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Abstract

Aspect Sentiment Triplet Extraction (ASTE) is
a challenging task in sentiment analysis, aim-
ing to provide fine-grained insights into human
sentiments. However, existing benchmarks are
limited to two domains and do not evaluate
model performance on unseen domains, raising
concerns about the generalization of proposed
methods. Furthermore, it remains unclear if
large language models (LLMs) can effectively
handle complex sentiment tasks like ASTE. In
this work, we address the issue of generaliza-
tion in ASTE from both a benchmarking and
modeling perspective. We introduce a domain-
expanded benchmark by annotating samples
from diverse domains, enabling evaluation of
models in both in-domain and out-of-domain
settings. Additionally, we propose CASE, a
simple and effective decoding strategy that
enhances trustworthiness and performance of
LLMs in ASTE. Through comprehensive exper-
iments involving multiple tasks, settings, and
models, we demonstrate that CASE can serve
as a general decoding strategy for complex sen-
timent tasks. By expanding the scope of eval-
uation and providing a more reliable decoding
strategy, we aim to inspire the research commu-
nity to reevaluate the generalizability of bench-
marks and models for ASTE. Our code, data,
and models are available at https://github.
com/DAMO-NLP-SG/domain-expanded-aste.

1 Introduction

Opinions and sentiments are essential to human
communication, beliefs, and behaviors (Liu, 2012).
Although sentiment analysis is often performed
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This nail polish is acceptable.

Reasonable price with fresh sushi.

The room was huge but terribly furnished.

Reasonably priced with very fresh sushi . [('sushi', 
'fresh', 'POS'), ('priced', 'Reasonably', 'POS')] 

Nice screen , keyboard works great ! 
[('screen', 'Nice', 'POS'), ('keyboard', 'great', 'POS')]

The worst though was the taste . [('taste', 'worst', 
'NEG')]

The room was huge but terribly furnished (room huge 
pos, room terribly furnished, neg)

this nail polish , although essie brand , is horrible 
quality . [('nail polish', 'horrible quality', 'NEG')]

Nice screen, keyboard works great!

Legend

 PositiveOpinionAspect Target Neutral Negative

Figure 1: ASTE data samples for the Hotel, Laptop,
Cosmetics, and Restaurant domains, respectively.

at the sentence or document level, it is insuffi-
cient to capture the fine-grained sentiment informa-
tion and nuances of human opinions (Poria et al.,
2020). To this end, aspect sentiment triplet extrac-
tion (ASTE) (Peng et al., 2020) is a challenging
and well-established task of aspect-based sentiment
analysis (Pontiki et al., 2014) which aims to extract
richer and more interpretable sentiment informa-
tion from natural language. Concretely, ASTE con-
siders how each opinion term in a text may express
sentiments towards specific aspect targets.

Although ASTE has become a more established
task with many existing methods (Zhang et al.,
2022), we are concerned that they may not gen-
eralize well due to limitations in the existing bench-
mark datasets. Notably, the established bench-
marks are limited to two domains, which limits
the evaluation scope of model capabilities and does
not represent the diversity of real-world data. On
the other hand, it is also important to assess how
models generalize to unseen domains as domain-
specific labeled data is often scarce (Wang and Pan,
2018), and models may face domain shift during
deployment (Wang et al., 2021). Hence, this mo-
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tivates us to propose a domain-expanded ASTE
benchmark which not only considers the in-domain
performance, but also evaluates out-of-domain gen-
eralization across a more diverse set of domains.
We support the new benchmark by annotating more
than 4,000 data samples for two new domains based
on hotel and cosmetics product reviews. Therefore,
we can construct a domain-expanded dataset with
four domains as shown in Figure 1.

To investigate the domain generalization of ex-
isting ASTE methods, we evaluate five existing
methods based on pretrained language models
(PLMs) for the in-domain and out-of-domain set-
tings. On the other hand, while large language mod-
els (LLMs) have recently enabled breakthroughs in
many NLP tasks, it is unclear if they can surpass
specialized pretrained language models (PLMs) on
sentiment tasks such as ASTE (Zhang et al., 2023).
Despite the impressive language understanding and
general-purpose capabilities of LLMs, it is chal-
lenging to adapt them to ASTE due to several rea-
sons. Notably, black-box models like GPT-4 (Ope-
nAI, 2023) are less trustworthy and interpretable
as it is not clear how to estimate the confidence
of their predictions. For instance, as each text
may contain multiple sentiment triplets, it is use-
ful to know which of the predicted triplets have
higher confidence or lower confidence. Hence, the
lack of interpretability hinders the trustworthiness
of LLMs in practical applications, and limits in-
depth analysis of their performance. On the other
hand, it is generally not possible or feasible to train
LLMs for specific tasks, leading to greater focus
on prompt-based methods to improve performance.

Thus, we introduce confidence-aware sentiment
extraction (CASE), a simple and effective decoding
strategy to improve the trustworthiness and perfor-
mance of LLMs for complex sentiment tasks like
ASTE. Inspired by self-consistency (Wang et al.,
2023a) which samples diverse reasoning paths to
select the most consistent answer, we sample di-
verse sets of sentiment triplets to select the most
consistent triplets. Intuitively, sentiment triplets
which are most consistent, i.e., occur most often
when sampling diverse sets of triplets, can be as-
signed a higher confidence. Notably, it is simple
to integrate CASE with any language model that
supports stochastic sampling, and it does not re-
quire any model re-training or access to model log-
its. Compared to conventional decoding methods
such as greedy search or beam search, CASE en-

hances interpretability by estimating the confidence
of each predicted triplet, and improves performance
by explicitly considering a larger pool of sentiment
triplets.

In summary, our main contributions include:
(1) To evaluate ASTE methods more holistically,
we propose a domain-expanded benchmark which
covers in-domain and out-of-domain performance
across diverse domains. (2) We annotate more than
4000 samples for two new domains based on hotel
and cosmetics product reviews to support the new
benchmark. (3) We propose CASE, a simple and
effective decoding strategy to enhance the trustwor-
thiness and performance of LLMs for ASTE. Our
experiments demonstrate its effectiveness across
different models, tasks, and settings.

2 Related Work

Aspect-Based Sentiment Analysis While senti-
ment analysis is often considered at the sentence or
document level, this approach cannot capture the
fine-grained sentiment einformation and nuaces of
human opinions (Poria et al., 2020). To this end,
aspect-based sentiment analysis (ABSA) consists
of many task which aim to reveal richer sentiment
information by considering the specific opinions
and aspect targets in natural language (Pontiki et al.,
2014). Early works on ABSA focused on extract-
ing individual sentiment elements, such as aspect
term extraction (Liu et al., 2015), opinion term
extraction (Yang and Cardie, 2012), or aspect sen-
timent classification (Dong et al., 2014). On the
other hand, compound ABSA tasks have been intro-
duced to jointly address multiple subtasks, includ-
ing ASTE (Peng et al., 2020) and ASQP (Zhang
et al., 2021a). In this work, we focus on ASTE
which has many established methods, yet has not
been studied through the lens of domain general-
ization (Wang et al., 2021).

Domain Generalization While traditional ma-
chine learning methods are trained based on the
assumption that training and testing data are iden-
tically and independently distributed, this assump-
tion seldom holds true in reality. Hence, the perfor-
mance of methods often deteriorates due to shifts
in domain distributions (Wang et al., 2021). As it
is not feasible to comprehensively annotate task-
specific data for training, there is an urgent need
to improve the robustness and generalization abil-
ity of existing methods. While are there many re-
lated topics such as domain adaptation (Patel et al.,
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2015; Gong et al., 2020), meta-learning (Vilalta
and Drissi, 2002), and lifelong learning (Biesialska
et al., 2020), we believe that domain generalization
is more widely applicable to the established meth-
ods for ASTE. Hence, in this work, we mainly in-
vestigate domain generalization, the goal of which
is to learn a model that will generalize well to un-
seen domains.

Large Language Models Recently, there have
been numerous advancements in natural language
processing due to the rapid development of large
language models (LLMs) such as GPT-4 (OpenAI,
2023) and LLaMA (Touvron et al., 2023). Com-
pared to the smaller pretrained language models
(PLMs), LLMs have deeper language understand-
ing and reasoning capabilities, owing to the large
scale of the models and training data. Moreover,
the performance of LLMs can be further enhanced
through methods such as instruction-tuning (Wei
et al., 2022a), chain-of-thought prompting (Wei
et al., 2022c), and reinforcement learning from hu-
man feedback (Ouyang et al., 2022). However,
there is less focus on fundamental decoding strate-
gies that can heavily affect the behavior of genera-
tive methods. On the other hand, language models
are prone to hallucinating outputs that seem plau-
sible but are incorrect or unreasonable (Ji et al.,
2022), raising major concerns about their trust-
worthiness and interpretability (Zhao et al., 2023).
Hence, we introduce a novel decoding strategy that
aims to improve the performance and interpretabil-
ity of LLMs for ASTE.

3 Domain-Expanded ASTE Benchmark

To evaluate the performance of ASTE methods
more holistically and encourage development of
more robust methods, we propose a domain-
expanded benchmark. The benchmark assesses
models not only in-domain, but also in terms of out-
of-domain generalization across diverse domains.
Hence, we construct the benchmark by leveraging
two domains from existing datasets, while anno-
tating samples for two new domains. In this sec-
tion, we detail the dataset construction process and
dataset statistics for each domain.

3.1 Task Formulation
Given an input sentence x containing n words,
ASTE aims to predict a set of sentiment triplets
where each triplet (t, o, p) corresponds to the aspect
target, opinion, and sentiment polarity, respectively.

Domain Aspect Target Opinion Sentiment Triplet

Hotel 0.73 0.76 0.61
Cosmetics 0.72 0.73 0.57

Table 1: Inter-annotator agreement scores. We measure
the agreement using the AvgAgr metric separately for
aspect targets, opinions, and sentiment triplets.

Each aspect target t and opinion o are text spans
in the sentence. The sentiment polarity belongs to
the label set of {POS,NEG,NEU}, which corre-
sponds to positive, negative, and neutral sentiment,
respectively.

3.2 Data Collection
We construct a dataset with four domains by lever-
aging two domains from existing datasets (Peng
et al., 2020) and collecting data for two new do-
mains. Specifically, we collect review texts in
the Hotel and Cosmetics domains from TripAd-
visor Reviews (Angelidis et al., 2021) and Ama-
zon Reviews (He and McAuley, 2016; McAuley
et al., 2015) respectively. We collect 8000 samples
from each domain corpus and use the spaCy tool
to tokenize the review texts and label their part-
of-speech tags. To denoise the raw samples, we
remove reviews that do not contain any nouns or
adjectives. We also leverage the existing Laptop
and Restaurant domains from ASTE-Data-V2 (Xu
et al., 2020). Within the Laptop and Restaurant
domains, we remove duplicate samples and retain
the existing triplet annotations.

Domain #Train #Dev #Test #Triplets #T #O

Restaurant 1771 442 739 5376 1878 1743
Laptop 867 217 362 2334 1086 1083
Hotel 1281 320 535 4064 1486 1706
Cosmetics 1287 442 739 4002 1539 2221

Table 2: Statistics of our domain-expanded ASTE
dataset. We report the number of train samples, develop-
ment samples, test samples, sentiment triplets, unique
aspect targets (T), and unique opinions (O).

3.3 Data Annotation
For annotation, we follow the same data format
as existing datasets (Peng et al., 2020; Xu et al.,
2020). Specifically, annotators are provided with
each tokenized review sentence as input. They
are required to annotate all valid sentiment triplets
in the text according to the task formulation in
Section 3.1. We include the detailed annotation
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guideline in the appendix. To ensure the quality of
data annotation, we conduct quality checking for
each batch of annotated data. Specifically, for each
annotation batch, 10% of the samples are randomly
selected for manual checking. If more than 10%
of the selected samples contain errors, we provide
detailed feedback and request annotators to amend
the batch. We engage two independent annotators
to label the data and engage a third annotator to
resolve any annotation disagreements.

Following previous works in data annotation
for ABSA (Barnes et al., 2018), we measure the
inter-annotator agreement using the AvgAgr metric
(Wiebe et al., 2005):

AvgAgr(a, b) =
1

2

( |a ∩ b|
|a| +

|a ∩ b|
|b|

)
(1)

where a and b are the set of annotations by the first
and second annotators, respectively. Intuitively,
the agreement value is the average of precision
and recall between the two annotators. Hence, the
perfect agreement is 1 while no agreement is 0. We
report the inter-annotator agreement for the Hotel
and Cosmetics domain in Table 1. We observe that
the agreement scores are high and comparable to
previous ABSA datasets (Barnes et al., 2018).

We report the statistics1 of the domain-expanded
dataset such as the number of reviews, sentiment
triplets, and unique aspect targets in Table 2.

4 Confidence-Aware Sentiment
Extraction (CASE)

To enhance the trustworthiness and effectiveness
of large language models (LLMs) on ASTE, we
propose confidence-aware sentiment extraction
(CASE), a simple and effective decoding strategy.
Compared to conventional decoding methods such
as greedy search or beam search, CASE enhances
interpretability by estimating the confidence of
each predicted triplet, and improves performance
by explicitly considering a larger pool of sentiment
triplets. Inspired by self-consistency (Wang et al.,
2023a) which samples diverse reasoning paths to
select the most consistent answer, we sample di-
verse sets of sentiment triplets to select the most
consistent triplets. As shown in Figure 2, CASE
consists of four main steps: (1) Given the input
text, we sample diverse output sequences from the
language model, where each output sequence repre-
sents a set of candidate sentiment triplets. (2) The

1We include more detailed analysis in Appendix A.7.

unique sentiment triplets are then aggregated based
on the sampled sets of triplets. (3) To estimate the
confidence of each sentiment triplet, we calculate
the occurrence frequency of each triplet. (4) Lastly,
we select the most confident sentiment triplets as
the final predictions.

4.1 Candidate Sampling

In practice, generative methods such as sequence-
to-sequence PLMs (Zhang et al., 2021a,b) and
LLMs (Wang et al., 2023b; Zhang et al., 2023)
use approximate decoding methods such as greedy
search or beam search as it is intractable to de-
termine the optimal y for a given input x, i.e.,
argmaxyp(y | x). Hence, we argue that gener-
ating a single sequence y is sub-optimal as it only
provides a narrow view of the possible triplet can-
didates. On the other hand, sampling diverse se-
quences from the language model can provide the
opportunity to consider a larger set of triplet can-
didates and estimate the confidence score of each
triplet. To obtain diverse triplet candidates, we use
temperature-based sampling (Ficler and Goldberg,
2017; Fan et al., 2018) which is a common method
to generate diverse outputs from a language model.
Concretely, we sample m outputs from our model
G for a given input x:

Sj ∼ G(x, k), j ∈ {1, ...,m} (2)

where Sj denotes the set of sentiment triplets in the
j-th sampled sequence.

4.2 Aggregation

Naturally, a triplet set may be sampled more than
once and a sentiment triplet (t, o, p) may be present
in more than one set. To aggregate the sentiment
triplets, we take the union of the sampled sets to
form the candidate set Sc:

Sc =
m⋃

j=1

Sj (3)

Hence, we only consider the unique sentiment
triplets across all the sampled triplet sets.

4.3 Confidence Estimation

Intuitively, we assume that sentiment triplets that
appear more frequently can be attributed to a higher
confidence score. Thus, we estimate the confidence
score of each sentiment triplet (t, o, p) ∈ Sc to be
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Language Model

(Bed, clean, pos);
(room, cold, neg);

(Bed, soft, pos);
(room, cold, neg);

(Bed, soft, pos);
(Bed, clean, pos);
(room, cold, neg);
(room, soft, pos);

(Bed, clean, pos)
(Bed, soft, pos)

(room, cold, neg)
(room, soft, pos)

Sentiment 
Triplets

Score
Threshold

Candidate Sampling 
(Eq. 2)

(Bed, clean, pos);
(Bed, soft, pos);
(room, cold, neg);

Bed is clean and soft, 
but the room is cold.

Legend

 Model Predicted Sentiment TripletsCandidate Sentiment TripletsInput Text

Aggregation
(Eq. 3)

Confidence Estimation
(Eq. 4, 5)

Filtering
(Eq. 6)

Figure 2: Our proposed confidence-aware sentiment extraction (CASE) decoding strategy which aims to enhance
the trustworthiness and performance of LLMs for ASTE.

the corresponding occurrence frequency:

ϕ(t, o, p) =

∑m
j=1 1Sj (t, o, p)

m
(4)

where 1Sj (t, o, p) is the indicator function of
whether a triplet (t, o, p) appears in Sj :

1Sj (t, o, p) =

{
1 if (t, o, p) ∈ Sj

0 otherwise
(5)

Naturally, the confidence score for each triplet is
bounded within the range 0 ≤ ϕ(t, o, p) ≤ 1. As it
is not feasible to exhaustively sample from the lan-
guage model, we sample m = 20 output sequences
for each input x.

4.4 Filtering
While the steps thus far have improved inter-
pretability through confidence estimation and
triplet recall by sampling a larger pool of candidate
triplets, we face the challenge noisy predictions.
Specifically, sampling more triplets may impact
model precision due to increased numbers of false
positive triplets. Hence, we apply a confidence
threshold T over each triplet (t, o, p) ∈ Sc to select
the final prediction set Sfinal:

Sfinal = {(t, o, p) | ϕ(t, o, p) ≥ T} (6)

This filtering process ensures that we retain only
the higher-confidence triplets, thus mitigating noisy
predictions.

5 Experiment Setup

5.1 Settings
In this work, we aim to provide a more holistic
study of model performance on the ASTE task.

While previous works mostly focus on the in-
domain setting, where the model is trained and
tested on the same domain, we believe that this pro-
vides a limited perspective of model performance,
as it does not consider robustness to domain shift.
Hence, we further evaluate models out-of-domain
settings, where the model trained on one domain
and tested on a different domain. Moreover, certain
models may be stronger in low-resource scenar-
ios, which is important to consider as labeled data
is often limited and costly to obtain in practice.
Thus, we further assess each model on the fully-
supervised and few-shot scenarios. Specifically, for
the few-shot scenario, we sample 5 examples for
each sentiment polarity. Following previous works
in ASTE (Peng et al., 2020; Xu et al., 2020), we
use the F1 metric to measure model performance.
For all training experiments, we report the average
results from 5 random runs.

5.2 Models

To provide a study of diverse models, we evaluate
several ASTE methods based on pretrained lan-
guage models (PLMs) and large language mod-
els (LLMs). For PLMs, we include discriminative
methods including GTS (Wu et al., 2020) based on
sequence tagging, Span-ASTE based on span enu-
meration and RoBMRC (Liu et al., 2022b) based on
machine reading comprehension. We also consider
generative methods including GAS (Zhang et al.,
2021b) and Paraphrase (Zhang et al., 2021a). As
LLMs have shown general-purpose capabilities and
strong performance on many language understand-
ing and reasoning tasks, we also assess their perfor-
mance on ASTE. Specifically, we use the ChatGPT
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model API based on gpt-3.5-turbo-03012. We note
that while LLMs are technically PLMs as they also
undergo large-scale pretraining, we use PLMs to
refer to smaller models that are pretrained, such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020). To adapt ChatGPT to complex sentiment
tasks such as ASTE, we use in-context learning
demonstrations (Wei et al., 2022b) with the prompt
templates as shown in Appendix A.6. For the fully
supervised scenario, we leverage in-context demon-
stration selection (Liu et al., 2022a) which selects
relevant examples from the full dataset based on
cosine similarity. Specifically, we use embedding
representations from Sentence-BERT (Reimers and
Gurevych, 2019) and select the top-15 most similar
examples as in-context demonstrations. For the
few-shot scenario, we use the few-shot examples
as in-context demonstrations.

5.3 Hyperparameters

For all PLM-based methods, we use the base model
size and original hyperparameters for training ex-
periments. For sampling with CASE, we generate
a fixed number of 10 outputs for each example.
To select the confidence threshold hyperparame-
ter T , we perform a grid search with the values
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0} based on F1 results on
the development set. For out-of-domain settings,
we choose the confidence threshold from the re-
spective source domain. In addition, we report
other experimental details in Appendix A.2.

6 Results and Analysis

To provide a holistic study of ASTE methods,
we evaluate on the proposed domain-expanded
ASTE benchmark, reporting the fully supervised in-
domain results in Table 3, with fully supervised out-
of-domain results in Table 4. We further study the
few-shot scenario for in-domain and out-of-domain
settings in Table 5. In general, while specialized
PLM-based methods currently outperform LLMs
in the fully supervised scenario, there is a smaller
performance gap for unseen domains, and LLMs
exhibit better robustness to domain shift. In con-
trast, we find that LLMs are more effective in low-
resource scenarios, as evidenced by the few-shot
results. On the other hand, we observe that the pro-
posed CASE is an effective decoding strategy that
not only addresses the fundamental interpretability

2https://platform.openai.com/docs/models/gpt-3-5

limitation of LLMs, but also consistently improves
performance across models, settings, and tasks.

6.1 Fully Supervised Results

Evaluation of PLM-Based Methods Based on
the established methods that leverage PLMs, we
find significant differences in performance and gen-
eralization for generative methods (i.e., Paraphrase,
GAS) compared to discriminative methods (i.e.,
GTS, Span-ASTE, RoBMRC). Specifically, gen-
erative methods enjoy competitive in-domain per-
formance and much stronger generalization to un-
seen domains, with an advantage of more than
2 points in the out-of-domain setting on average.
Furthermore, while PLM-based methods generally
demonstrate large performance disparities between
in-domain and out-of-domain settings, generative
methods are more robust to domain shift, as they ex-
hibit smaller performance gaps on average (14.58)
compared to discriminative methods (16.80). We
believe that this is largely due to the effect of label
semantics (Ma et al., 2022). For instance, under-
standing that “fresh” is an adjective for describing
food such as “sushi” in Figure 1, it can be easier
for the model to predict the sentiment triplet (sushi,
fresh, positive). Hence, generative methods demon-
strate better performance and generalization on the
domain-expanded benchmark.

Comparison of LLM-Based Methods By com-
paring the LLM-based ChatGPT to PLM-based
methods, we observe that LLMs perform worse in
general for fully-supervised scenarios, but show
greater robustness to domain shift. Notably, Chat-
GPT performs significantly worse on in-domain set-
tings compared to PLM-based methods for ASTE.
This is in contrast to their strong performance on
simpler sentiment tasks such as sentence-level sen-
timent classification (Zhang et al., 2023). We be-
lieve that the difficulty that LLMs face in ASTE
stems from the complexity of the task, as the struc-
tured nature of the sentiment triplets are less natural
for language models. Hence, there is larger area of
improvement for task-specific adaptation of LLMs,
especially for complex tasks such as ASTE. On the
other hand, we observe that ChatGPT can attain
similar out-of-domain performance compared to
some PLM-based methods, with a smaller perfor-
mance gap between in-domain and out-of-domain
settings (7.4). We posit that the greater robust-
ness to domain shift is due to exposure to more di-
verse pretraining data, which together with model
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Method Hotel Laptop Cosmetics Restaurant Avg.

P. R. F1 P. R. F1 P. R. F1 P. R. F1 F1

GTS (Wu et al., 2020) 58.76 59.50 59.13 58.07 48.16 52.65 51.42 50.95 51.18 65.06 65.45 65.26 57.15
Span-ASTE (Xu et al., 2021) 67.73 62.92 65.24 60.73 54.40 57.39 59.79 55.0 57.29 68.69 65.41 67.01 61.74
RoBMRC (Liu et al., 2022b) 68.99 63.11 65.92 66.12 51.51 57.90 58.62 55.27 56.89 69.89 67.80 68.83 62.49
Paraphrase (Zhang et al., 2021a) 65.21 61.07 63.08 61.23 55.13 58.02 58.45 53.62 55.93 68.56 68.46 68.51 61.41
GAS (Zhang et al., 2021b) 67.57 63.30 65.37 60.59 55.13 57.73 59.13 55.53 57.28 69.26 69.16 69.21 62.41

with CASE (Ours) 67.40 64.75 66.05 60.60 56.79 58.63 59.51 57.01 58.23 68.84 70.42 69.62 63.13

ChatGPT 47.59 53.13 50.20 44.57 49.12 46.74 34.80 38.73 36.66 53.49 57.68 55.50 47.28
with CASE (Ours) 54.24 49.86 51.96 51.71 48.17 49.88 42.32 35.39 38.55 58.11 56.04 57.06 49.36

Table 3: Evaluation results for in-domain ASTE with the full datasets. We report the average precision (P ), recall
(R), and F1 scores for each domain, as well as the average F1 (Avg.) across all domains.

Method Hotel Laptop Cosmetics Restaurant Avg.

L→H C→H R→H H→L C→L R→L H→C L→C R→C H→R L→R C→R F1

GTS (Wu et al., 2020) 35.05 52.75 49.41 34.01 32.68 40.98 38.08 24.31 32.77 55.73 49.86 49.94 41.65
Span-ASTE (Xu et al., 2021) 41.62 55.55 51.23 37.34 33.48 42.52 43.55 31.00 34.30 57.31 54.36 51.44 44.58
RoBMRC (Liu et al., 2022b) 36.17 58.17 52.67 37.77 35.57 41.26 41.81 26.97 32.12 60.47 51.10 55.73 44.76
Paraphrase (Zhang et al., 2021a) 43.99 56.49 50.81 41.71 39.09 48.02 43.85 28.45 34.68 59.74 59.15 56.14 46.90
GAS (Zhang et al., 2021b) 46.18 59.10 52.71 40.77 37.88 48.25 46.10 29.81 34.97 59.57 60.47 56.54 47.76

with CASE (Ours) 46.84 60.06 53.32 42.36 38.82 48.72 47.77 30.96 36.12 60.03 61.06 57.08 48.60

ChatGPT 42.98 42.61 43.14 34.48 35.23 36.43 31.22 31.26 31.84 50.08 51.29 48.02 39.88
with CASE (Ours) 42.91 45.07 45.56 36.08 36.66 38.57 31.04 31.60 32.80 51.78 53.74 50.43 41.35

Table 4: Evaluation results for out-of-domain ASTE with the full datasets. We report the average F1 score for each
domain-pair (source domain → target domain), as well as the average F1 (Avg.) across all domain-pairs.

Method In-Domain F1 Out-Of-Domain F1

Span-ASTE 32.65 20.71
Paraphrase 33.46 22.95
GAS 36.53 26.72

with CASE (Ours) 38.42 28.81

ChatGPT 44.38 38.19
with CASE (Ours) 47.34 39.56

Table 5: Evaluation results for few-shot ASTE (5-Shot).
We report the average in-domain F1 score across all do-
mains, and the average out-of-domain F1 score across
all domain-pairs.

scaling, imbues LLMs with comprehensive world
knowledge (Safavi and Koutra, 2021). This is con-
sistent with previous findings that training data di-
versity is the main factor in robustness to domain
shift (Taori et al., 2020). Thus, LLM-based meth-
ods show promising generalization to new domains,
with ample room for future development.

6.2 Few-Shot Performance

In contrast to the fully supervised results, we find
that LLMs show stronger performance in low-
resource scenarios, as shown in Table 5. Notably,
ChatGPT significantly outperforms the PLM-based
methods in both the in-domain and out-of-domain

settings. As LLMs benefit from massive scale of
model parameters and training data, this enables
them to learn a wider range of language patterns
and semantics, hence generalizing well to new
tasks, even with limited data (Brown et al., 2020).
From a practical point of view, while there remains
ample room for improvement in the fully super-
vised scenarios, the strong generalization in low-
resource scenarios and robustness to domain shift
make LLMs suitable for data-scarce applications.
Hence, we believe that the few-shot results high-
light the importance of evaluating ASTE methods
on diverse scenarios, in order to provide a holistic
view of their capabilities.

6.3 Impact of CASE
While our proposed CASE decoding strategy was
mainly motivated by the limitations of interpretabil-
ity and trustworthiness of black-box LLMs for
ASTE, we find that it also provides reliable perfor-
mance benefits. Notably, we observe that ChatGPT
with CASE consistently outperforms the baseline
which uses greedy decoding3 for both in-domain as
well as out-of-domain settings. Furthermore, as our
decoding strategy is applicable to any method that

3While we have also experimented with beam search, we
observed similar performance and hence used greedy search.
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Task Dataset Method Orig. w/ CASE

AOPE

Hotel

GAS (Zhang et al., 2021b)

71.77 72.44
Laptop 65.93 66.77

Cosmetics 62.98 63.91
Restaurant 75.33 75.51

ASQP
Rest15

Paraphrase (Zhang et al., 2021a)
46.93 47.96

Rest16 57.93 58.86

Table 6: Evaluation results for in-domain ABSA subtasks when using generative methods without change or with
confidence-aware generative extraction (CASE).

supports stochastic sampling, we easily apply it to
the generative method GAS (Zhang et al., 2021b),
which also shows consistent benefits. We believe
that the performance benefits of CASE stem mainly
from the sampling process which considers more
diverse sentiment triplets, which is supported by
the significantly improved recall scores in Table
3. On the other hand, there is little to no negative
impact on precision, which suggests that our aggre-
gation and filtering steps can effectively mitigate
false positive triplets. This is in contrast to conven-
tional decoding methods such as greedy decoding,
which only presents a single, less optimal set of
sentiment triplets for consideration. Hence, we
believe that CASE is an effective decoding strat-
egy for ASTE and a promising direction for future
development.

6.4 Benefit of CASE on Other ABSA Tasks

As CASE is a decoding strategy that can enhance
the performance of generative models, it may also
benefit other ABSA tasks. Hence, to further study
its effectiveness, we report the in-domain results
of CASE-based generative models for aspect opin-
ion pair extraction (AOPE) (Chen et al., 2020) and
aspect sentiment quad prediction (ASQP) (Zhang
et al., 2021a). We use our domain-expanded dataset
for AOPE and the original Rest15 and Rest16
datasets for ASQP. To modify our method for
AOPE and ASQP, we simply consider pair sets
and quadruplet sets respectively in the sampling
process instead of triplet sets for ASTE. Note that
our method does not affect model parameters or re-
training any models to be re-trained. Based on the
results in Table 6, we observe consistent improve-
ment when using generative methods with CASE
compared to using the original greedy decoding.
Furthermore, it can improve the interpretability and
trustworthiness of generative ABSA predictions by
estimating the confidence score of each pair, triplet,
or quadruplet. Overall, we believe that CASE can
be a beneficial and widely applicable technique for
different ABSA tasks.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3: The effect of confidence-aware threshold T
on in-domain performance for the Hotel domain.

6.5 Effect of Confidence-Aware Threshold

As CASE aims to improve the model recall while
reducing false positives, it is crucial to remove the
low-confidence triplets by applying a sufficiently
high threshold filter. However, a threshold that is
too high may introduce more false negative triplets.
Hence, we study the effect of the confidence-aware
threshold T on model performance in Figure 3. We
find that the in-domain performance is relatively
stable across a wide range of thresholds between
0.2 and 0.8. This suggests that the false positive
triplets mainly have very low confidence scores i.e.,
ϕ(t, o, p) < 0.2. However, there is a sharp decrease
in performance for extremely low or high threshold
values, which is consistent with our intuition.

7 Conclusions

In conclusion, this work addressed the task of As-
pect Sentiment Triplet Extraction (ASTE) in sen-
timent analysis, focusing on the issues of limited
benchmark domains and the challenges of large
language models (LLMs) in handling complex sen-
timent tasks. We introduced a domain-expanded
ASTE benchmark by annotating samples from di-
verse domains, enabling the evaluation of models
in both in-domain and out-of-domain settings. This
expanded benchmark provided a more comprehen-
sive assessment of model performance, address-
ing concerns regarding the generalizability of pro-
posed methods. Secondly, a novel decoding strat-
egy called CASE (Context-Aware Sampling and
Enhancement) was proposed to enhance the trust-
worthiness and performance of LLMs in ASTE.
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The experimental results demonstrated its effective-
ness across multiple tasks, settings, and models. Its
simplicity and efficacy make it a promising general
decoding strategy for complex sentiment tasks. By
expanding the scope of evaluation and providing a
reliable decoding strategy, we hope to encourage
the research community to rethink the generaliz-
ability of benchmarks and models for ASTE. The
findings highlight the importance of considering
diverse domains and utilizing appropriate decod-
ing strategies when tackling fine-grained sentiment
analysis tasks. With these contributions, we hope to
foster the development of more robust and capable
sentiment analysis methods in the future.

Acknowledgment

This work was substantially supported by DAMO
Academy through DAMO Academy Research In-
tern Program.

Limitations

As our method samples multiple output sequences
for a given input sequence, there is an increased
computational cost for inference. However, this
is a trade-off similar to tuning hyperparameters
for beam search in text generation problems, and
the effect can be mitigated by batched inference.
Our method also relies on the sampled sequences to
have sufficient diversity in other to consider a larger
set of candidate triplets. However, too much diver-
sity may introduce unwanted noise. The diversity
is affected by both the temperature sampling hyper-
parameter and the number of sampled sequences.
In this work, we keep the temperature sampling
hyperparameter fixed as a standard value for gener-
ation due to computational constraints. We analyze
the effect of the number of sampled sequences m
in Appendix A.3.
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A Appendix

A.1 Duplicate-Aware Evaluation for ASTE

Algorithm 1: Pseudocode of duplicate-
aware Micro-F1 evaluation for ASTE.
num_pred = 0 # Count of predicted triplets
num_gold = 0 # Count of gold triplets
num_correct = 0 # Count of correct triplets

# Match predicted and gold triplets
# using set intersection
for sentence in data:

pred_set = set(sentence.pred_triplets)
gold_set = set(sentence.gold_triplets)
correct_set = pred_set & gold_set

num_pred += len(pred_set)
num_gold += len(gold_set)
num_correct += len(correct_set)

# Calculate scores
p = num_correct / num_pred) # Precision
r = num_correct / num_gold) # Recall
f1_score = 2 * p * r / (p + r)

A.2 Additional Hyperparameters
For GAS and Paraphrase models, there are 140M
parameters when using BART-base. When using
T5, there are 220M parameters. For BERT-base
models (GTS, Span-ASTE, RoBMRC), there are
roughly 110M parameters.

A.3 Effect of Sampling Size
For sampling number of sequence m, there are on
average 3.12, 3.45, 3.84 unique triplets sampled for
m = 10, 20, 30 respectively.

A.4 Annotation Guide
This section illustrates the guideline for human an-
notators. This task is a fine-grained sentiment anal-
ysis task where opinion terms, their aspect targets,
and their expressed sentiments should be extracted

Name Value

GPU Model Nvidia A6000
CUDA Version 11.3
Python Version 3.7.12
PyTorch Version 1.11.0
ChatGPT API Cost $110
Generation Sampling Temperature 1.0

Table 7: List of experimental details.

together. Each sample contains one or multiple
sentences which have been tokenized and labeled
with indices. The annotation steps are as follows:

1. Read and understand the text sample and find
out opinion terms as well as aspect target
terms. Note that these terms should be explicit
and the target term should not be a pronoun. If
there is no opinion term or aspect target term,
the sample is marked as “Invalid”.

2. If the sample contains opinion terms and as-
pect target terms, check whether there are
aspect-opinion pairs. If not, the sample should
also be marked as “Invalid”.

3. Determine the expressed sentiment of these
pairs and record the spans of aspect-opinion
pairs and their expressed sentiment in a 3-
tuple format. Note that each sentence can
have multiple triplets.

For example, given a review “The room was
huge but terribly furnished”. We can find two
aspect-opinion pairs (room, huge) with positive sen-
timent and (room, terribly furnished) with negative
sentiment. The triplets of this text sample should
be recorded in this format: ([1], [3], “POS”), ([1],
[5, 6], “’NEG’), where the index of the first token
is 0.

There are several special cases that may make
annotators hard to determine. We give a uniform
guide here:

• Articles such as “the”, “a”, and “an” should
not be included in target terms.

• Separate conjoined terms. For example, “The
bedroom and washroom are big and clean”.
“Bedroom and washroom” should be recorded
as two separate terms “bedroom” and “wash-
room”. Opinion terms “big” and “clean”
should also be separated.
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Domain Average Sample Length POS% NEU% NEG%

Restaurant 16.37 tokens 73.01% 6.75% 20.24%
Laptop 18.36 tokens 57.50% 9.64% 32.86%
Hotel 21.92 tokens 59.25% 11.69% 29.06%
Cosmetics 21.61 tokens 45.68% 25.59% 28.74%

Table 8: More details of our domain-expanded ASTE
dataset. We report the average length of samples and the
percentage of positive (POS%), neutral (NEU%) and
negative (NEG%) triplets respectively.

• It might be hard to determine whether some
adverbs should be included in opinion terms.
We should include these adverbs if they have a
large influence on the sentiment polarity of the
opinion term. For example, “This room is too
big.” The opinion term should be “too big” in-
stead of “big”, since “too” makes the opinion
term express an obvious negative sentiment.

A.5 Detailed Results
A.6 Prompt Templates
To adapt ChatGPT to complex sentiment tasks such
as ASTE, we design several templates based on
previous works in generative ASTE (Zhang et al.,
2021a).

A.7 More Details of Datasets
Table A.7 shows more details of our domain-
expanded ASTE dataset. We can observe that our
annotated hotel and cosmetics domains contain a
larger average sample length and their label distri-
bution is more balanced than previous restaurant
and laptop domains.

A.8 Dataset Examples
Table 9 presents five examples for each domain.
The standard of triplet formulation is the same
across four domains and aspect target terms
are domain-specific, indicating that our domain-
expanded dataset can be well used as a cross-
domain ASTE benchmark.

A.9 Case Study
Table 10 compares predictions of GAS and our
GAS+CAGE method on two examples in two cross-
domain settings. We find both methods show great
performance in determining the sentiment. How-
ever, our method can identify the number of triplets
more correctly, indicating that CAGE can effec-
tively mitigate pseudo-label noise by reducing false
positives and false negatives.
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Domain Example Triplets

Restaurant

The service is awful . (service, awful, negative)
The chicken dinner was real good . (chicken dinner, good, positive)
The food is reliable and the price is moderate . (food, reliable, positive), (price, moderate, neutral)
Staffs are not that friendly , but the taste covers all . (staffs, not that friendly, negative), (taste, covers all, positive)
Prices are in line . (prices, in line, neutral)

Laptop

The keyboard feels good and I type just fine on it . (keyboard, good, positive)
The battery gets so HOT it is scary . (battery, HOT, negative), (battery, scary, negative)
It ’s great for streaming video and other entertainment uses . (streaming video, great, positive), (entertainment uses, great, positive)
This mouse is terrific . (mouse, terrific, positive)
Of course my warranty runs out next month . (warranty, runs out, neutral)

Hotel

The smell was only slightly less prominent in our corner suite at the end of the hallway . (smell, prominent, neutral)
Also , the garbage trucks that frequent the ally are loud . (garbage trucks, loud, negative)
In the morning you can enjoy a free breakfast with many choices . (breakfast, enjoy, positive), (breakfast, free, positive)
The price was reasonable compared to the other options in the area . (price, reasonable, positive)
My fiancé opened the window shades and we had a huge brick wall for a view . (brick wall, huge, neutral)

Cosmetics

It use to be one of the best products in the market . (products, best, positive)
This is a very heavy cover - up that feels heavy on your face . (cover-up, heavy, neutral)
Flimsy is really not a great thing when it ’s 20 bucks . (Flimsy, not a great thing, negative)
I ordered the blonde color , but it really is a little dark . (color, blonde, neutral), (color, dark, neutral)
I love Essie but the formula on this one is awful . (Essie, love, positive), (formula, awful, negative)

Table 9: Dataset examples.

Hotel -> Cosmetics Cosmetics -> Hotel

Example
Though it is more expensive than mass market gels , The rooms were very clean and the staff was very friendly
it does provide higher performance . and helpful especially when it came to ensuring we got on

our buses for tours and our flights back home .

Gold label (performance, higher, positive)
(rooms, clean, positive), (staff, friendly, positive),
(staff, helpful, positive)

GAS prediction
(performance, higher, positive), (rooms, clean, positive),
(gels, expensive, negative) (staff, friendly, positive)

GAS+CAGE prediction (performance, higher, positive)
(rooms, clean, positive), (staff, friendly, positive),
(staff, helpful, positive)

Table 10: Case Study.
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