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Abstract

Knowledge models are fundamental to dia-
logue systems for enabling conversational in-
teractions, which require handling domain-
specific knowledge. Ensuring effective com-
munication in information-providing conversa-
tions entails aligning user understanding with
the knowledge available to the system. How-
ever, dialogue systems often face challenges
arising from semantic inconsistencies in how
information is expressed in natural language
compared to how it is represented within the
system’s internal knowledge. To address this
problem, we study the potential of large lan-
guage models for conversational grounding, a
mechanism to bridge information gaps by es-
tablishing shared knowledge between dialogue
participants. Our approach involves annotating
human conversations across five knowledge do-
mains to create a new dialogue corpus called
BridgeKG. Through a series of experiments on
this dataset, we empirically evaluate the capa-
bilities of large language models in classifying
grounding acts and identifying grounded infor-
mation items within a knowledge graph struc-
ture. Our findings offer insights into how these
models use in-context learning for conversa-
tional grounding tasks and common prediction
errors, which we illustrate with examples from
challenging dialogues. We discuss how the
models handle knowledge graphs as a semantic
layer between unstructured dialogue utterances
and structured information items.

1 Introduction

Conversational grounding is an integral aspect of di-
alogues where interlocutors share information and
build up a common understanding. This mutually
established knowledge serves as context for subse-
quent interactions. For building effective dialogue
systems, the natural language processing (NLP)
community has long focused on conversational
grounding, which involves inferential reasoning,
dynamic feedback, and repair strategies (Udagawa

and Aizawa, 2021). Despite extensive research,
challenges remain in adapting to different conver-
sation domains, addressing semantic vocabulary
mismatches, overcoming information gaps between
user knowledge and the system’s internal knowl-
edge model, as well as the lack of appropriate train-
ing data (Lemon, 2022). Owing to rapid technical
advances regarding large language models (LLMs),
novel opportunities arise to comprehend contextual
intricacies within dialogues and reconcile informa-
tion expressed in natural language with that stored
in machine-readable data structures.

Recognizing the limited research on LLM-based
conversational grounding, we investigated the ca-
pabilities of LLMs on knowledge grounding tasks.
This involved annotating an existing corpus con-
taining dialogues about different domain-specific
tabular datasets. In addition to labeling ground-
ing acts, we annotated grounded knowledge items
in a knowledge graph structure, a powerful repre-
sentation of complex relationships between entities
and their attributes. Knowledge graphs have proven
valuable in various NLP tasks, such as disambiguat-
ing ambiguous utterances by providing contextual
information (Hogan et al., 2021; Schneider et al.,
2022). For example, in dialogue systems, knowl-
edge graphs can help identify the correct meaning
of a word with multiple senses or resolve references
to specific entities, enhancing the overall under-
standing and coherence of conversations. We opted
for the JSON-LD format due to its simplicity and
acceptance as a web standard, allowing interoper-
ability by reusing existing namespaces with shared
vocabularies to model knowledge from different
sources and domains.

While JSON-LD primarily uses a tree-like struc-
ture, it can represent more complex graph struc-
tures by linking nodes using identifiers like @id
and @type. As a serialization format for Resource
Description Framework (RDF) data, JSON-LD
can be transformed into other formats, such as
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N-Triples, RDF/XML, or Turtle. This flexibil-
ity allows JSON-LD to be integrated with graph
databases and other RDF tools, enhancing its utility
in various applications. Table 1 shows an example
annotation of grounded knowledge in JSON-LD
format from a conversation about nature parks.

Our contributions include (1) creating a novel
dialogue corpus called BridgeKG with over 250
conversational grounding annotations across five
knowledge domains, (2) conducting a range of zero-
and few-shot experiments by evaluating four LLMs
on two grounding tasks, and (3) summarizing com-
mon prediction errors and prompting techniques
for improving model performance. To ensure the
reproducibility of our experiments, we provide the
BridgeKG dataset, source code, and evaluation out-
puts in a public GitHub repository.1

2 Related Work

In regard to the literature on grounding in NLP,
it is essential to first define the broadly used term.
Grounding can be categorized into three main types.
Conversational grounding ensures a common un-
derstanding of shared knowledge within a conver-
sation (Traum, 1994). Perceptual grounding links
language to sensory experiences of the real world
like visual information (Cangelosi, 2010). Knowl-
edge grounding incorporates external information
sources to support NLP systems, such as providing
factual knowledge to generative language models
(Lewis et al., 2020).

Our study focuses solely on conversational
grounding by employing LLMs, a topic addressed
in only a few recent studies. One related work by
Shaikh et al. (2024) examines whether LLM gen-
erations contain grounding acts, simulating turn-
taking from various conversation datasets. They
found that LLMs generate language with less con-
versational grounding than humans, often produc-
ing text that appears to assume common ground.
Both their study and ours focus on the three ground-
ing acts: explicit grounding, implicit grounding,
and clarification, as proposed by Clark and Schae-
fer (1989). Two other closely related studies, con-
ducted by Jokinen et al. (2024) and Mohapatra
et al. (2024), involve annotating dialogue corpora
and employing language models to classify ground-
ing acts and extract grounded knowledge items.
While the former conducts preliminary experiments
on two conversations with GPT-3.5-Turbo, the lat-

1github.com/philotron/Bridge-KG

ter presents two annotated dialogue corpora with
grounding acts, grounding units, a measure of their
degree of grounding, and a baseline evaluation with
the open-source T5 model (Raffel et al., 2020).

Unlike the mentioned related work, we are the
first to conduct a series of LLM experiments aimed
at knowledge identification in information-seeking
conversations utilizing an in-context knowledge
graph structure for identifying referenced and
grounded knowledge items in dialogues.

3 Method

Dataset Annotation The source dialogue corpus
we reuse was collected in a study on exploratory
information-seeking conversations from Schneider
et al. (2023). It comprises 26 conversations about
tabular datasets on real-world knowledge spanning
the domains of geography, history, media, nutri-
tion, and sports. Every conversation involved a pair
where one person was the information seeker and
the other was the information provider, using a text-
based chatroom for communication. The informa-
tion seekers were instructed to discover and gather
new information about their partner’s previously
unknown dataset. Two researchers annotated each
written dialogue with labels for grounding acts (ex-
plicit, implicit, and clarification). Explicit ground-
ing involves a response that clearly confirms un-
derstanding or acceptance of received information
(e.g., “okay, thanks”), whereas implicit grounding
moves the conversation forward without explicitly
acknowledging or questioning the recently shared
information (implicit acceptance). Clarification
occurs when a conversation partner seeks more
information about thus far presented knowledge,
which does not result in grounded knowledge since
mutual acceptance has not yet been reached.

Example Annotation of Grounded Knowledge
[{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/nature-parks",
"url": "nature-parks.csv", "schema:description": "The table con-
tains information about nature parks in Germany", "tableSchema":
{"columns": [{"name": "name", "datatype": "string"}, {"name": "state",
"datatype": "string"}, {"name": "year", "datatype": "integer"}, {"name":
"area_in_km2", "datatype": "integer"}, {"name": "summary", "datatype":
"string"}], "primaryKey": "name"}}, {"@type": "schema:Place", "name":
"Barnim", "state": "Brandenburg Berlin", "year": 1999, "area_in_km2":
749, "summary": "The park includes the Barnim heath habitats dating back
to the ice age. It lies between the glacial valleys of Eberswalde in the north
and Berlin in the south, and is more than half forested. The region is shaped
by many individual lakes and meltwater gullies."}]

Table 1: Example JSON-LD annotation of grounded
knowledge from the BridgeKG dataset, representing the
system’s knowledge concerning a dialogue about nature
parks. Properties are displayed in blue color.

https://github.com/philotron/Bridge-KG
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Zero-Shot Prompt Few-Shot Prompt
Model Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
GPT-3.5-Turbo (n=1) 0.64 0.50 0.46 0.43 0.55 0.50 0.51 0.50
GPT-3.5-Turbo (n=3) 0.66 0.81 0.50 0.50 0.69 0.59 0.54 0.54
GPT-3.5-Turbo (n=all) 0.59 0.39 0.44 0.41 0.57 0.51 0.45 0.45
GPT-4o (n=1) 0.39 0.55 0.54 0.42 0.64 0.66 0.64 0.61
GPT-4o (n=3) 0.59 0.66 0.67 0.59 0.73 0.74 0.69 0.70
GPT-4o (n=all) 0.64 0.68 0.66 0.62 0.71 0.73 0.67 0.67
Llama-3-8B (n=1) 0.61 0.54 0.53 0.54 0.59 0.65 0.69 0.59
Llama-3-8B (n=3) 0.65 0.60 0.60 0.60 0.57 0.60 0.61 0.55
Llama-3-8B (n=all) 0.44 0.55 0.39 0.38 0.55 0.54 0.51 0.51
Llama-3-70B (n=1) 0.41 0.54 0.56 0.43 0.51 0.61 0.63 0.53
Llama-3-70B (n=3) 0.59 0.66 0.67 0.59 0.65 0.68 0.69 0.64
Llama-3-70B (n=all) 0.71 0.66 0.64 0.64 0.76 0.70 0.70 0.70

Table 2: Zero-shot and few-shot performance metrics for grounding act classification evaluated by macro-averaged
accuracy, precision, recall, and F1-score. The variable n denotes the number of preceding input utterances. Bold
values highlight the best value for each metric.

For explicit and implicit labels, the grounded
knowledge items that have been shared until this
point in the dialogue were annotated as a knowl-
edge graph structure in JSON-LD format (Sporny
et al., 2020). Annotation disagreements were col-
laboratively resolved to reach a consensus. Knowl-
edge is incorporated into the grounding annota-
tion only if it is a subset of the underlying tabular
dataset and can be represented within the modeled
internal system knowledge, which we defined us-
ing vocabulary from the namespaces Schema.org
and CSVW (W3C, 2017, 2024). An example con-
versation illustrating labeled grounding acts and
grounded knowledge items for individual dialogue
utterances is provided in Table 4 in Appendix A.

Experimental Setup Based on the annotated
dataset with conversational grounding labels, we
conducted several experiments using four state-
of-the-art LLMs: the open-source Llama-3-8B-
Instruct as well as Llama-3-70B-Instruct (Meta
AI, 2024) from the Llama 3 model family, and
the closed-source models GPT-3.5-Turbo (version:
0125) and GPT-4o (version: 2024-05-13) (Ope-
nAI, 2022, 2024). We defined two model prompts:
one for classifying grounding acts and another for
identifying grounded knowledge. For the knowl-
edge identification prompt, which tasked the LLM
to predict the grounded knowledge subset in the
conversation thus far, we provided both the input
dialogue and the complete system knowledge (i.e.,
the annotated grounded knowledge for the entire
conversation). All models were prompted using
a chat completion format, which included a sys-
tem instruction and, in the few-shot setting, three
in-context examples presented as user and assis-
tant turns. Both model prompts are provided in

the Appendix in full length (Tables 5 and 6). To
promote deterministic generation, we set the gen-
eration seed to 1 and the temperature parameter to
0. The maximum token limit was set to 128 for
classification and 4096 for grounded knowledge
identification. All generated outputs with extra text
were preprocessed using a regular expression to
match and extract the first occurrence of either the
grounding act or JSON-LD array.

4 Results and Discussion

Classification of Grounding Acts Table 2 shows
the performance for classifying grounding acts,
using macro-averages to ensure equal class im-
portance. Nearly all tested LLMs benefited from
the added context of few-shot examples, with F1-
scores generally improving; however, this improve-
ment diminishes as the number of input dialogue
turns (n) increases, suggesting potential redun-
dancy when in-context examples are already pro-
vided. The results indicate that n=3 often optimizes
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Figure 1: Performance comparison of precision, recall,
and F1-score by grounding act for the Llama-3-70B
model with all input utterances (n=all).
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Issue Type GPT-3.5-Turbo GPT-4o Llama-3-8B Llama-3-70B
Relative Frequency: Zero-Shot / Few-Shot

Invalid JSON-LD 0.00 / 0.01 0.00 / 0.00 0.02 / 0.09 0.20 / 0.00
Property Hallucination 0.01 / 0.00 0.00 / 0.02 0.08 / 0.22 0.38 / 0.26
Value Hallucination 0.02 / 0.00 0.01 / 0.03 0.22 / 0.05 0.46 / 0.07
Property Excess 0.49 / 0.48 0.29 / 0.24 0.50 / 0.38 0.61 / 0.51
Property Deficit 0.37 / 0.22 0.31 / 0.09 0.50 / 0.36 0.39 / 0.20
Value Excess 0.68 / 0.63 0.40 / 0.31 0.66 / 0.32 0.76 / 0.47
Value Deficit 0.22 / 0.22 0.29 / 0.28 0.34 / 0.62 0.24 / 0.34

Table 3: Relative frequency of issues in zero- and few-shot predictions for grounded knowledge identification.

performance in both zero- and few-shot settings by
balancing context retention, noise reduction, and
efficient usage of tokens. While Llama-8B’s per-
formance drops from 0.54 F1-score at n=1 to 0.38
at n=all, larger LLMs like Llama-70B and GPT-4o
handle longer input better, probably due to a higher
parameter count and superior noise handling.

Another significant finding is the competitive
performance of open-source LLMs against propri-
etary ones: Llama-8B surpasses GPT-3.5 in the
zero-shot run, and Llama-70B matches GPT-4o in
the few-shot run. The breakdown of Llama-70B’s
performance by grounding act, illustrated in Fig-
ure 1, reveals clarification as the most challenging
act to classify, consistent with our observation of
the other LLMs. For instance, the models often
struggled when users tried to clarify a previously
introduced concept. Instead of recognizing the clar-
ification (e.g., “And category describes whether it
is a movie, tv show, or work of literature?”), the
models often misinterpreted it as introducing a new
topic, falsely assuming that the previous concept
is already implicitly grounded. Contrary to clarifi-
cation acts, the F1-scores for explicit and implicit
classification are comparable. Despite achieving
the same overall F1-score, GPT-4o tends to overpre-
dict implicit labels in contrast to the more balanced
Llama-70B, as revealed by the confusion matrices
in Figure 3 in Appendix A. The latter shows that
GPT-4o excels at predicting explicit grounding ac-
curately, avoiding false positives altogether, but it
tends to overpredict the implicit class, particularly
in cases where participants acknowledge informa-
tion explicitly before asking a new question (e.g.,
“Ok very interesting! What is the highest level of
protein in the chart?”).

Identification of Grounded Knowledge The
second series of experiments aimed at identifying
grounded knowledge for a suitable dialogue con-
text, which is a significantly more complex task
than classifying grounding acts (Wu et al., 2021;

Oh et al., 2023). Knowledge identification required
the LLMs to uniquely pinpoint specific knowledge
items from a set of possibilities within the system
knowledge model, bridging between vague conver-
sation utterances and structured JSON-LD arrays.

Figure 2 depicts the count of JSON-LD genera-
tions accurately matching our 127 annotations with
valid properties, values, or completely identical
content. The open-source models notably struggle
more compared to the proprietary LLMs. While
both open-source Llama models produce multiple
valid outputs for properties and values with few-
shot prompting, they fail to generate any valid pre-
dictions in the zero-shot setting. Therefore, these
model runs are not displayed in the chart. Remark-
ably, GPT-4o outperforms GPT-3.5 by almost dou-
ble, even in the zero-shot experiment, surpassing
all other models by a great margin. In the few-
shot cases, every third prediction from GPT-4o is
identical to our annotated groundings, totaling 42
out of 127 instances. In some cases, The GPT-4o
model even succeeded in precisely matching the
annotated JSON-LD in a given conversation across
a number of subsequent turns.

Table 3 provides a detailed analysis of the most
common prediction issues and their relative fre-

Llama-8B(F)Llama-70B(F) GPT-3.5(Z) GPT-3.5(F) GPT-4o(Z) GPT-4o(F)
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Figure 2: Count of predictions in JSON-LD format with
valid properties, valid values, or identical content for
evaluated models in zero- (Z) and few-shot (F) settings.
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quencies for each model-prompt experiment. Ex-
amples for each issue type are listed in Table 7 in
Appendix A. Open-source models generally pro-
duce more invalid JSON-LD arrays and hallucinate
properties and values that are not part of the system
knowledge. All tested LLMs tend to overpredict
properties and values in zero-shot settings, even
though these are grounded later in the conversation.
Few-shot prompting can reduce excess properties
and values, as well as counteract property deficits.
However, in few-shot prompting, open-source mod-
els, particularly Llama-3-8B, tend to increase value
deficits, becoming too hesitant to identify knowl-
edge. This often results in empty JSON-LD arrays
with generated statements such as “The conversa-
tion does not mention any specific knowledge items
from the system knowledge.”

Our findings corroborate existing benchmarks,
highlighting the sophisticated reasoning abilities of
state-of-the-art proprietary LLMs such as GPT-4o
in highly complex tasks. A similar task complexity-
based LLM performance gap is also observable
in the direct comparison of the MMLU and Hu-
manEval benchmark scores between GPT-4o and
Llama-3 (Hendrycks et al., 2020; Chen et al., 2021;
OpenAI, 2024). While Llama-70B performs com-
petitively in the language-focused grounding act
classification task, the superiority of GPT-4o be-
comes apparent in identifying knowledge when
handling structured JSON-LD data and fragmented
information from dialogue utterances.

In short, when designing dialogue systems
augmented with LLMs to handle conversational
grounding, smaller open-source models like Llama-
3-8B, especially fine-tuned versions, seem to be
generally sufficient for basic NLP tasks such as de-
tecting and classifying grounding-related dialogue
acts. However, more complex tasks, such as iden-
tifying and integrating grounded knowledge from
dialogue utterances with structured knowledge rep-
resentations, require the use of more advanced and
larger models like GPT-4o, which possess superior
reasoning capabilities and proficiency in process-
ing structured data formats.

5 Conclusion and Future Work

Our study examined LLMs for handling grounding-
related knowledge in information-sharing dia-
logues. We found that classifying grounding acts
was feasible for both open- and closed-source
LLMs, with open-source LLMs performing on par

compared with leading proprietary ones. However,
identifying grounded knowledge proved to be a
distinctly more complex task. For the latter, the
proprietary LLMs had a competitive edge, and the
open-source models underperformed due to their
higher predisposition to generate erroneous out-
put. The experiment results from our newly cre-
ated dataset highlight common prediction issues
and demonstrate how few-shot prompting can en-
hance model outputs, offering valuable insights to
advance research on conversational grounding.

Future work should concentrate on developing
LLM-based dialogue systems that handle conver-
sational grounding through a multi-component
pipeline approach for recognizing grounding-
specific dialogue acts as well as grounded knowl-
edge (Jokinen et al., 2024). In previous studies,
we have shown that LLMs can augment dialogue
systems by performing semantic parsing for con-
versational question answering over knowledge
graphs (Schneider et al., 2024a) and by verbaliz-
ing retrieved semantic triples into text responses
(Schneider et al., 2024b). We believe conversa-
tional grounding is essential as it links the pro-
cesses of semantic parsing of dialogue utterances,
knowledge identification, and response generation,
aligning the user’s prior knowledge with the sys-
tem’s available knowledge base while maintaining
the relevance and coherence of conversations.

6 Limitations

Our study has certain limitations that should be
acknowledged. First, the experiments are based
on a relatively small dataset, consisting of only
26 information-seeking conversations and 669 di-
alogue turns collected in a controlled laboratory
setting. While these conversations span five dis-
tinct domains, the findings should be interpreted
with caution, as they may not generalize to larger
or more diverse dialogue corpora.

Additionally, the grounded knowledge annota-
tions in our study are represented using the JSON-
LD syntax. We chose the JSON-LD format because
it is widely used, and many LLMs are trained to
process JSON sequences effectively. However, it
is important to recognize that other encoding for-
mats, such as Turtle, RDF/XML, and N-Triples,
may produce different performance results. Fur-
ther, our experiments were restricted to the open-
source Llama (Meta AI, 2024) and closed-source
GPT (OpenAI, 2022, 2024) model families. It is
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advisable for future work to explore an even big-
ger variety of LLMs, particularly those that are
specifically trained on code and structured data like
Codestral or Code Llama.

Lastly, conversational grounding in dialogue sys-
tems entails both the classification of grounding
acts and the identification of grounded knowledge.
While we have introduced and evaluated these tasks
separately, incorporating our approach into an end-
to-end evaluation could offer a more holistic un-
derstanding of end-to-end performance in more
realistic dialogue scenarios.

7 Ethical Considerations

In our experiments, we used a publicly available
dialogue dataset from Schneider et al. (2023) while
ensuring that no personal identifying information
of the participants was processed or disclosed. The
information-seeking conversations from the dataset
discuss only domain-specific knowledge from pub-
licly accessible websites, such as Wikipedia. More-
over, to ensure optimal computing efficiency, eval-
uations of the Llama and GPT models were con-
ducted on cloud computing platforms, with each
inference run taking less than an hour.
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A Appendix

The Appendix provides one annotated conversation example (Table 4), the model prompts in full length
(Tables 5 and 6), an overview of common issue types identified in the predictions (Table 7), and two
confusion matrices of the classification results of the two best-performing model inference runs (Figure 3).

Dialogue Utterances Dialogue
Act

Grounded Knowledge

S: What is your dataset about? - -
P: it contains information about 11341 historical
figures, including their full name, sex, birth year,
city, country, continent, occupation, historical
popularity index (HPI). The HPI represents the
degree of this person’s online popularity

- -

S: Who is the most popular? implicit [{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/historical-
figures", "url": "historical-figures.csv", "schema:description":
"The table contains information about historical figures",
"tableSchema": {"columns": [{"name": "full_name",
"datatype": "string"}, {"name": "sex", "datatype": "string"},
{"name": "birth_year", "datatype": "integer"}, {"name":
"city", "datatype": "string"}, {"name": "country", "datatype":
"string"}, {"name": "continent", "datatype": "string"},
{"name": "occupation", "datatype": "string"}, {"name":
"historical_popularity_index", "datatype": "float"}], "prima-
ryKey": "full_name"}}]

P: Aristotle, who is from Greece and has a
largest HPI value: 31.9938.

- -

S: I see, is there Socrate in the dataset? explicit [{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/historical-
figures", "url": "historical-figures.csv", "schema:description":
"The table contains information about historical figures",
"tableSchema": {"columns": [{"name": "full_name",
"datatype": "string"}, {"name": "sex", "datatype": "string"},
{"name": "birth_year", "datatype": "integer"}, {"name":
"city", "datatype": "string"}, {"name": "country", "datatype":
"string"}, {"name": "continent", "datatype": "string"},
{"name": "occupation", "datatype": "string"}, {"name":
"historical_popularity_index", "datatype": "float", "maxi-
mum": 31.9938}], "primaryKey": "full_name"}}, {"@type":
"schema:Person", "full_name": "Aristotle", "country":
"Greece", "historical_popularity_index": 31.9938}]

P: Yes, Socrate is in the dataset. - -
S: What is is popularity index? implicit [{"@context": ["http://www.w3.org/ns/csvw", {"schema":

"http://schema.org"}], "@id": "http://example.org/historical-
figures", "url": "historical-figures.csv", "schema:description":
"The table contains information about historical figures",
"tableSchema": {"columns": [{"name": "full_name",
"datatype": "string"}, {"name": "sex", "datatype":
"string"}, {"name": "birth_year", "datatype": "integer"},
{"name": "city", "datatype": "string"}, {"name": "coun-
try", "datatype": "string"}, {"name": "continent", "datatype":
"string"}, {"name": "occupation", "datatype": "string"},
{"name": "historical_popularity_index", "datatype": "float",
"maximum": 31.9938}], "primaryKey": "full_name"}},
{"@type": "schema:Person", "full_name": "Aristotle", "coun-
try": "Greece", "historical_popularity_index": 31.9938},
{"@type": "schema:Person", "full_name": "Socrates"}]

P: Historical popularity index (HPI) is metric
that aggregates information on a biography’s on-
line popularity. It aggregates information on the
age and attention received by biographies in mul-
tiple language editions of Wikipedia to provide
a summary statistic of their global popularity.

- -

Table 4: Example of dialogue excerpt from the history domain with annotated grounding dialogue acts and grounded
knowledge in JSON-LD format. Seeker (S) and provider (P) roles are abbreviated for each turn. Utterances are
taken from the dialogue logs and may contain spelling errors. Newly grounded knowledge is displayed in blue color.
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Figure 3: Confusion matrices for few-shot classification results of GPT-4o with three input utterances and Llama-3-
70B with all input utterances.

Grounding Act Classification Prompt
Zero-Shot
SYSTEM: Predict the grounding label for the last response in the ’Input Dialogue:’. The label indicates whether the
knowledge in the dialogue was accepted. Choose one of the following labels:
explicit: The response confirms understanding or acceptance (e.g., ’okay’, ’thanks’, ’alright’, ’nice’) without seeking
clarification.
clarification: The response seeks clarification about a previous dialogue snippet.
implicit: The response moves the conversation forward without explicitly confirming or seeking clarification.
Few-Shot
SYSTEM: Predict the grounding label for the last response in the ’Input Dialogue:’. The label indicates whether the
knowledge in the dialogue was accepted. Choose one of the following labels:
explicit: The response confirms understanding or acceptance (e.g., ’okay’, ’thanks’, ’alright’, ’nice’) without seeking
clarification.
clarification: The response seeks clarification about a previous dialogue snippet.
implicit: The response moves the conversation forward without explicitly confirming or seeking clarification.

USER: Input Dialogue:
seeker: Can you give me some information about your dataset?
provider: My dataset includes information on buildings of Gothic architecture.
seeker: How tall is the Cologne Cathedral?
ASSISTANT: Output Label: implicit

USER: Input Dialogue:
provider: Monitors have different attributes like size or panel technology.
provider: There are some with an aspect ratio of 21:9.
seeker: What is aspect ratio?
ASSISTANT: Output Label: clarification

USER: Input Dialogue:
provider: An elephant’s average lifespan is around 65 years.
seeker: I see, good to know.
ASSISTANT: Output Label: explicit

Table 5: Overview of applied zero-shot and few-shot prompts for classification.
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Grounded Knowledge Identification Prompt
Zero-Shot
SYSTEM: Your task is to identify the knowledge items that have been grounded by the conversation partners in the
’Input Dialogue’. The items of mutually grounded knowledge must be explicitly mentioned in the dialogue. Based on the
complete set of ’System Knowledge’, your task is to generate the subset of knowledge items that have been grounded so
far. Ensure that the output is a valid JSON-LD structure (an array of JSON objects) and only include knowledge items
from the formatted ’System Knowledge’.

Few-Shot
SYSTEM: Your task is to identify the knowledge items that have been grounded by the conversation partners in the
’Input Dialogue’. The items of mutually grounded knowledge must be explicitly mentioned in the dialogue. Based on the
complete set of ’System Knowledge’, your task is to generate the subset of knowledge items that have been grounded so
far. Ensure that the output is a valid JSON-LD structure (an array of JSON objects) and only include knowledge items
from the formatted ’System Knowledge’.

USER: System Knowledge: [{"@context": ["http://www.w3.org/ns/csvw", {"schema": "http://schema.org"}],
"@id": "http://example.org/american-presidents", "url": "american-presidents.csv", "schema:description": "The table
contains information about American presidents", "tableSchema": {"columns": [{"name": "name", "datatype": "string"},
{"name": "term", "datatype": "string"}, {"name": "party", "datatype": "string"}, {"name": "election_year", "datatype":
"integer"}]}, "primaryKey": "name"}, {"@type": "schema:Person", "name": "Barack Obama", "party": "Democratic"}]
Input Dialogue:
seeker: Can you give me an example entry from your dataset?
provider: One of the presidents in the list is Barack Obama.
seeker: Thanks. What party does he belong to?

ASSISTANT: Output JSON-LD: [{"@context": ["http://www.w3.org/ns/csvw", {"schema": "http://schema.org"}], "@id":
"http://example.org/american-presidents", "url": "american-presidents.csv", "schema:description": "The table contains
information about American presidents", "tableSchema": {"columns": [{"name": "name", "datatype": "string"}]},
"primaryKey": "name"}, {"@type": "schema:Person", "name": "Barack Obama"}]

USER: System Knowledge: [{"@context": ["http://www.w3.org/ns/csvw", {"schema": "http://schema.org"}],
"@id": "http://example.org/greek-islands", "url": "greek-islands.csv", "schema:description": "The table contains
information about islands in Greece", "tableSchema": {"columns": [{"name": "island", "datatype": "string"}, {"name":
"area_in_km2", "datatype": "integer", "minimum": 64, "maximum": 8336}, {"name": "cluster", "datatype": "string"}]},
"primaryKey": "island"}, {"@type": "schema:Place", "island": "Crete", "area_in_km2": 8336, "cluster": "Cretan"},
{"@type": "schema:Place", "island": "Alonnisos", "area_in_km2": 64, "cluster": "Sporades"}, {"@type": "schema:Place",
"island": "Lesbos", "area_in_km2": 1633, "cluster": "North Aegean Islands"}]
Input Dialogue:
provider: My dataset contains information on Greek islands. For example, there is Crete with an area of 8336 square
kilometers.
provider: That makes it the largest island in Greece.
seeker: Which one is the smallest and what is its area?

ASSISTANT: Output JSON-LD: [{"@context": ["http://www.w3.org/ns/csvw", {"schema": "http://schema.org"}], "@id":
"http://example.org/greek-islands", "url": "greek-islands.csv", "schema:description": "The table contains information
about islands in Greece", "tableSchema": {"columns": [{"name": "island", "datatype": "string"}, {"name": "area_in_km2",
"datatype": "integer", "maximum": 8336}]}, "primaryKey": "island"}, {"@type": "schema:Place", "island": "Crete",
"area_in_km2": 8336}]

USER: System Knowledge: [{"@context": ["http://www.w3.org/ns/csvw", {"schema": "http://schema.org"}],
"@id": "http://example.org/android-smartphones", "url": "android-smartphones.csv", "schema:description": "The
table contains information about Android smartphones", "tableSchema": {"columns": [{"name": "model", "datatype":
"string"}, {"name": "developer", "datatype": "string"}, {"name": "release_year", "datatype": "integer", "minimum":
2008, "maximum": 2024}, {"name": "android_version", "datatype": "string"}]}, "primaryKey": "model"}, {"@type":
"schema:Product", "model": "HTC Dream", "developer:": "HTC", "release_year": "2008"}, {"@type": "schema:Product",
"model": "LG Wing", "developer:": "LG", "release_year": "2020", "android_version": "Android 10"}, {"@type":
"schema:Product", "release_year": "2024"}]
Input Dialogue:
provider: I can provide technical information about Android smartphones.
provider: One column contains data about the model and another specifies its release year.
seeker: I see, good to know.

ASSISTANT: Output JSON-LD: [{"@context": ["http://www.w3.org/ns/csvw", {"schema": "http://schema.org"}], "@id":
"http://example.org/android-smartphones", "url": "android-smartphones.csv", "schema:description": "The table contains
information about Android smartphones", "tableSchema": {"columns": [{"name": "model", "datatype": "string"},
{"name": "release_year", "datatype": "integer"}]}, "primaryKey": "model"}]

Table 6: Overview of applied zero-shot and few-shot prompts for grounding knowledge.
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Issue Type Definition Example
Invalid
JSON-LD

Prediction is overall not a
valid JSON-LD structure.

PRED: [{"@type": "schema:CreativeWork", "cat-
egory": ["films", "series", "literature"]}]
→ JSON syntax elements are missing.

Property
Hallucination

Predicted property is not
part of system knowledge.

PRED: {"@type": "schema:Place", "name": "English Garden", "state":
"Bavaria", "city": "Munich", "summary": "The English Garden is a large
public park in Munich, Bavaria. It is one of the world’s largest ur-
ban public parks, larger than New York’s Central Park. The park is
known for its beer gardens, streams, lakes, and Japanese teahouse."}
→ English Garden was mentioned in the dialogue but is not part of the
system knowledge. The "city" property does not exist.

Value
Hallucination

Predicted value is not part
of system knowledge.

PRED: [{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/time-travel-media",
"url": "time-travel-media.csv", "schema:description": "The table con-
tains information about time travel media", "tableSchema": {"columns":
[{"name": "year", "datatype": "string"}, {"name": "title", "datatype":
"string"}, {"name": "author", "datatype": "string"}, {"name":
"short text description", "datatype": "string"}, {"name": "category",
"datatype": "string"}]}, "primaryKey": ["year", "title", "category"]}]
→ System knowledge contains the columns "creators" and "description" but
"author" and "short text description" are hallucinated.

Property
Excess

Predicted property is part
of system knowledge but
grounded too early.

PRED: [{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/football-records",
"url": "football-records.csv", "schema:description": "The table con-
tains information about football records", "tableSchema": {"columns":
[{"name": "record", "datatype": "string"}]}, "primaryKey": "record"}]
→ Properties should have been grounded at a later stage.

Property
Deficit

Property from system
knowledge was not identi-
fied.

PRED: [{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/nature-parks",
"url": "nature-parks.csv", "schema:description": "The table con-
tains information about nature parks in Germany", "tableSchema":
{"columns": [{"name": "name", "datatype": "string"}, {"name":
"state", "datatype": "string"}, {"name": "year", "datatype": "inte-
ger"}, {"name": "area_in_km2", "datatype": "integer"}, {"name":
"summary", "datatype": "string"}], "primaryKey": "name"}},
{"@type": "schema:Place", "name": "Altmühl Valley Nature Park"}]
→ Highlighted properties were not grounded.

Value
Excess

Predicted value is part
of system knowledge but
grounded too early.

PRED: [{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/nature-parks",
"url": "nature-parks.csv", "schema:description": "The table con-
tains information about nature parks in Germany", "tableSchema":
{"columns": [{"name": "name", "datatype": "string"}, {"name":
"state", "datatype": "string"}, {"name": "year", "datatype": "inte-
ger"}, {"name": "area_in_km2", "datatype": "integer"}, {"name":
"summary", "datatype": "string"}], "primaryKey": "name"}}]
→ Values should have been grounded at a later stage.

Value
Deficit

Value from system knowl-
edge was not identified.

PRED: [{"@context": ["http://www.w3.org/ns/csvw", {"schema":
"http://schema.org"}], "@id": "http://example.org/historical-figures",
"url": "historical-figures.csv", "schema:description": "The ta-
ble contains information about historical figures", "tableSchema":
{"columns": [{"name": "full_name", "datatype": "string"}, {"name":
"birth_year", "datatype": "integer", "minimum": -3500, "maximum":
2005}], "primaryKey": "full_name"}}, {"@type": "schema:Person",
"birth_year": -3500}, {"@type": "schema:Person", "birth_year": 2005}]
→ Highlighted values were not grounded.

Table 7: Overview of six identified issue types with examples from generated model predictions (PRED). The
manifestation of issues are highlighted in red color.
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