for direct comparison and also include
the F1 score of the Not Depressed in Appendix B.

4.2 Prompt Design

The prompt design aims to exploit the language
modelling and in-context learning ability of LLMs.
Due to the different task set-ups and label sets
in each datasets, the prompt templates used are
different as illustrated in Table 1. Specifically,
EmoWOZ uses custom emotion labels, DAIC-
WOZ involves mapping from numerical values to
binary classes, and IEMOCAP uses generic emo-
tion labels. We therefore provide additional label
explanations in the task definition of EmoWOZ
and DAIC-WOZ. IEMOCAP on the other hand,
contains self-explanatory emotion labels from a
generic emotion model and does not come with
any special definitions. Therefore, we do not in-
clude label definition in the prompt for IEMO-
CAP. Since IEMOCAP and EmoWOZ involve
utterance-level classification whereas DAIC-WOZ
involves dialogue-level classification, we used dif-
ferent queries to accommodate this difference.

4.3 Models

4.3.1 LLMs
GPT-2 (Radford et al., 2019) has a transformer
architecture, pretrained on a substantial English
corpus through self-supervised learning. While its
size does not make it one of LLMs, it stands as
one of the early achievements of OpenAI’s GPT
models. For our baseline reference, we utilised the
version containing 124 million parameters.

GPT-3.5, or ChatGPT (OpenAI, 2022), is a chat-
bot application developed by OpenAI. It follows
a similar architecture as InstructGPT (Ouyang
et al., 2022) and was fine-tuned for chat application
via reinforcement learning from human feedback
(RLHF). It contains 175 billion parameters. Specif-
ically, we used the version released on the 13th of
June, 2023.
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Prompt Template

Task IEMOCAP: Consider the following list of concepts, called EMOTIONs: [EmotionA, EmotionB, ...]
Definition EmoWOZ: Consider the following list of concepts, called EMOTIONs: [EmotionA: Emotion_DefinitionA; EmotionB: Emotion_DefinitionB; ...]

DAIC-WOZ: Given that the SEVERITY of depression can be categorised into the following levels on a scale of 0 to 24: [No significant
depressive symptoms (0 to 4), ...]. A participant is considered depressed if the participant shows moderate depressive symptoms (10 to 14)
and above.

ICL IEMOCAP / EmoWOZ: Given the dialogue history between SpeakerA and SpeakerB: [SpeakerA: Utterancet-3; SpeakerB: Utterancet-2;
Samples SpeakerA: Utterancet-1], the EMOTION in the next utterance “SpeakerB: Utterancet” is EmotionA

DAIC-WOZ: Given the depression consultation dialogue between Participant and Ellie: [Participant: Utterance0; Ellie: Utterance1;
Participant: Utterance2; ...], the Participant’s is (not) depressed.

Query IEMOCAP / EmoWOZ: Given the dialogue history between SpeakerA and SpeakerB: [SpeakerA: Utterancet-3; SpeakerB: Utterancet-2;
SpeakerA: Utterancet-1], the EMOTION in the next utterance “SpeakerB: Utterancet” is
DAIC-WOZ: Given the depression consultation dialogue between Participant and Ellie: [Participant: Utterance0; Ellie: Utterance1;
Participant: Utterance2; ...], the Participant’s is

Table 1: Prompt templates, consisting of the task definition, in-context samples, and the query.

GPT-4 (OpenAI, 2023) is an improved version
of GPT-3.5. Its size is six times that of GPT-3.5.
Although it is considered a multi-modal model be-
cause it additionally accepts images as input, we
only explored its text modality. We used the version
released on the 13th of June, 2023.

LLaMA-7B (Touvron et al., 2023a) is a large and
causal language model introduced by Meta AI in
2023. It has transformer decoder architecture, 7
billion parameters and was pre-trained on 1 trillion
tokens.

Alpaca-7B (Taori et al., 2023) is fine-tuned from
LLaMA-7B with 52K instruction-following demon-
strations generated in the style of self-instruct using
text-davinci-003, a specific version of Instruct-
GPT (Ouyang et al., 2022).

LLaMA-3-8B (AI@Meta, 2024) is the most recent
model of the LLaMA family, featuring enhanced
usefulness and safety. It was pre-trained on 15
trillion tokens.

4.3.2 Supervised Models for Comparison
While comparing zero-shot and few-shot ICL re-
sults of LLMs with supervised SOTAs does not
paint the fairest picture, it does provide us with
insights into how far LLMs are from achieving the
performance levels of supervised SOTAs.

We compare LLMs’ performance with the fol-
lowing supervised models on each dataset: Wu
et al. (2020) for IEMOCAP, Feng et al. (2023) for
EmoWOZ, and Wu et al. (2023) for DAIC-WOZ.
Specifically,

For IEMOCAP: Wu et al. (2020) proposed an
emotion recognition model which takes 1) a time-
synchronous representation that fuses the audio
features with the corresponding text information at

each time step, as well as 2) a time-asynchronous
representation that captures the text information
embedded across the transcriptions of a number of
consecutive utterances. These two types of frame-
level vectors, after being pooled in their respective
branches with self-attentive layers across the input
time window, are fused using an fully connected
layer for emotion classification.

For EmoWOZ: Feng et al. (2023) proposed a
model that is dedicated for textual emotion recog-
nition in task-oriented dialogues. Based on a
transformer-based classifier that considers the di-
alogue history and speaker roles, the proposed
model adopts data augmentation with chit-chat dia-
logues, dialogue state features, multi-task classifi-
cation for emotional aspects, and a distance-based
loss that considers the similarity of the custom emo-
tion labels in EmoWOZ.

For DAIC-WOZ: Wu et al. (2023) proposed to
extract utterance-level representations from pre-
trained speech-based foundation model. The foun-
dation model was further fine-tuned for speech
recognition and emotion recognition. The average-
pooled dialogue-level features were fed into a de-
pression detection block for binary classification.
To address the issue of data sparsity in speech de-
pression detection, authors also performed data
augmentation using sub-dialogue shuffling.

4.4 Training Configurations

We implement LoRA (Section 3.2) when training
LLaMA-7B, Alpaca-7B, and LLaMA-3-8B but not
GPT-2. For all open-source LLMs, we constrain
the decoding space of the model output to ensure
it generates the desired class labels. Details can be
found in Appendix A.
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4.5 ASR System Specifications
In order to observe how LLMs perform with the
presence of substantial ASR errors rather than
building a pipeline for speech-based ERC, we use
an “off-the-shelf” OpenAI Whisper-medium model
(Radford et al., 2022), which has been trained
solely on English data and not been fine-tuned. We
use a decoding beam size of 3. The text normali-
sation only involves removing punctuation marks.
The ASR word error rates (WER) for IEMOCAP
and DAIC-WOZ are 12.0% and 16.5% respectively.
Since EmoWOZ does not come with raw audio
data, we build an ASR simulator. We formulate
the simulation as a sequence generation task where
the source is the ground-truth text and the target is
the ASR-transcribed text (as described in Appendix
A.2). The resulted simulated WER in EmoWOZ is
17.1%.

5 Results and Discussions

In this section, we aim to answer the questions
below. Full results can be found in Appendix B.

• How do LLMs perform under zero-shot set-up
on different types of dialogues? How robust are
LLMs to ASR errors?

• To what extent can few-shot in-context learning
improve LLMs’ performance?

• For open-source LLMs, can task-specific fine-
tuning achieves SOTA performance on each re-
spective dataset?

5.1 Zero-shot Learning
Table 2 summarises LLMs’ zero-shot affect recog-
nition performances on the three datasets, and we
made the following observations:

LLMs’ performance falls short of supervised
SOTAs in affect recognition tasks. Notable
gaps are observed when compared the performance
achieved by LLMs and supervised SOTAs for all
datasets.

It’s noteworthy that although GPT-4, the largest
model, underperforms when compared with the su-
pervised SOTA on EmoWOZ, its reported macro-
averaged F1 is still comparable to some supervised
learning models benchmarked in Feng et al. (2022).
This suggests the good capability of GPT-4 in lever-
aging the label definitions in the prompt to recog-
nise emotions in EmoWOZ, irrespective of their
prevalence. Supervised models, however, may be
more susceptible to issues such as label imbalance.

Larger models do not necessarily lead to bet-
ter performance. For IEMOCAP, Alpaca-7B
demonstrates the best performance, even surpass-
ing much larger models (GPT-3.5 and GPT-4). Con-
versely, for EmoWOZ and DAIC-WOZ, the per-
formance generally improves as the model size
increased.

While chit-chat utterances in IEMOCAP are la-
belled with emotion classes from generic emo-
tion models, EmoWOZ’s labels are specifically
designed to encode the eliciting conditions of emo-
tions in ToDs. This design necessitates more ex-
plicit reasoning in ERC within EmoWOZ com-
pared to IEMOCAP. Although LLMs rely on their
language modelling capabilities when performing
zero-shot ERC, the greater reasoning ability fa-
cilitated by the substantial number of parameters
in GPT-3.5 and GPT-4 results in improved perfor-
mance in EmoWOZ.

Likewise in DAIC-WOZ, the recognition is per-
formed for the entire dialogue. Larger models
demonstrate greater ability to leverage the more
nuanced affective state of the patient in the larger
context.

Fine-tuning LLMs with instruction-following
demonstrations facilitates more effective utilisa-
tion of the prompt. In all datasets, Alpaca-7B
consistently outperforms LLaMA-7B and even the
much more recent LLaMA-3-8B. This indicates
that the additional fine-tuning of LLaMA-7B with
instruction-following demonstrations has enhanced
its capability in ERC.

LLaMA-7B appears to underperform compared to
the much smaller GPT-2 on EmoWOZ. This dis-
crepancy can be explained by LLaMA-7B’s strong
inclination towards predicting the neutral emotion
(F1 = 82.1 with Recall = 100), which has been
excluded from the metric calculation, resulting
in the poor reported metrics. Fine-tuning with
instruction-following demonstrations, as adopted
in Alpaca-7B, effectively leverages the task and
label definition in the prompt and reverts this trend.
Such an inclination in predicting neutral emotion
in LLaMA-7B does not appear in the more recent
LLaMA-3-8B.

5.2 Zero-shot Learning with Noisy ASR Input
Table 3 provides a summary of LLMs’ zero-shot
performance when replacing the original dialogue
transcripts with ASR-inferred inputs. ASR errors
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Model IEMOCAP (4-way) IEMOCAP (5-way) EmoWOZ DAIC-WOZ
WA (↑) UA (↑) WA (↑) UA (↑) MF1 (↑) WF1 (↑) F1 (dev, ↑) F1 (test, ↑)

GPT-2 25.8 29.2 19.0 22.3 7.3 24.0 0.0 0.0
LLaMA-7B 41.1 40.5 35.6 33.6 1.1 0.3 47.5 52.2
Alpaca-7B 48.8 51.4 40.5 36.2 24.0 44.6 47.5 53.3
LLaMA-3-8B 41.8 42.5 29.4 31.7 19.7 42.4 47.1 43.2
GPT-3.5 42.2 37.6 37.9 35.1 39.0 40.0 54.5 64.3
GPT-4 42.4 37.6 37.5 34.7 52.4 62.3 63.6 59.3

Supervised SOTA 77.6 78.4 73.3 74.4 65.9 83.9 88.6 85.7

Table 2: Zero-shot performance of LLMs compared with respective supervised SOTAs. The best zero-shot
performance for each metric is made bold. For metrics: WA = weighted average; UA = unweighted average; MF1 =
macro-averaged F1 excluding neutral; WF1 = weighted average F1 excluding neutral; F1 = F1 for class Depressed.

Model IEMOCAP (4-way) IEMOCAP (5-way) EmoWOZ) DAIC-WOZ
WA (↑) UA (↑) WA (↑) UA (↑) MF1 (↑) WF1 (↑) F1 (dev, ↑) F1 (test, ↑)

LLaMA-7B -0.3 -1.2 -1.1 -5.0 -1.1 -0.3 -1.6 -1.1
Alpaca-7B -1.3 -1.8 -1.8 -2.6 +0.3 -2.0 -1.6 +0.0
LLaMA-3-8B -2.1 -3.5 -1.2 -2.2 +0.1 -0.1 -0.7 -0.3
GPT-3.5 +0.1 -0.1 +0.2 0.0 +1.2 -0.2 -17.0 -8.3
GPT-4 -0.5 -0.5 -1.1 -0.7 +0.9 -1.5 -19.2 -17.6

Supervised SOTA -3.8 -3.7 -3.9 -3.5 -0.8 -0.4 -3.6 -4.1

Table 3: Change in zero-shot performance metrics of LLMs after using noisy ASR input. For metrics: WA =
weighted average; UA = unweighted average; F1 = F1 for class Depressed. GPT-2 was omitted due to its poor
zero-shot capability.

exhibit varying degrees of influence on different
affect recognition tasks. Specifically,

LLMs are generally robust to ASR errors when
recognising emotion. This is exemplified by
small changes in metrics for IEMOCAP compared
with supervised SOTAs. The only one notable ex-
ception is the UA of LLaMA-7B in the 5-way clas-
sification task on IEMOCAP. Looking at the per-
formance of each emotion in this experiment, we
observed significant drops in the F1 scores for the
emotions {Happy, Angry, and Sad}. Specifically,
Happy and Angry experience major decreases in
their recall scores (Happy: 12.3 → 7.3, Angry:
50.0 → 11.0), while Sad sees a substantial decline
in its precision score (65.5 → 0.0). At the same
time, there is an increase in the recall score for
the Other category (47.3 → 78.2), resulting in an
overall rise in its F1 score (44.5 → 48.0). These
observations suggest that ASR errors introduced
a tendency for LLaMA-7B to mis-classify more
emotions as Other.

ASR errors have a more pronounced influence
on the accuracy of depression detection. For
DAIC-WOZ, the introduction of ASR errors had
a significant impact on F1 scores. The impact di-
verges for open-source and commercial models.

For open-source models, which are also relatively
smaller, the change in F1 was small, showing a
similar trend when they recognise emotions from
noisy dialogues. On the other hand, for larger com-
mercial models, the F1 scores decrease more sig-
nificantly. This phenomenon can be ascribed to
the lengthy prompt for conducting dialogue-level
analysis, in which ASR errors accumulated. While
OpenAI models can better leverage information
from the large context, such an ability adversely af-
fects its depression detection ability in the presence
of ASR errors.

5.3 In-context Learning

ICL samples are randomly selected for each class
and are the same within each experiment set-up
for all models. The performance of LLMs with
different numbers of ICL samples is outlined in
Table 4, from which we have derived the following
observation:

Larger models tend to derive greater bene-
fits from an increased number of ICL samples
to recognise emotions. LLaMA-7B, Alpaca-7B,
and LLaMA-3-8B do not consistently benefit from
an increased number of ICL samples in the prompt.
Optimal model performance generally occurs when
N = 0 or N = 1. This suggests that effectively
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Figure 2: Change of model performance when fine-tuning with different proportions of the training data.

Model N IEMOCAP EmoWOZ DAIC-WOZ
4-way 5-way Dev Test

0 41.1 35.6 0.3 47.5 52.2
LLaMA-7B 1 52.3 27.3 42.6 0.0 0.0

3 42.8 26.2 27.2 42.1 48.9

0 48.8 40.5 44.6 47.5 53.3
Alpaca-7B 1 54.1 26.9 51.2 0.0 15.4

3 52.4 24.4 44.6 45.9 51.1

0 41.8 29.4 42.4 47.1 43.2
LLaMA-3-8B 1 56.8 40.5 38.0 0.0 0.0

3 57.4 24.4 39.9 0.0 0.0

0 42.2 37.9 40.0 54.5 64.3
GPT-3.5 1 56.3 48.3 43.2 13.3 40.0

3 62.1 48.3 46.7 37.5 56.0

0 42.4 37.5 62.3 63.6 59.3
GPT-4 1 62.9 49.0 64.4 80.0 55.6

3 63.8 49.4 66.5 74.1 58.5

Table 4: Performance of LLMs (WA for IEMOCAP and
WF1 for EmoWOZ) under in-context learning set-ups.
N stands for the number of ICL samples per emotion
class and N = 0 means the zero-shot set-up. The best
performance of each model is made bold.

utilising the full context remains as a challenge
for LLMs. Larger models, GPT-3.5 and GPT-4,
show more consistent improvement in performance
with the increased number of ICL samples. GPT-
4 derives the most significant benefits from ICL
samples and performs the best across all models.

The effectiveness of ICL is limited for depres-
sion detection. The performance is in general the
best when N = 0, followed by N = 3. This sug-
gests that for depression detection, a task to detect
more nuanced affective state than emotion from
a longer sequence, a single ICL sample for each
class could strongly bias the model. This leads to
zero F1s where models predict all samples as Not
Depressive. Including more ICL samples could
mitigate this effect, but the performance is further
limited by models’ incapability to handle extremely
lengthy input. This motivates further research ef-

forts to handle huge context containing nuanced
task-related cues when using LLMs.

5.4 Task-specific Fine-tuning

We conduct task-specific fine-tuning experiments
with GPT-2, LLaMA-7B, Alpaca-7B, and LLaMA-
3-8B using different proportions of training data
to explore these models’ capacity for ERC after
fine-tuning. Results are summarised in Figure 2.
For DAIC-WOZ, fine-tuning would steer models to
predict Not Depressed (see Table B4) for almost all
test samples. This might be due to the small train-
ing set where more than 70% of the samples are
labelled as Not Depressed. This suggests the limita-
tion of language modelling objective, and therefore
more carefully curated task-related learning objec-
tives should be considered for depression detection
using LLM.

Task-specific fine-tuning can effectively and effi-
ciently enhance the ERC performance of LLMs.
For both IEMOCAP and EmoWOZ, we observe
an initial significant improvement in performance
when fine-tuning with 25% of the training data. Per-
formance remains relatively stable and approaches
SOTA levels as the proportion of training data in-
creased to 50% and more for IEMOCAP (4-way)
and EmoWOZ. This shows the potential of rapid
deployment of LLMs as the emotion recognition
frontend in dialogue systems, regardless of dia-
logue type, label set, or label distribution.

In the case of 5-way classification on IEMOCAP, a
performance gap persists between fine-tuned LLMs
and the supervised SOTA, even after fine-tuning
of LLMs on the complete training set. We hy-
pothesised that this disparity might be attributed
to the presence of an additional Other class within
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the 5-way classification scheme. The class name
“Other” lacked essential affective information and
consequently failed to fully leverage the language
modelling capabilities of LLMs. Therefore, we sug-
gest that employing more semantically meaningful
label names could be advantageous in harnessing
the potential of LLMs for task-specific fine-tuning.

In the case of GPT-2, fine-tuning does not yield
noticeable improvement in ERC. Its performance
even deteriorated after fine-tuning with EmoWOZ,
as depicted in Figure 2(c) because GPT-2 predomi-
nantly predicted Neutral, which are excluded from
the metric calculation.

6 Conclusion

In this study, we explore the performance of LLMs
for affect recognition in three distinct types of di-
alogues: chit-chat dialogues, information-seeking
ToDs, and medical consultation dialogues for de-
pression. We conduct benchmark experiments
on these datasets using five LLMs: LLaMA-7B,
Alpaca-7B, LLaMA-3-8B, GPT-3.5, and GPT-4.
We also explore various setups, including zero-
shot learning, few-shot in-context learning, and
task-specific fine-tuning, all facilitated by specially
designed prompts. Additionally, we examine the
impact of ASR errors on LLMs’ zero-shot perfor-
mance.

Our zero-shot experiments underscore that while
LLMs have made significant strides in various nat-
ural language understanding tasks, they still have
some distance to cover in order to match the super-
vised SOTAs in affect recognition tasks. Adding
emotion definitions explaining the eliciting condi-
tions in ToDs to the prompt and fine-tuning LLMs
for instruction-following could narrow the perfor-
mance gap from supervised SOTAs.

Performing zero-shot affect recognition from utter-
ances containing ASR errors shows that LLMs are
robust to such errors for emotion recognition but
not for depression detection. Therefore, when con-
sidering LLMs as a back-end module of a spoken
dialogue system, it is crucial to exercise extra cau-
tion when processing dialogues laden with highly
specific and nuanced affective content.

Our ICL experiments exemplify that larger models
would benefit more from an increased number of
ICL samples, highlighting the need to explore the
optimal combination of the ICL sample size in the

prompt and the model size. For smaller LLMs,
effectively utilising lengthy context remains as a
challenge.

Through task-specific fine-tuning, we achieve per-
formance levels close to SOTA on IEMOCAP and
EmoWOZ, using only 50% of the training data,
with LLaMA-7B, Alpaca-7B, and LLaMA-3-8B.
This highlights the great potential of fine-tuning
LLMs for simpler tasks and integrating them as
functional modules into dialogue systems.

Overall, LLMs have opened new avenues for affect
recognition in conversations and building affect-
aware dialogue systems. Despite the limited per-
formance under zero-shot set-up, their robustness
to ASR errors, few-shot ICL capabilities, and ERC
capabilities after fine-tuning offer exciting research
opportunities for exploring affect recognition in
conversations and building human-like conversa-
tional agents. We would also like to highlight the
challenge and also opportunities towards handling
long context and nuanced emotion cues in LLMs.

7 Limitations

In our work, although we reduce computation re-
source of training LLMs by incorporating LoRA,
the inference takes 1̃s for utterance-level emotion
recognition on a Nvidia A100 40GB graphics card
when there is no ICL sample in the prompt. The
inference time increases when the number of ICL
samples increases or dialogue-level classification
is performed. While LLMs demonstrates supe-
rior abilities and potentials, further research efforts
are still needed to ensure efficient LLM inference,
which is necessary for its application in real-time
systems.

With ICL experiments especially on DAIC-WOZ,
we observe that the efficacy of long context is lim-
ited by the effective spans of the attention mecha-
nisms. While substantial efforts have been invested
into increasing the maximum allowed context size
of LLMs and improving benchmark performance,
the effectiveness of LLMs to make use of full con-
text should not be overlooked.

We only investigate with one dataset from each of
three dialogue domains. Although these datasets
cover different dialogue settings, objectives, label
sets, and classification scopes, there are more af-
fect types and dialogue settings to explore. These
datasets also exhibit various degrees of class im-
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balance, which selected reference SOTAs utilised
data augmentation to address. While GPT-4 has
demonstrated good zero-shot learning ability (Sec-
tion 5.1), addressing data imbalance is out of the
scope of this work, and data augmentation with
LLMs may come at a cost of potential divergence
between synthetic language and real-word data (Li
et al., 2023).

8 Ethics Statement

Models and datasets were used in accordance with
their respective licenses. Data that we used and
generated does not contain any information that
uniquely identifies individual people. There is a
tiny fraction of utterances labelled as “abusive” in
EmoWOZ, but they are prompted to models in such
a way for the recognition purpose only. Due to
the fact that LLMs were pre-trained with a huge
amount of data, they may produce inaccurate in-
formation about people, places, or facts. This had
negligible impact on our evaluation for affect recog-
nition. When performing depression detection and
analysis with DAIC-WOZ using GPT-3.5 and GPT-
4, models output reminders about seeking profes-
sional advice from doctors for more accurate medi-
cal diagnosis along with their predictions.

Unlike running models locally, utilising OpenAI’s
server-based models would require us to send data
to their server. In some cases, it is important to use
the application programming interface (API) when
for which OpenAI explicitly clarifies that the query
data will not be stored or used in model training
unless specifically configured.

Although this work focuses on LLMs’ capability in
recognising affect in conversations, we do envisage
LLMs to be incorporated as an affect recognition
frontend in affect-aware dialogue systems. It is
therefore important to remember that these models
are not perfect and can make errors in their pre-
dictions. Subsequently, any actions taken based
on these predictions should be executed with an
awareness of the possibility of errors. The rela-
tively slow inference speed and the high computa-
tional resource requirement also pose a challenge
in the usage of LLMs in high-throughput and time-
sensitive scenarios.
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A Detailed Training Configurations

A.1 Task-Specific Fine-tuning
For all model fine-tuning, the learning rate was 3e-5. The batch size was 2 with a gradient accumulation
step of 4. We used a cosinusoidal learning rate scheduler without warming up. We applied a weight decay
of 0.01 on all model parameters except for the biases and layer normalisation weights. For LLaMA-7B,
Alpaca-7B, and LLaMA-3-8B, we stored model parameters in IEEE 754 half-precision float point format.
For GPT-2, we stored the model parameters in standard single-precision floating-point format and did not
apply LoRA during the fine-tuning. We followed the default LoRA configuration provided in Huggingface
PEFT library (Mangrulkar et al., 2022). We used the model perplexity on the development set as the
early-stopping criterion. For EmoWOZ, we used the official development set. For IEMOCAP, when we
performed the leave-one-session-out training, 10% of the training data were randomly sampled as the
development set. We applied stratified sampling based on the emotion labels. All open-source models
were trained on a single Nvidia A100 40GB Graphics Card.

A.2 ASR Simulation for EmoWOZ
We fine-tuned a LLaMA-7B model using LoRA following configurations specified in Section 3.2 and A.1
for one epoch on all IEMOCAP utterances. The source was each of the IEMOCAP utterance transcription
and the target was the corresponding OpenAI Whisper-medium hypothesis. We utilised a prompt template
that formatted the source and target in natural language would best exploit the language modelling
capability of the model:

After adding automatic speech recognition errors, [SOURCE] becomes [TARGET]

B Detailed Experimental Results

Model N P M Neutral Happy Angry Sad WA UA

GPT-2 0 0% T 0.7 (60.0/0.4) 32.3 (43.6/25.6) 35.3 (22.0/90.6) 0.5 (30.0/0.3) 25.8 29.2
GPT-2 1 0% T 10.9 (43.4/6.2) 9.1 (62.0/4.9) 29.0 (21.8/43.6) 33.3 (22.8/61.9) 24.2 29.2
GPT-2 0 25% T 47.2 (30.9/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 30.9 25.0
GPT-2 0 50% T 47.2 (30.9/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 30.9 25.0
GPT-2 0 75% T 47.2 (30.9/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 30.9 25.0
GPT-2 0 100% T 47.2 (30.9/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 30.9 25.0

LLaMA-7B 0 0% T 48.6 (37.5/69.3) 21.8 (82.3/12.5) 53.3 (40.8/76.8) 6.9 (78.0/3.6) 41.1 40.5
LLaMA-7B 0 0% A 50.3 (37.0/78.8) 14.8 (79.3/8.2) 54.7 (44.9/70.0) 0.6 (100.0/0.3) 40.8 39.3
LLaMA-7B 1 0% T 55.3 (42.9/77.5) 56.2 (77.3/44.2) 62.0 (55.0/71.0) 11.1 (73.0/6.0) 52.3 49.7
LLaMA-7B 3 0% T 54.2 (39.4/86.7) 1.2 (90.9/0.6) 44.1 (87.6/29.5) 44.5 (39.5/50.8) 42.8 41.9
LLaMA-7B 0 25% T 65.1 (64.6/65.6) 77.0 (80.8/73.5) 73.5 (72.6/74.4) 74.2 (71.3/77.3) 72.0 72.7
LLaMA-7B 0 50% T 69.1 (69.9/68.3) 80.7 (80.6/80.7) 77.3 (78.7/76.0) 78.1 (75.6/80.8) 76.0 76.4
LLaMA-7B 0 75% T 70.7 (67.3/74.5) 82.2 (84.6/80.0) 76.3 (80.5/72.4) 78.1 (77.5/78.6) 76.5 76.4
LLaMA-7B 0 100% T 69.7 (66.2/73.5) 82.0 (82.4/81.7) 79.0 (81.0/77.1) 75.8 (80.6/71.6) 76.3 76.0

Alpaca-7B 0 0% T 34.4 (49.6/26.3) 62.8 (79.3/52.0) 50.2 (34.2/94.6) 44.5 (70.3/32.6) 48.8 51.4
Alpaca-7B 0 0% A 37.0 (52.5/28.6) 60.7 (75.3/50.8) 48.5 (32.8/93.3) 38.8 (77.6/25.8) 47.5 49.6
Alpaca-7B 1 0% T 53.8 (49.4/59.0) 59.5 (83.1/46.3) 57.9 (43.5/86.9) 37.0 (72.3/24.8) 54.1 54.3
Alpaca-7B 3 0% T 55.4 (43.9/74.8) 28.0 (90.6/16.6) 64.5 (60.8/68.6) 54.9 (55.1/54.7) 52.4 53.7
Alpaca-7B 0 25% T 65.1 (67.3/63.0) 77.0 (77.8/76.2) 74.6 (72.1/77.2) 70.8 (68.8/73.0) 71.7 72.4
Alpaca-7B 0 50% T 69.1 (69.8/68.3) 80.5 (78.7/82.4) 78.3 (79.7/77.1) 75.7 (75.9/75.6) 75.6 75.8
Alpaca-7B 0 75% T 70.5 (66.3/75.4) 80.6 (85.2/76.4) 76.3 (78.7/74.2) 74.2 (74.2/74.2) 75.2 75.0
Alpaca-7B 0 100% T 69.3 (69.1/69.5) 81.0 (82.3/79.8) 78.8 (79.2/78.4) 76.5 (74.7/78.3) 76.0 76.5

LLaMA-3-8B 0 0% T 3.4 (55.6/1.8) 55.9 (42.7/81.0) 51.0 (38.7/75.0) 19.9 (55.7/12.1) 41.8 42.5
LLaMA-3-8B 0 0% A 2.1 (56.2/1.1) 51.2 (36.1/88.3) 52.3 (47.4/58.5) 14.3 (65.4/8.0) 39.7 39.0
LLaMA-3-8B 1 0% T 52.7 (50.1/55.6) 67.1 (75.9/60.1) 60.4 (46.7/85.4) 37.9 (82.9/24.5) 56.8 56.4
LLaMA-3-8B 3 0% T 35.8 (62.0/25.2) 67.0 (79.5/57.9) 63.4 (53.3/78.2) 60.0 (46.1/86.2) 57.4 61.9
LLaMA-3-8B 0 25% T 68.2 (66.8/69.6) 78.5 (76.6/80.5) 74.4 (76.0/72.9) 72.4 (76.4/68.7) 73.3 72.9
LLaMA-3-8B 0 50% T 69.7 (71.0/68.5) 81.4 (79.0/84.0) 77.6 (82.3/73.3) 77.4 (74.8/80.2) 76.3 76.5
LLaMA-3-8B 0 75% T 71.8 (73.8/70.0) 83.2 (81.7/84.7) 80.6 (82.2/79.1) 80.2 (77.8/82.7) 78.7 79.1
LLaMA-3-8B 0 100% T 73.2 (74.0/72.5) 84.3 (83.0/85.8) 81.6 (83.1/80.2) 81.0 (80.4/81.6) 79.8 80.0

GPT-3.5 0 0% T 51.6 (35.1/97.3) 28.5 (90.5/16.9) 31.7 (79.9/19.8) 27.1 (81.5/16.2) 42.2 37.6
GPT-3.5 0 0% A 51.3 (34.9/96.5) 31.7 (88.8/19.3) 33.0 (83.2/20.6) 23.2 (80.8/13.6) 42.3 37.5
GPT-3.5 1 0% T 57.7 (42.7/88.9) 59.4 (84.8/45.7) 56.6 (76.1/45.1) 45.9 (80.0/32.2) 56.3 53.0
GPT-3.5 3 0% T 60.1 (48.9/78.2) 66.0 (80.0/56.1) 63.8 (76.4/54.8) 59.4 (67.1/53.3) 62.1 60.6

GPT-4 0 0% T 51.7 (35.0/99.3) 28.9 (97.5/16.9) 29.4 (95.5/17.4) 28.2 (91.4/16.7) 42.4 37.6
GPT-4 0 0% A 51.5 (34.8/98.9) 27.6 (94.3/16.2) 30.4 (95.7/18.0) 25.9 (89.6/15.1) 41.9 37.1
GPT-4 1 0% T 62.3 (48.1/88.2) 59.7 (83.4/46.5) 70.4 (81.6/61.9) 60.9 (81.1/48.7) 62.9 61.3
GPT-4 3 0% T 61.6 (49.0/83.1) 60.7 (84.9/47.2) 67.6 (85.2/56.1) 68.4 (71.6/65.4) 63.8 63.0

Table B1: F1(precision/recall), UA, and WA of LLMs on IEMOCAP under the 4-Way classification set-up. In table
headers, “N” stands for the number of ICL samples in the prompt; “P” stands for the proportion of training data
used for fine-tuning; “M” stands for the modality of input, either transcription (T) or ASR hypothesis (A).
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Model N P M Neutral Happy Angry Sad Other WA UA

GPT-2 0 0% T 0.1 (7.7/0.1) 23.1 (35.2/17.2) 27.5 (16.5/81.1) 0.5 (42.9/0.3) 15.2 (19.3/12.5) 19.0 22.3
GPT-2 1 0% T 13.3 (31.6/8.4) 26.6 (35.4/21.3) 19.2 (16.3/23.5) 27.4 (17.0/70.5) 0.0 (0.0/0.0) 20.1 24.7
GPT-2 0 25% T 37.0 (22.7/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 22.7 20.0
GPT-2 0 50% T 37.0 (22.7/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 22.7 20.0
GPT-2 0 75% T 37.0 (22.7/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 22.7 20.0
GPT-2 0 100% T 37.0 (22.7/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 22.7 20.0

LLaMA-7B 0 0% T 38.7 (29.8/55.2) 21.5 (81.8/12.3) 37.8 (30.3/50.0) 6.3 (65.5/3.3) 44.5 (42.1/47.3) 35.6 33.6
LLaMA-7B 0 0% A 37.0 (30.9/46.3) 13.4 (80.5/7.3) 17.3 (40.5/11.0) 0.0 (0.0/0.0) 48.0 (34.6/78.2) 34.5 28.6
LLaMA-7B 1 0% T 2.2 (59.4/1.1) 0.1 (100.0/0.1) 15.1 (60.9/8.6) 0.0 (0.0/0.0) 41.6 (26.5/97.2) 27.3 21.4
LLaMA-7B 3 0% T 11.1 (22.4/7.4) 0.2 (16.7/0.1) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 41.2 (26.5/92.3) 26.2 20.0
LLaMA-7B 0 25% T 51.2 (48.1/54.9) 74.3 (72.4/76.3) 49.3 (54.6/44.9) 62.5 (63.3/61.6) 49.9 (51.3/48.6) 57.4 57.3
LLaMA-7B 0 50% T 57.9 (54.5/61.7) 79.0 (77.1/80.9) 54.7 (57.7/52.0) 69.3 (73.8/65.3) 55.6 (56.7/54.6) 63.1 62.9
LLaMA-7B 0 75% T 60.8 (58.2/63.7) 82.3 (82.2/82.5) 56.4 (60.9/52.5) 72.9 (68.9/77.4) 57.3 (59.6/55.2) 65.9 66.3
LLaMA-7B 0 100% T 53.9 (57.5/50.6) 80.9 (77.6/84.5) 55.8 (63.6/49.8) 72.1 (69.8/74.5) 57.4 (54.5/60.7) 64.0 64.0

Alpaca-7B 0 0% T 18.1 (42.5/11.5) 52.6 (78.3/39.6) 29.2 (34.9/25.0) 29.2 (69.4/18.5) 48.4 (33.6/86.6) 40.5 36.2
Alpaca-7B 0 0% A 15.8 (41.3/9.8) 49.5 (74.3/37.1) 23.4 (31.5/18.6) 21.8 (72.8/12.8) 48.2 (32.9/90.0) 38.7 33.6
Alpaca-7B 1 0% T 0.2 (28.6/0.1) 0.5 (100.0/0.2) 5.1 (74.4/2.6) 0.0 (0.0/0.0) 42.0 (26.6/99.5) 26.9 20.5
Alpaca-7B 3 0% T 9.4 (17.1/6.4) 3.7 (24.3/2.0) 3.1 (18.1/1.7) 5.7 (10.4/3.9) 39.6 (26.1/81.5) 24.4 19.1
Alpaca-7B 0 25% T 48.9 (53.2/45.3) 73.8 (68.0/80.8) 51.2 (56.4/46.9) 63.4 (60.5/66.5) 52.1 (51.8/52.4) 58.2 58.4
Alpaca-7B 0 50% T 56.4 (54.0/59.1) 78.7 (76.8/80.6) 55.5 (58.9/52.4) 68.8 (74.6/63.8) 57.4 (57.0/57.9) 63.2 62.8
Alpaca-7B 0 75% T 57.9 (59.5/56.4) 81.0 (77.5/84.9) 58.9 (62.5/55.7) 70.2 (64.8/76.7) 56.9 (59.2/54.9) 65.0 65.7
Alpaca-7B 0 100% T 54.7 (55.6/53.8) 81.1 (77.7/84.8) 58.0 (60.3/55.9) 69.8 (65.3/75.0) 55.1 (57.8/52.6) 63.6 64.4

LLaMA-3-8B 0 0% T 1.6 (46.7/0.8) 44.5 (30.1/85.3) 38.5 (27.3/65.1) 12.4 (40.9/7.3) 0.4 (10.3/0.2) 29.4 31.7
LLaMA-3-8B 0 0% A 0.9 (44.4/0.5) 41.0 (26.5/90.7) 39.5 (32.4/50.6) 9.2 (47.8/5.1) 1.6 (23.6/0.8) 28.2 29.5
LLaMA-3-8B 1 0% T 44.1 (43.5/44.8) 68.5 (66.7/70.4) 39.8 (25.8/87.5) 22.8 (85.1/13.2) 2.7 (21.6/1.4) 40.5 43.5
LLaMA-3-8B 3 0% T 23.1 (63.9/14.1) 64.2 (70.8/58.7) 44.7 (40.1/50.5) 37.6 (23.5/94.7) 0.7 (21.2/0.3) 37.1 43.7
LLaMA-3-8B 0 25% T 54.6 (54.9/54.4) 76.6 (74.4/78.9) 46.9 (62.4/37.6) 67.4 (65.9/69.1) 54.4 (50.8/58.5) 60.5 59.7
LLaMA-3-8B 0 50% T 58.4 (60.3/56.7) 80.4 (78.3/82.7) 54.4 (65.5/46.5) 72.8 (70.5/75.3) 60.7 (57.2/64.6) 65.6 65.1
LLaMA-3-8B 0 75% T 60.2 (61.5/59.0) 81.9 (78.6/85.4) 56.9 (68.2/48.9) 74.6 (73.8/75.4) 61.8 (58.7/65.1) 67.2 66.8
LLaMA-3-8B 0 100% T 63.9 (66.1/61.9) 83.2 (81.4/85.1) 59.5 (66.0/54.1) 75.8 (76.7/74.9) 63.4 (59.8/67.5) 69.5 68.7

GPT-3.5 0 0% T 43.6 (28.7/91.2) 29.2 (87.0/17.5) 29.4 (63.4/19.1) 26.3 (72.2/16.1) 39.2 (52.5/31.3) 37.9 35.1
GPT-3.5 0 0% A 43.7 (28.8/90.9) 32.8 (87.3/20.2) 29.2 (61.1/19.2) 24.6 (75.7/14.7) 38.4 (51.1/30.7) 38.1 35.1
GPT-3.5 1 0% T 45.9 (36.3/62.5) 63.3 (74.8/54.9) 49.8 (46.7/53.4) 48.8 (65.4/38.9) 38.0 (44.7/33.1) 48.3 48.6
GPT-3.5 3 0% T 47.4 (43.1/52.7) 67.6 (69.8/65.6) 49.5 (40.4/63.9) 54.1 (45.4/66.8) 18.3 (41.4/11.7) 48.3 52.1

GPT-4 0 0% T 43.1 (28.0/93.7) 28.1 (94.1/16.5) 27.4 (82.6/16.4) 29.4 (85.7/17.7) 37.8 (53.8/29.1) 37.5 34.7
GPT-4 0 0% A 42.9 (27.7/95.3) 27.6 (94.3/16.1) 30.7 (79.2/19.0) 27.2 (79.5/16.4) 31.8 (51.5/23.0) 36.4 34.0
GPT-4 1 0% T 51.1 (37.9/78.2) 58.9 (80.4/46.5) 55.3 (49.9/61.9) 54.5 (62.0/48.7) 27.0 (45.6/19.1) 49.0 50.9
GPT-4 3 0% T 49.6 (39.8/65.8) 59.9 (81.7/47.2) 54.7 (53.5/56.1) 58.3 (52.5/65.4) 30.9 (40.5/24.9) 49.4 51.9

Table B2: F1(precision/recall), UA, and WA of LLMs on IEMOCAP under the 5-Way classification set-up. In table
headers, “N” stands for the number of ICL samples in the prompt; “P” stands for the proportion of training data
used for fine-tuning; “M” stands for the modality of input, either transcription (T) or ASR hypothesis (A).
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Model N P M Neutral Fearful Dissatisfied Apologetic Abusive Excited Satisfied MF1 WF1

GPT-2 0 0% T 0.1 (100.0/0.0) 0.0 (0.0/0.0) 9.3 (5.6/27.8) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 2.8 (1.4/64.8) 31.4 (35.7/28.1) 7.3 24.0
GPT-2 1 0% T 81.2 (69.8/97.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 23.3 (14.8/54.8) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 3.9 0.6
GPT-2 0 25% T 82.4 (70.1/99.8) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 69.9 (71.4/68.5) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 11.7 1.9
GPT-2 0 50% T 82.3 (70.0/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 69.6 (95.2/54.8) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 11.6 1.9
GPT-2 0 75% T 82.4 (70.3/99.5) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 58.9 (47.9/76.7) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 9.8 1.6
GPT-2 0 100% T 82.3 (70.0/99.8) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 68.1 (74.2/63.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 11.4 1.9

LLaMA-7B 0 0% T 82.1 (69.7/100.0) 0.0 (0.0/0.0) 0.3 (33.3/0.2) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 6.3 (75.0/3.3) 0.0 (0.0/0.0) 1.1 0.3
LLaMA-7B 0 0% A 82.1 (69.7/100.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 0.0
LLaMA-7B 1 0% T 83.0 (78.1/88.5) 26.1 (60.0/16.7) 2.6 (47.1/1.3) 0.0 (0.0/0.0) 57.9 (52.4/64.7) 16.0 (9.2/58.2) 59.0 (74.1/49.0) 26.9 42.6
LLaMA-7B 3 0% T 27.9 (81.2/16.9) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 0.0 (0.0/0.0) 39.2 (24.4/99.2) 6.5 27.2
LLaMA-7B 0 25% T 93.9 (91.5/96.4) 26.1 (60.0/16.7) 55.2 (81.6/41.7) 72.3 (93.5/58.9) 11.1 (100.0/5.9) 43.6 (69.0/31.9) 90.9 (89.1/92.7) 49.9 79.5
LLaMA-7B 0 50% T 94.4 (93.1/95.8) 41.7 (83.3/27.8) 68.6 (80.0/60.1) 75.8 (92.2/64.4) 64.0 (100.0/47.1) 51.4 (69.8/40.7) 91.1 (89.8/92.5) 65.4 83.6
LLaMA-7B 0 75% T 93.8 (93.0/94.5) 35.3 (37.5/33.3) 61.7 (84.9/48.5) 57.4 (41.5/93.2) 69.2 (100.0/52.9) 50.6 (54.4/47.3) 90.8 (88.7/93.1) 60.8 81.3
LLaMA-7B 0 100% T 94.2 (93.3/95.2) 43.8 (50.0/38.9) 68.1 (78.3/60.3) 75.4 (93.9/63.0) 69.2 (100.0/52.9) 51.3 (63.9/42.9) 90.7 (88.8/92.6) 66.4 83.2

Alpaca-7B 0 0% T 65.4 (85.3/53.1) 1.9 (1.1/11.1) 24.8 (28.5/22.0) 46.0 (85.2/31.5) 0.0 (0.0/0.0) 18.1 (13.8/26.4) 53.3 (38.7/85.7) 24.0 44.6
Alpaca-7B 0 0% A 65.5 (83.0/54.1) 2.0 (1.1/11.1) 22.9 (26.2/20.4) 52.9 (93.1/37.0) 0.0 (0.0/0.0) 17.3 (15.4/19.8) 50.7 (37.2/80.0) 24.3 42.6
Alpaca-7B 1 0% T 75.4 (81.4/70.2) 3.4 (1.9/22.2) 13.8 (23.8/9.8) 26.2 (100.0/15.1) 30.0 (100.0/17.6) 8.9 (4.8/65.9) 67.4 (69.4/65.6) 25.0 51.2
Alpaca-7B 3 0% T 65.4 (85.3/53.1) 1.9 (1.1/11.1) 24.8 (28.5/22.0) 46.0 (85.2/31.5) 0.0 (0.0/0.0) 18.1 (13.8/26.4) 53.3 (38.7/85.7) 24.0 44.6
Alpaca-7B 0 25% T 93.3 (91.9/94.7) 17.4 (40.0/11.1) 53.5 (72.5/42.4) 74.8 (92.0/63.0) 0.0 (0.0/0.0) 45.4 (64.0/35.2) 90.2 (86.6/94.2) 46.9 78.7
Alpaca-7B 0 50% T 94.4 (93.1/95.8) 43.5 (100.0/27.8) 68.1 (79.9/59.3) 74.2 (83.1/67.1) 64.0 (100.0/47.1) 46.0 (66.7/35.2) 91.0 (89.6/92.6) 64.5 83.2
Alpaca-7B 0 75% T 93.6 (91.0/96.4) 35.7 (50.0/27.8) 45.6 (90.6/30.5) 75.7 (79.1/72.6) 38.1 (100.0/23.5) 50.7 (67.3/40.7) 91.1 (88.7/93.6) 56.1 78.0
Alpaca-7B 0 100% T 94.0 (92.0/96.1) 10.5 (100.0/5.6) 62.2 (76.4/52.5) 71.8 (73.9/69.9) 0.0 (0.0/0.0) 39.3 (77.4/26.4) 90.7 (90.2/91.1) 45.8 80.7

LLaMA-3-8B 0 0% T 44.2 (79.5/30.6) 1.3 (0.6/55.6) 1.0 (13.0/0.5) 24.0 (14.6/67.1) 26.8 (15.8/88.2) 5.7 (2.9/81.3) 59.3 (59.6/59.1) 19.7 42.4
LLaMA-3-8B 0 0% A 47.0 (80.7/33.1) 1.2 (0.6/50.0) 1.0 (12.5/0.5) 24.1 (14.7/67.1) 27.5 (16.3/88.2) 5.7 (3.0/78.0) 59.2 (59.3/59.1) 19.8 42.3
LLaMA-3-8B 1 0% T 83.5 (76.3/92.3) 4.5 (3.8/5.6) 2.4 (16.0/1.3) 39.4 (30.8/54.8) 9.0 (4.7/100.0) 35.4 (46.4/28.6) 50.5 (87.4/35.5) 23.5 38.0
LLaMA-3-8B 3 0% T 55.5 (85.1/41.1) 0.0 (0.0/0.0) 0.3 (20.0/0.2) 35.3 (62.1/24.7) 2.3 (1.2/100.0) 24.6 (60.9/15.4) 54.8 (39.2/90.9) 19.5 39.9
LLaMA-3-8B 0 25% T 93.6 (90.7/96.7) 27.3 (75.0/16.7) 52.4 (87.6/37.4) 74.6 (97.8/60.3) 74.1 (100.0/58.8) 49.0 (64.3/39.6) 90.4 (89.5/91.3) 61.3 79.2
LLaMA-3-8B 0 50% T 93.8 (91.1/96.7) 26.1 (60.0/16.7) 56.5 (86.1/42.1) 76.4 (94.0/64.4) 74.1 (100.0/58.8) 49.3 (62.7/40.7) 90.5 (90.1/91.0) 62.2 80.3
LLaMA-3-8B 0 75% T 94.3 (92.4/96.3) 38.5 (62.5/27.8) 64.0 (85.2/51.3) 75.2 (83.3/68.5) 64.0 (100.0/47.1) 48.6 (66.0/38.5) 90.8 (89.5/92.2) 63.5 82.2
LLaMA-3-8B 0 100% T 94.5 (92.4/96.7) 50.0 (100.0/33.3) 66.2 (85.2/54.1) 74.4 (85.7/65.8) 78.6 (100.0/64.7) 52.1 (69.1/41.8) 90.8 (90.5/91.0) 68.7 82.9

GPT-3.5 0 0% T 82.8 (76.9/89.8) 20.7 (27.3/16.7) 8.2 (35.0/4.6) 61.9 (87.5/47.9) 61.5 (88.9/47.1) 31.6 (27.4/37.4) 50.0 (58.9/43.5) 39.0 40.0
GPT-3.5 0 0% A 82.9 (76.8/90.0) 28.6 (100.0/16.7) 8.2 (35.4/4.6) 61.9 (87.5/47.9) 61.5 (88.9/47.1) 31.5 (27.2/37.4) 49.7 (58.8/43.1) 40.2 39.8
GPT-3.5 1 0% T 66.0 (82.3/55.1) 36.4 (100.0/22.2) 13.5 (33.1/8.4) 7.9 (100.0/4.1) 75.7 (70.0/82.4) 10.7 (5.9/61.5) 56.0 (42.6/81.6) 33.3 43.2
GPT-3.5 3 0% T 57.9 (82.1/44.7) 10.0 (50.0/5.6) 16.6 (34.4/10.9) 36.0 (100.0/21.9) 69.0 (83.3/58.8) 6.4 (3.4/71.4) 59.3 (46.5/81.8) 32.9 46.7

GPT-4 0 0% T 88.3 (86.0/90.8) 50.0 (100.0/33.3) 16.4 (47.2/9.9) 52.5 (37.4/87.7) 74.1 (100.0/58.8) 42.2 (36.2/50.5) 79.0 (78.5/79.6) 52.4 62.3
GPT-4 0 0% A 88.3 (82.7/94.6) 41.7 (83.3/27.8) 47.9 (70.1/36.4) 47.9 (33.2/86.3) 75.9 (91.7/64.7) 39.8 (31.6/53.8) 66.6 (89.4/53.1) 53.3 60.8
GPT-4 1 0% T 78.8 (93.8/68.0) 41.7 (83.3/27.8) 52.5 (46.7/60.1) 42.7 (28.2/87.7) 83.3 (78.9/88.2) 14.6 (8.0/80.2) 71.8 (63.8/82.1) 51.1 64.4
GPT-4 3 0% T 83.2 (91.9/76.0) 26.1 (60.0/16.7) 51.1 (48.0/54.6) 55.0 (42.0/79.5) 77.8 (73.7/82.4) 28.0 (20.3/45.1) 74.2 (63.0/90.4) 52.0 66.5

Table B3: F1(precision/recall), MF1 and WF1 of LLMs on EmoWOZ. In table headers, “N” stands for the number
of ICL samples in the prompt; “P” stands for the proportion of training data used for fine-tuning; “M” stands for the
modality of input, either transcription (T) or ASR hypothesis (A).

Model N P M Development Set Test Set
Depressed Not Depressed Depressed Not Depressed

GPT-2 0 0% T 0.0 (0.0/0.0) 82.5 (70.2/100.0) 0.0 (0.0/0.0) 79.3 (65.7/100.0)

LLaMA-7B 0 0% T 47.5 (31.1/100.0) 11.4 (100.0/6.1) 52.2 (35.3/100.0) 8.3 (100.0/4.3)
LLaMA-7B 0 0% A 45.9 (29.8/100.0) 0.0 (0.0/0.0) 51.1 (34.3/100.0) 0.0 (0.0/0.0)
LLaMA-7B 1 0% T 0.0 (0.0/0.0) 82.5 (70.2/100.0) 0.0 (0.0/0.0) 79.3 (65.7/100.0)
LLaMA-7B 3 0% T 42.1 (27.9/85.7) 10.8 (50.0/6.1) 48.9 (33.3/91.7) 8.0 (50.0/4.3)
LLaMA-7B 0 25% T 0.0 (0.0/0.0) 81.0 (69.6/97.0) 0.0 (0.0/0.0) 79.3 (65.7/100.0)
LLaMA-7B 0 50% T 0.0 (0.0/0.0) 81.0 (69.6/97.0) 0.0 (0.0/0.0) 79.3 (65.7/100.0
LLaMA-7B 0 75% T 0.0 (0.0/0.0) 79.5 (68.9/93.9) 0.0 (0.0/0.0) 79.3 (65.7/100.0)
LLaMA-7B 0 100% T 0.0 (0.0/0.0) 76.3 (67.4/87.9) 0.0 (0.0/0.0) 79.3 (65.7/100.0)

Alpaca-7B 0 0% T 47.5 (31.1/100.0) 11.4 (100.0/6.1) 53.3 (36.4/100.0) 16.0 (100.0/8.7)
Alpaca-7B 0 0% A 45.9 (29.8/100.0) 0.0 (0.0/0.0) 53.3 (36.4/100.0) 16.0 (100.0/8.7)
Alpaca-7B 1 0% T 0.0 (0.0/0.0) 82.5 (70.2/100.0) 15.4 (100.0/8.3) 80.7 (67.6/100.0)
Alpaca-7B 3 0% T 45.9 (29.8/100.0) 0.0 (0.0/0.0) 51.1 (34.3/100.0) 0.0 (0.0/0.0)
Alpaca-7B 0 25% T 12.5 (50.0/7.1) 82.1 (71.1/97.0) 0.0 (0.0/0.0) 77.2 (64.7/95.7)
Alpaca-7B 0 50% T 11.8 (33.3/7.1) 80.5 (70.5/93.9) 0.0 (0.0/0.0) 77.2 (64.7/95.7)
Alpaca-7B 0 75% T 10.5 (20.0/7.1) 77.3 (69.0/87.9) 13.3 (33.3/8.3) 76.4 (65.6/91.3)
Alpaca-7B 0 100% T 18.2 (25.0/14.3) 75.0 (69.2/81.8) 0.0 (0.0/0.0) 75.0 (63.6/91.3)

LLaMA-3-8B 0 0% T 47.1 (32.4/85.7) 37.2 (80.0/24.2) 43.2 (32.0/66.7) 36.4 (60.0/26.1)
LLaMA-3-8B 0 0% A 46.4 (31.0/92.9) 21.1 (80.0/12.1) 42.9 (30.0/75.0) 14.3 (40.0/8.7)
LLaMA-3-8B 1 0% T 0.0 (0.0/0.0) 82.5 (70.2/100.0) 0.0 (0.0/0.0) 79.3 (65.7/100.0)
LLaMA-3-8B 3 0% T 0.0 (0.0/0.0) 82.5 (70.2/100.0) 0.0 (0.0/0.0) 79.3 (65.7/100.0)
LLaMA-3-8B 0 25% T 27.0 (21.7/35.7) 52.6 (62.5/45.5) 29.6 (26.7/33.3) 55.8 (60.0/52.2)
LLaMA-3-8B 0 50% T 0.0 (0.0/0.0) 82.5 (70.2/100.0) 0.0 (0.0/0.0) 77.2 (64.7/95.7)
LLaMA-3-8B 0 75% T 0.0 (0.0/0.0) 82.5 (70.2/100.0) 47.1 (36.4/66.7) 50.0 (69.2/39.1)
LLaMA-3-8B 0 100% T 20.0 (33.3/14.3) 78.4 (70.7/87.9) 47.1 (36.4/66.7) 50.0 (69.2/39.1)

GPT-3.5 0 0% T 54.5 (60.0/50.0) 79.2 (76.0/82.6) 64.3 (64.3/64.3) 84.8 (84.8/84.8)
GPT-3.5 0 0% A 37.5 (75.0/25.0) 81.5 (71.0/95.7) 56.0 (63.6/50.0) 84.1 (80.6/87.9)
GPT-3.5 1 0% T 13.3 (33.3/8.3) 76.4 (65.6/91.3) 40.0 (45.5/35.7) 78.3 (75.0/81.8)
GPT-3.5 3 0% T 37.5 (75.0/25.0) 81.5 (71.0/95.7) 56.0 (63.6/50.0) 84.1 (80.6/87.9)

GPT-4 0 0% T 63.6 (70.0/58.3) 83.3 (80.0/87.0) 59.3 (61.5/57.1) 83.6 (82.4/84.8)
GPT-4 0 0% A 44.4 (66.7/33.3) 80.8 (72.4/91.3) 41.7 (50.0/35.7) 80.0 (75.7/84.8)
GPT-4 1 0% T 80.0 (76.9/83.3) 88.9 (90.9/87.0) 55.6 (45.5/71.4) 72.4 (84.0/63.6)
GPT-4 3 0% T 74.1 (66.7/83.3) 83.7 (90.0/78.3) 58.5 (44.4/85.7) 58.5 (44.4/85.7)

Table B4: F1(precision/recall) of LLMs on DAIC-WOZ. In table headers, “N” stands for the number of ICL samples
in the prompt; “P” stands for the proportion of training data used for fine-tuning; “M” stands for the modality of
input, either transcription (T) or ASR hypothesis (A).
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