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Abstract

The NLI4CT task at SemEval-2024 emphasizes
the development of robust models for Natural
Language Inference on Clinical Trial Reports
(CTRs) using large language models (LLMs).
This edition introduces interventions specifi-
cally targeting the numerical, vocabulary, and
semantic aspects of CTRs. Our proposed sys-
tem harnesses the capabilities of the state-of-
the-art Mistral model (Jiang et al., 2023), com-
plemented by an auxiliary model, to focus on
the intricate input space of the NLI4CT dataset.
Through the incorporation of numerical and
acronym-based perturbations to the data, we
train a robust system capable of handling both
semantic-altering and numerical contradiction
interventions. Our analysis on the dataset sheds
light on the challenging sections of the CTRs
for reasoning.

1 Introduction

Over the last decade, Natural Language Processing
(NLP) has seen significant advancements, begin-
ning with the introduction of word embeddings
(Mikolov et al., 2013), followed by transformer
architectures like BERT (Vaswani et al., 2017; De-
vlin et al., 2019), and specialized language models
(LMs) such as BioBERT (Lee et al., 2020) and
PubMedBERT (Gu et al., 2021) tailored for the
biomedical domain. The advent of large language
models (LLMs) like GPT-3 (Brown et al., 2020),
commonly known as Chat-GPT, has further pushed
the boundaries of NLP, showcasing capabilities
in diverse NLP tasks and even reasoning. How-
ever, LLMs adapt to shortcut learning easily in-
stead of understanding the task at hand and resort-
ing to shallow lexical heuristics for making a pre-
diction (Tsuchiya, 2018; Poliak et al., 2018; Naik
et al., 2018). Additionally, we have seen genera-
tive models like Chat-GPT hallucinating, making
false claims, and struggling with providing factual
information (Elazar et al., 2021; Wang et al., 2023).

Tackling these challenges is essential for ensuring
the reliable deployment of large language mod-
els, particularly in critical fields like biomedicine,
where the margin for error must be minimized.

The SemEval-2024 Task 2: Safe Biomedical Nat-
ural Language Inference for Clinical Trials is fo-
cused on improving the understanding and evalu-
ation methodologies for Large Language Models
in clinical Natural Language Inference (NLI) (Jul-
lien et al., 2024). This task targets aspects such
as numerical and quantitative reasoning, domain-
specific terminology, syntax, and semantics. It
aims to analyze models’ robustness, consistency,
and faithfulness in reasoning within the clinical
domain.

Our approach to this task involved leveraging
instruction fine-tuned LLMs along with an aux-
iliary model that focuses on “hard” instances to
develop a more resilient NLI system. “Hard” in-
stances refer to those examples in the dataset where
the model fails. Building on the methodology out-
lined by Kanakarajan and Sankarasubbu (2023),
we assessed the zero-shot performance of various
instruction-tuned LLMs to identify the most effec-
tive model. Upon selecting the best LLM, we intro-
duced an auxiliary module during the fine-tuning
process, which emphasized learning “hard” exam-
ples. Taking inspiration from Korakakis and Vla-
chos (2023), who experimented with various con-
figurations for the auxiliary module and highlighted
its substantial impact on the final NLI system’s
performance, we explored various architectures for
this auxiliary module. To improve the robustness of
the system and address challenges related to numer-
ical reasoning and domain-specific terminology,
we introduced numerical and semantic perturbation
to the NLI4CT dataset and trained our system on
these. Our system ranked 11th in macro F1 score,
12th in Faithfulness, and 19th Consistency out of
31 participants. Our final system struggled when
dealing with semantic-preserving interventions on

682



the test data yet demonstrated strong performance
on semantic-altering interventions.

2 Background

We now provide a description of the shared task,
followed by a brief overview of the NLI4CT
dataset. We then explore existing research, assess-
ing their strengths and limitations while also draw-
ing connections to our proposed method.

2.1 Task and Dataset Description

This task is a continuation from SemEval-2023
Task 7 (Valentino et al., 2023), which introduced
the NLI4CT dataset (Jullien et al., 2023) derived
from Clinical Trial Reports (CTRs) on breast can-
cer. The dataset contains 999 CTRs, each of which
consists of four sections: Eligibility Criteria,
a set of conditions for patients to be allowed to
take part in the clinical trial; Intervention, in-
formation concerning the type, dosage, frequency,
and duration of treatments being studied; Results,
the number of participants in the trial, outcome
measures, units, and the results; and Adverse
Events, signs and symptoms observed in patients
during the clinical trial. The dataset comprises two
types of training instances: single and compari-
son. In the single instances, one section of the
CTR serves as the premise, while a correspond-
ing human-annotated statement is presented as the
hypothesis. On the other hand, in the compari-
son instances, the same section of two CTRs is
utilized, and the hypothesis typically involves a
human-annotated comparative statement between
the two CTRs. Each instance is labeled either en-
tailment or contradiction, with an equal distribu-
tion of proportions between the two labels (more
details in Appendix A.1). A sample instance for
single is shown in Figure 1.

2.2 Related Works

The NLI4CT dataset (Jullien et al., 2023) was in-
troduced in SemEval 2023 Task 7 (Valentino et al.,
2023), where multiple submissions highlighted
the aforementioned challenges associated with lan-
guage models. The second-ranked team from Se-
mEval 2023 Task 7, Saama AI Research (Kanakara-
jan and Sankarasubbu, 2023), initially evaluated
an instruction-tuned LLM in a zero-shot setting.
Subsequently, they fine-tuned the model using the
best instruction with T5 (Raffel et al., 2020) and
Flan-T5-XXL (Chung et al., 2022). Motivated by

Eligibility
DISEASE CHARACTERISTICS:
Histologically confirmed invasive 
breast cancer, ….

CTR ID: NCT00001832

Type: Single
Section_id: Adverse Events
Primary_id: NCT00001832
Statement: Percentage of Left ventricular systolic dysfunction is higher in cohort 1 than cohort 
2.
Label: Entailment

Intervention
INTERVENTION 1: Exemestane,
exemestane: Given orally, .….

Results
Outcome Measurement: Event-free 
Survival,Time frame: 5 years, .....

Adverse Events
Adverse Events 1: LVSD 1/3761 
(0.03%)
Adverse Events 2: LVSD 0/3759 
(0.00%)

Figure 1: A sample instance from the NLI4CT
dataset. Each instance consists of four sections:
Intervention, Eligibility criteria, Results,
and Adverse Events. The data are split into two types:
single (depicted) and comparison. In single, one sec-
tion of the CTR serves as the premise (in this case,
Adverse Events). A human-annotated hypothesis for
this premise is given (Statement), which is then to be
classified into either entailment or contradiction.

their methodology and drawing inspiration from re-
cent advancements, we employed instruction-tuned
LLMs such as Llama (Touvron et al., 2023) and
Mistral (Jiang et al., 2023), which represent state-
of-the-art LLMs. Additionally, building upon the
work of Korakakis and Vlachos (2023), who intro-
duced a learner-auxiliary model framework to en-
hance the robustness of NLI, we aimed to integrate
this framework alongside the use of instruction-
tuned LLMs in our approach.

The challenge of word distribution shift from the
general domain to the biomedical domain has posed
a significant obstacle to the effectiveness of NLP
methods applied to the biomedical field. The preva-
lence of aliases and acronyms in biomedical text
prompted Jin et al. (2019) to propose a model that
automatically collects context for abbreviations
from PubMed abstracts and employs a BiLSTM
classifier for abbreviation expansion. Additionally,
Grossman Liu et al. (2021) presented a Medical Ab-
breviation and Acronym Meta-Inventory1, consti-
tuting a comprehensive database of medical abbre-
viations encompassing 104,057 entries, each linked
to 170,426 corresponding senses. We leveraged
this Meta-Inventory to incorporate acronym-based
perturbations into the NLI4CT dataset. Addition-
ally, we also incorporated a pre-finetuning phase

1https://github.com/lisavirginia/
clinical-abbreviations
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into our approach by fine-tuning on the MedNLI2

dataset (Shivade et al., 2019). This step aims to
familiarize the model with clinical data.

3 System Overview

In light of recent advancements in large language
models and drawing insights from the results
of the SemEval 2023 Task 7 (Valentino et al.,
2023), we implemented the approach outlined
in the work of Kanakarajan and Sankarasubbu
(2023). Our approach involved evaluating state-
of-the-art LLMs, including Mistral (Jiang et al.,
2023), Llama (Touvron et al., 2023), and Lemma
(Azerbayev et al., 2024), alongside their variants.
We experimented with different instructions for
each model and subsequently compared their zero-
shot performance based on their respective best-
performing instruction (see final instruction tem-
plate in Appendix A.3). Mistral emerged as the
top-performing model among all others evaluated
with the highest F1 score (0.69). Furthermore, we
implemented the MinMax algorithm (Korakakis
and Vlachos, 2023) by adding an auxiliary model
alongside the Mistral model to create a more ro-
bust system. This auxiliary model is designed to
amplify the loss incurred in input spaces where the
Mistral model encounters difficulties, effectively
directing its focus towards areas of higher loss. To
further boost the performance of the system, we
pre-finetuned using MedNLI dataset. Additionally,
we conducted an error analysis to identify easy and
difficult instances in the train set to provide a basis
for further research.

4 Experimental Setup

Training an LLM can be both costly and resource-
intensive. However, recent advancements in
methodologies, such as Parameter-Efficient Fine-
Tuning (PEFT), have emerged to reduce the com-
putational cost of fine-tuning (Mangrulkar et al.,
2022). For fine-tuning the Mistral model, we em-
ploy a PEFT method known as Low-Rank Adaption
(LoRA, Hu et al. (2022)). We adopted a similar
approach for implementing the auxiliary model as
described by Korakakis and Vlachos (2023). We
experimented with the parameters of the system to
obtain an optimal architecture, details of which can
be found in Appendix A.5.4.

2https://physionet.org/content/mednli/1.0.0/

4.1 Data Perturbation

Utilizing the Meta-Inventory of Grossman Liu et al.
(2021), we extracted the short forms from 358
NLI4CT hypotheses, resolving them to their corre-
sponding long forms based on the cosine similarity.
This resulted in 352 perturbed instances with con-
sistent labels. Additionally, 181 negative instances
were generated by selecting the least similar long
forms, resulting in a total of 533 new instances for
the acronym-based perturbation. For numerical per-
turbations, we employed an English Named Entity
Recognition model (Raza et al., 2022) trained on
Maccrobat to extract 27 unique biomedical entities
from hypotheses. We perturbed numerical values
and introduced semantic alterations that generated
355 new instances with labels flipped. For more
details, see Appendix A.4.

4.2 Fine-tuning Strategies

We performed various experiments involving dif-
ferent combinations of fine-tuning methodologies.
Initially, we fine-tuned only the Mistral model
(NLI4CT-FT) on NLI4CT without incorporating
the auxiliary model. An extension of this initial
setup involved N-step fine-tuning, where, for ex-
ample, in a two-step fine-tuning approach, we first
fine-tuned the model with the MedNLI dataset and
subsequently fine-tuned it further with the NLI4CT
dataset (MEDNLI-FT-NLI4CT). We proceeded to
add more steps by fine-tuning on perturbated
datasets, such as the acronym-perturbed dataset
(MEDNLI-NLI4CT-FT-ACR) or the numerically-
perturbed dataset (MEDNLI-NLI4CT-FT-NUM).
The MinMax algorithm requires that the base
model be trained for a few epochs or steps. We uti-
lized the best-performing models from previous N-
step experiments to adapt this strategy effectively.
This way, we already have a model that is trained
on the dataset and add the auxiliary model to en-
hance the robustness of the whole system. Details
of all the models that we fine-tuned with different
strategies can be found Appendix A.2.

4.3 Evaluation Strategies

In our initial experiments, we observed that Mistral
7B exhibited superior performance compared to
Mistral Instruct 7B post-fine-tuning. Consequently,
we primarily trained most models using Mistral 7B.
However, during the evaluation phase, we attached
the PEFT fine-tuned adapter with both Mistral and
Mistral Instruct 7B to compare their results. To sta-
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Model Dev F1 Test F1 Consistency Faithfulness

NLI4CT-FT 0.69 0.74 0.68 0.75
NLI4CT-FT-ACR 0.73 0.76 0.67 0.71
MEDNLI-FT-NLI4CT 0.75 0.75 0.68 0.78
MEDNLI-FT-NLI4CT-ACR-NUM 0.75 0.74 0.68 0.78
MEDNLI-NLI4CT-FT-ACR 0.74 0.75 0.67 0.74
MEDNLI-NLI4CT-FT-NUM 0.74 0.73 0.69 0.79
MEDNLI-NLI4CT-FT-ACR-NUM 0.75 0.76 0.70 0.75
MINMAX-MEDNLI-FT-NLI4CT 0.75 0.75 0.68 0.82
MINMAX-MEDNLI-FT-NLI4CT-BC 0.77 0.75 0.68 0.78
MINMAX-MEDNLI-NLI4CT-FT-ACR-NUM-BC 0.74 0.74 0.68 0.75

Table 1: Final results on the NLI4CT dataset. Dev F1 and Test F1 represent the macro F1 score on the development
and test set, respectively. Consistency measures the ability to predict same labels for semantic preserving interven-
tions and Faithfulness measures the ability to correctly change the labels for semantic altering interventions. Both
Consistency and Faithfulness results are on the test set.

bilize the model’s generation behavior, we conduct
evaluations on the development set five times and
select the label predicted most frequently across
these five runs. Similarly, for test data, we perform
three runs.

5 Results

During both the fine-tuning and evaluation phases,
we observed improvements in the model trained
with the MinMax algorithm compared to other
models. From Table 1, we can see the model
(MINMAX-MEDNLI-FT-NLI4CT-BC) trained with
the MinMax algorithm achieved the highest F1

score on the dev set. When comparing the
base model (MEDNLI-FT-NLI4CT) with the Min-
Max model (MINMAX-MEDNLI-FT-NLI4CT), we
noted a slight improvement in Consistency and
a significant improvement in Faithfulness. Al-
though the F1 score did not exhibit improve-
ment, the enhancements in the other metrics in-
dicate that the MinMax algorithm contributed to
the development of a more robust system and
was able to handle the semantically altering in-
tervention much better. Regarding the mod-
els trained with perturbed data, we observed a
negative effect on the overall performance of
the MinMax-trained model (MINMAX-MEDNLI-
NLI4CT-FT-ACR-NUM-BC) compared to the base
model (MEDNLI-NLI4CT-FT-ACR-NUM). For our
final submission to the leaderboard, we submit-
ted the MinMax model (MINMAX-MEDNLI-FT-
NLI4CT), which ranked 11th in macro F1 score,
12th in Faithfulness, and 19th in Consistency.

5.1 Impact of Data Perturbation
To assess the impact of acronym-based perturbed
data, we initially trained the model using the origi-

nal NLI4CT dataset and subsequently fine-tuned it
with the acronym-based data. Evaluation of both
models was conducted on the test data, which com-
prise the following intervention types introduced
by the task’s organizers: Control, Contrast, Para-
phrase, Contradiction, Numerical Contradiction,
Numerical Paraphrase, and Definitions. For access-
ing a model trained on acronym-based perturbed
data, we look at the metrics for the intervention
types Paraphrase (Para) and Definitions. Table 4 in
Appendix A.4.3 shows that acronym perturbation
notably enhanced results for the intervention-type
Definitions. Similarly, with numerical-based per-
turbation, we look at metrics for intervention-type
Numerical Paraphrase (Num_Para) and Numeri-
cal Contradiction (Num_Cont). While no changes
were observed in the results of semantic-altering
interventions, there was some improvement noted
in semantic-preserving interventions. Lastly, we
investigated the combined impact of both perturba-
tions and their influence on all four interventions.
Overall, we observed that combined fine-tuning im-
proved the Definition and Paraphrase intervention
type more than the Numerical intervention types.
However, there was a negative impact observed on
semantic-altering numerical interventions.

5.2 Performance across Interventions and
Sections

Table 5 in Appendix A.6 presents the results of the
test data across various interventions and sections.
The Adverse Events section exhibits the highest
F1 score at 0.73, whereas the Eligibility sec-
tion demonstrates the lowest score at 0.66. In terms
of interventions, Numerical_contradiction achieves
the highest score at 0.93, while Definition attains
the lowest at 0.63. Among the interventions fea-
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turing both labels, Paraphrase achieves the highest
performance with an F1 score of 0.72. Moreover, it
is the only intervention type that achieves a higher
score for entailment. Conversely, all other sections
and interventions exhibit better performance for the
contradiction label.

6 Error Analysis

To understand the model’s behavior across differ-
ent sections, interventions, and labels/relations, we
examined the dataset.

6.1 Dataset Difficulty
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Figure 2: Weight distribution of NLI4CT data instances
generated by the auxiliary model after 3 epochs of train-
ing. Lower weights correspond to easy examples, and
higher weights correspond to hard examples.

One application of the MinMax algorithm is its
capability to classify data points into hard and easy
examples. Figure 2 illustrates the weight distri-
bution of data instances from the auxiliary model
after three epochs of training. Data instances with
higher weights represent hard examples, where
the model incurs a high loss, while instances with
lower weights denote easy examples.

Following the data cartography procedure out-
lined in Swayamdipta et al. (2020), we replicated
their method using the best MinMax model trained
for three epochs. We collected probability values
for the gold label on each epoch and calculated
confidence, variability, and correctness values. In
Figure 3, the upper region with red data points rep-
resents easy-to-learn instances, while the bottom
region with blue data points represents hard-to-
learn examples. Data points with high variability
are depicted as ambiguous examples.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
Correctness

Variability

C
on

fid
en

ce

easy-to-learn

hard-to-learn

ambiguous

Figure 3: Data map for the NLI4CT dataset following
(Swayamdipta et al., 2020).

6.2 Analysis of Easy and Hard Samples

We conducted a comparison between the two
dataset difficulty methodologies by extracting easy
and hard examples from both strategies. We found
322 instances common to both strategies as easy
examples or easy-to-learn instances. As for hard
examples or hard-to-learn examples, there were 96
instances common to both. We performed a three-
level analysis using these instances, especially the
hardest ones, to understand the in-depth dataset
difficulty and the model’s behavior.

First, we looked at the structural level of the
dataset concerning these instances and found that
instances focusing on the Eligibility section
were identified as the most easy-to-learn for the
model, whereas those targeting Adverse Events
proved challenging. Additionally, learning the con-
tradiction relation was more difficult than entail-
ment (see Table 7). Next, we compared the word
overlap between the premise and hypothesis of the
easy and hard examples. We found that the word
overlap was higher in the easy examples compared
to the hard examples. Furthermore, the easy ex-
amples exhibited a higher frequency of entailment
relations, suggesting that the model might have es-
tablished a correlation between word overlap and
entailment relations (see Figure 4). One potential
solution to mitigate this issue could involve per-
turbing the instances with high word overlap by
introducing synonyms into the dataset.

Combining observations from these analyses pro-
vides some interesting insights. As previously dis-
cussed in 5.2, the results from the test data reveal
that the Eligibility section obtained the lowest
F1 score, while Adverse Events performed the
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Figure 4: Word overlap between the hypothesis and the premise in the easy and the hard examples.

best. Given that the instances of the Eligibility
section in the training set were easy to learn, it is
plausible that the model did not learn many features
from this section. Conversely, as the instances of
Adverse Events were more challenging to learn,
the model likely attempted to extract more features
from this section. A similar rationale can also be
applied to the entailment and contradiction rela-
tion. However, another factor contributing to the
higher scores on the contradiction relations in the
test data could be the greater number of the true
contradiction relations.

Finally, we manually analyzed the ten most diffi-
cult examples. We discovered that the predominant
error made by the model involved the confusion
between the cohorts and the trials. Specifically,
the instances that involve a comparison between
two trials, each comprising two cohorts, often led
the model to misinterpret the second cohort of the
first trial as the secondary trial. Overall, the model
struggled with numerical reasoning, particularly
in scenarios involving numerous variables that re-
quire calculations. More details on the analysis of
dataset difficulty can be found in Appendix A.8.

7 Conclusion

In this study, we introduced a large language model-
based system designed to address the natural lan-
guage inference task through text generation. Our
approach prioritized model robustness, which was
achieved by incorporating an auxiliary model that
directs the LLM to focus on challenging instances

in the input space. Moreover, we enhanced the
system’s robustness against adversarial samples
by introducing numerical and semantic perturba-
tions to the NLI4CT dataset during training. Our
findings revealed the system’s superior robustness
against semantic-altering interventions compared
to semantic-preserving ones. Additionally, through
dataset analysis, we identified instances targeting
the Eligibility section in Clinical Trial Reports
as the the easiest to learn but more challenging
to predict accurately. Conversely, the Adverse
Events section posed greater difficulty in learn-
ing but was relatively easier to predict accurately.
These findings offer valuable insights for future
research on improving the robustness by focusing
more on challenging sections of CTRs.
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A Appendix

A.1 Dataset Statistics
We highlight the basic statistics of the NLI4CT
dataset in Table 2.

A.2 Descriptions of the Fine-tuned Models
We implemented various fine-tuning strategies
across multiple models. Below, we provide de-
scriptions for each of these models:

• NLI4CT-FT: Mistral-7B model fine-tuned on
the NLI4CT dataset.

• MEDNLI-FT: Mistral-7B model fine-tuned
on the MEDNLI dataset.

• NLI4CT-FT-ACR: NLI4CT-FT model fine-
tuned on acronym based perturbations.

• MEDNLI-FT-NLI4CT: MEDNLI-FT fine-
tuned on the NLI4CT dataset.

• MEDNLI-FT-NLI4CT-ACR-NUM:
MEDNLI-FT fine-tuned simultaneously on
the NLI4CT dataset, acronym and numerical
perturbations.

• MEDNLI-NLI4CT-FT-ACR: MEDNLI-FT-
NLI4CT model fine-tuned on acronym pertur-
bations.

• MEDNLI-NLI4CT-FT-NUM: MEDNLI-FT-
NLI4CT model fine-tuned on numerical per-
turbations.

• MEDNLI-NLI4CT-FT-ACR-NUM:
MEDNLI-FT-NLI4CT model fine-tuned
on acronym and numerical perturbations
simultaneously.

• MINMAX-MEDNLI-FT-NLI4CT:
MEDNLI-FT fine-tuned using Mistral-
7B and the auxiliary model on the NLI4CT
dataset.

• MINMAX-MEDNLI-FT-NLI4CT-BC:
MEDNLI-FT fine-tuned using Mistral-7B and
the auxiliary model on the NLI4CT dataset
using the best configuration obtained from
hyperparameter tuning.

• MINMAX-MEDNLI-NLI4CT-FT-ACR-
NUM-BC: MINMAX-MEDNLI-FT-NLI4CT
fine-tuned using Mistral-7B and the aux-
iliary model on acronym and numerical

Figure 5: Final design for prompting.

perturbations simultaneously using the best
configuration obtained from hyperparameter
tuning.

A.3 Final Instruction Template

After running experiments with different prompt
formats, we finalized the template as shown in Fig-
ure 5. Instead of directly tackling the NLI task,
we frame it as a text generation problem. We be-
gin by giving general instructions, which describe
the task to be performed. The next two sections
of the prompt consist of the premise, providing
context for the task, and the hypothesis presented
as a question. The model is then trained to gen-
erate either “Yes” for an entailment relationship
between the premise and hypothesis or “No” for a
contradiction. While fine-tuning our model with
the MedNLI dataset, we only utilized entailment
and contradiction instances, excluding those la-
beled as neutral, to ensure consistency with the
NLI4CT dataset.

A.4 Data Perturbation Details

In Table 3, we show full statistics of data perturba-
tion on NLI4CT dataset. In the following section,
we describe the data perturbation methodology.

A.4.1 Acronym Based Perturbations
We utilized a Medical Abbreviation and Acronym
Meta-Inventory (Grossman Liu et al., 2021) con-
taining short forms (SF) and corresponding long
forms (LF) commonly used in the biomedical do-
main. With regular expressions, we extracted short
forms present in the hypotheses of the NLI4CT
dataset, resulting in 358 hypotheses. Given that
the meta-inventory often includes multiple long
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Data No of Samples Type Section Label

Count Intervention Eligibility Adverse Events Results contradiction entailment

Train 1700 single 1035 155 317 309 254 502 533
comparison 665 241 169 187 68 348 317

Dev 200 single 140 26 44 32 38 70 70
comparison 60 10 12 20 18 30 30

Test 5500 single 2553 784 468 523 778 1703 850
comparison 2947 758 951 781 457 1956 991

Table 2: NLI4CT statistics.

Data No of Samples Type Section Label

Count Intervention Eligibility Adverse Events Results contradiction entailment

ACR 533 single 357 67 103 20 167 178 179
comparison 176 46 70 53 7 93 83

NUM 355 Single 268 51 67 39 111 267 1
comparison 87 24 25 31 7 86 1

Table 3: Statistics for Acronym the (ACR) and Numerical (NUM) based perturbed dataset across different sections,
labels, and instance types.

forms for a single short form we computed the
cosine similarity between the short forms in the
hypotheses and their corresponding long forms in
the meta-inventory. For each unique short form
identified in the hypotheses, we determined the
most similar long form and manually verified its
correctness within the context of the hypothesis.
Subsequently, we resolved the short forms in the
format: ‘SF (LF)’. This process yielded 352 per-
turbed instances with consistent inference labels.
Such perturbations are intended to assist models
in avoiding potential confusion by ensuring that
short forms are resolved, even when their corre-
sponding long forms are present in the premise.
Likewise, for each unique short form, we identified
the least similar long form and generated a nega-
tive instance following the same format as before.
This process resulted in approximately 181 new
negative instances, where labels were flipped. Con-
sequently, when combining both acronym-based
perturbations, we created a total of 533 new in-
stances.

A.4.2 Numerical Perturbation
The Math Word Problem (MWP) task has been
introduced in NLP to enhance models’ numeri-
cal reasoning capabilities (He-Yueya et al., 2023;
Yao et al., 2023). Within our dataset, numerous
instances involve comparisons of numerical enti-
ties, which inherently qualify as MWPs. To aug-
ment these instances, we introduce noise to the
numerical entities in various forms. Utilizing an
English Named Entity Recognition model (Raza

et al., 2022) trained on Maccrobat, specifically tai-
lored for biomedical entities (107 entities), we ex-
tracted 27 unique entities from the hypotheses. Our
focus was on identifying entities that can alter the
hypothesis’s meaning concerning numerical rea-
soning, such as Age, Dosage, Lab_value, Duration,
and Date. For numerical values associated with
these entities, we applied basic mathematical op-
erations like addition or subtraction. Additionally,
words comparing these numerical entities were re-
placed with their opposites; for example, ‘lower’
was substituted with ‘higher’, and ‘more than a
week’ was replaced with ‘less than a week’, and so
forth. This process resulted in a total of 355 new
perturbed instances, each with its label flipped.

A.4.3 Data Perturbations Results
Table 4 presents results for various interventions
introduced in test data. Base in the table refers to
MEDNLI-FT-NLI4CT.

A.5 Model and Experiment Details

We provide information regarding the models, the
minmax algorithm, and experiments.

A.5.1 Mistral 7B and Mistral Instruct 7B
Mistral 7B, as the name suggests, has 7 billion pa-
rameters and stands out as a language model engi-
neered for exceptional performance and efficiency.
Central to its architecture are the grouped-query
attention (Ainslie et al., 2023) and sliding window
attention mechanisms (Child et al., 2019; Beltagy
et al., 2020). Mistral models demonstrate remark-
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Model F1 Faithfulness Consistency

Def Para Num_Para Num_Cont Def Para Num_Para Num_Cont

Base 0.42 0.72 0.54 0.88 0.59 0.72 0.68 0.90
Base + ACR 0.49 0.73 0.59 0.82 0.61 0.71 0.68 0.88
Base + NUM 0.46 0.73 0.56 0.88 0.60 0.72 0.68 0.91
Base + ACR + NUM 0.58 0.73 0.58 0.83 0.64 0.72 0.68 0.90
MinMax + ACR + NUM 0.51 0.73 0.56 0.83 0.62 0.71 0.68 0.88

Table 4: Acronym (ACR) and Numerical (NUM) perturbed dataset results

able adaptability and consistently outperform coun-
terparts like Llama-13B. Moreover, the ease with
which Mistral can be fine-tuned is evidenced by the
Mistral Instruct 7B version, which is fine-tuned on
publicly available instruction datasets and achieves
a significant performance boost over the base ver-
sion. Utilizing the capabilities of Mistral mod-
els, we fine-tuned both versions of the models on
NLI4CT through a series of experiments aimed at
determining the optimal version for final system
development. Details of the Mistral models are
shown in Table 6.

A.5.2 Low Rank Adaption
LoRA operates by freezing the weights of the pre-
trained model and introducing trainable rank de-
composition matrices into each layer of the Trans-
former architecture. This strategy significantly re-
duces the number of trainable parameters for down-
stream tasks, leading to lower memory usage and
accelerated fine-tuning speed. We utilize the Hug-
gingFace implementation of PEFT, which incor-
porates LoRA configurations to initialize LoRA-
based fine-tuning of the Mistral model. By ap-
plying LoRA, we were able to reduce the num-
ber of training parameters from 3,837,112,320 to
85,041,152 (2.22% of the total), which are subse-
quently optimized using the AdamW optimizer.

A.5.3 MinMax Algorithm
Beyond solely relying on the Mistral model, we
introduced an auxiliary model into the fine-tuning
process following the implementation of the Min-
Max algorithm introduced by Korakakis and Vla-
chos (2023) to enhance the model’s robustness in
NLI training. This auxiliary model is designed to
amplify the loss incurred in input spaces where the
Mistral model encounters difficulties, effectively
directing its focus towards areas of higher loss. The
objective function for training is defined as:

J(θ, ϕ) = min
θ

max
ϕ

1

n

n∑

i=1

gϕ(xi, yi)·L(fθ(xi), yi)

Here, θ denotes the mistral model parameters
while ϕ denotes the auxiliary parameters that
are optimized using standard optimization meth-
ods. L(fθ(xi), yi) is the cross entropy loss and
gϕ(xi, yi) generates weights for each instance in
the range (0,1).

A.5.4 Experiment Details

Here we provide the parameters used in our experi-
ments for both the base and auxiliary models. For
the base Mistral model, we used a LoRA configu-
ration with the following parameters:

rank: 32
lora_alpha: 64
target_modules: [ q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj, down_proj,
lm_head ],
lora_dropout: 0.05

Parameters for fine-tuning mistral and auxiliary
models are as follows:

Mistral:
learning_rate: 3.3e-5
batch_size: 4
number_of_epoch: 1
max_steps: 1000

Auxiliary:
learning_rate: 5.8e-3
hidden_size_1: 1024
hidden_size_2: 64

Further system training and hyperparameter tun-
ing details can be found at https://github.com/
Bhuvanesh-Verma/RobustLLM

A.6 Results of Best Model with respect to
Interventions and Sections

We examined the results on test data across various
sections and interventions. Table 5 indicates that
the Adverse Event section and Numerical Contra-
diction interventions yield the best performance.
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Type No of Samples F1 Score

entailment contradiction macro avg

Section

Intervention 1542 0.58 (512) 0.75 (1030) 0.67
Eligibility 1419 0.58 (485) 0.73 (934) 0.66
Results 1235 0.58 (405) 0.80 (830) 0.69

Adverse Events 1304 0.65 (439) 0.81 (865) 0.73

Intervention

Contradiction 1500 0 (0) 0.84 (1500) 0
Numerical_contradiction 276 0 (0) 0.93 (276) 0
Numerical_paraphrase 224 0.58 (91) 0.74 (133) 0.66

Paraphrase 1500 0.73 (750) 0.70 (750) 0.72
Text_appended 1500 0.57 (750) 0.70 (750) 0.63

Table 5: Intervention and Section-based results on test data using best model across both labels. Along with the F1

score we also show number of instances.

Model Token Length Mode Dev F1

Mistral-7B-v0.1 1024 Remove 0.71
Mistral-7B-v0.1 1024 Truncate 0.72
Mistral-7B-v0.1 2048 Remove 0.72
Mistral-7B-v0.1 2048 Truncate 0.73

Table 6: Impact of different token length and strategy
for handling long text

A.7 Handling Long Premise-Hypothesis Pairs

One of the challenges of processing CTRs is their
extensive length when paired up to form a premise-
hypothesis pair. The Mistral model allows for to-
ken lengths of up to 4096. We experimented with
different token lengths to see how they impacted
the model’s performance. We trained models with
token lengths of 1024 and 2048 and evaluated their
performance on the dev set. From Table 6, we can
see that increasing token length improved the re-
sults. We also tested the impact of truncating or
removing text if it exceeded the token length. We
observed that removing long text had a slight nega-
tive impact on the performance of the model. We
used a token length of 4096 for our system devel-
opment, with a truncation strategy in place for text
that exceeds the token length limit.

A.8 Dataset Difficulty Analysis Details

For the MinMax weights approach, we first cal-
culated the mean weight of correctly predicted in-
stances. Every correctly predicted instance with a
weight lower than the mean weight was selected
as an easy instance (670). Similarly, for incor-
rectly predicted instances, we calculated their mean
weight. Every incorrectly predicted instance with a

weight higher than the mean weight was selected
as a hard example (190).

With the data cartography strategy, we calcu-
lated the mean confidence for correctly predicted
instances. Every instance with a confidence higher
than the mean confidence was considered an easy-
to-learn example (666). Similarly, every incorrectly
predicted instance with a confidence lower than the
mean confidence of incorrectly predicted instances
was considered hard to learn (179).

Furthermore, we manually examined four ex-
amples, two from each method Minmax and data-
cartography labeled as most hard or difficult to
learn. Three out of the four examples target the
Adverse Events section, with one targeting the Re-
sults section. Notably, all four examples involved
numerical reasoning, suggesting that the model still
struggles with numerical reasoning despite demon-
strating promising results on numerical interven-
tions in the test data. For more details, see Table 7.

A high overlap between the premise and hypoth-
esis can lead to incorrect predictions of entailment
relations, while low overlap can result in incor-
rect contradiction (Naik et al., 2018). Analysis
of the hard examples in Figure 6 revealed that in-
stances with high overlap predominantly belong to
contradiction relations, however, were incorrectly
predicted as entailment relations by the model.
This phenomenon could be attributed to the model
associating higher word overlap with entailment
relations, as evidenced by the easy examples in
Figure 6. However, such a correlation was not
observed in the low word overlap region.

Using our trained model (MINMAX-MEDNLI-
FT-NLI4CT), we generated explanations alongside
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Difficulty Type Section Label

Count Intervention Eligibility Adverse Events Results contradiction entailment

Easy single 234 50 132 8 44 61 173
comparison 88 44 37 1 6 29 59

Hard single 59 3 3 36 17 50 9
comparison 37 11 4 20 2 29 8

Easy-MinMax single 433 75 225 21 112 99 334
comparison 237 112 93 5 27 66 171

Hard-MinMax single 102 9 9 60 24 83 19
comparison 88 17 10 54 7 66 22

Easy-DataCartography single 465 88 155 128 94 233 232
comparison 201 95 45 41 20 132 69

Hard-DataCartography single 108 13 27 39 29 76 32
comparison 71 24 24 21 2 46 25

Table 7: Frequency of easy and hard examples across sections, instance type, and labels as identified by MinMax
and data cartography methods. We also present combined results that is, the instances which are labeled easy and
hard by both methods (Difficulty: Easy and Hard).

Figure 6: Word overlap between hypothesis and premise with respect to true labels in Hard examples (on the right)
and Easy examples (on the left).

responses for each of these ten instances by increas-
ing the number of generated tokens during the in-
ference 3. As outlined in the work of Swayamdipta
et al. (2020), hard examples with low confidence
scores may suggest mislabeled instances. We show
two of these potential mislabeled instances in the
Appendix A.9. Similarly, we also show the in-
stances where the model confused cohorts and tri-
als in Appendix A.10.

3This part was added after the first submission.
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<s>### Instruction: Read the input text and answer the following question with Yes or
No.

### Input:
Primary trial evidence are Outcome Measurement: Number of Participants With Objective
Response Based on Data Review Committee's Assessment Number of participants with
objective response based on assessment of confirmed complete response (CR) or
confirmed partial response (PR) according to Response Evaluation Criteria in Solid
Tumors version 1.0 (RECIST). CR is defined as disappearance of all target and
non-target lesions. PR is defined as 30% decrease in sum of the longest dimensions
(LDs) of the target lesions taking as reference the baseline sum LD according to
RECIST. Confirmed responses are those that persist on repeat evaluation 4 weeks after
initial documentation of response. Time frame: Day 1 of Cycle 2, every 6 weeks after
Cycle 2, and at the end of Cycle 8.Results 1: Arm/Group Title: SUNITINIB+CAPECITABINE
Arm/Group Description: Sunitinib was administered orally from Day 1 at the starting
dose of 37.5 mg/day on a continuous daily dosing schedule in 21-day cycles.
Capecitabine was administered orally from Days 1 to 14 every 21 days at a starting
dose of 2,000 mg/m^2/day. Participants were monitored for toxicity, and sunitinib
and/or capecitabine dosing could be interrupted or reduced according to individual
tolerance. Participants with progressive disease (PD) or intolerable toxicity were
considered for discontinuation from the study. Overall Number of Participants
Analyzed: 63 Measure Type: Number Unit of Measure: participants Total Number of
Participants with CR+PR: 19 Complete Response (CR): 0 Partial Response (PR): 19

Question: Does this imply that on assessment 0 the primary trial Participants had a
confirmed disappearance of all target and non-target lesions.?

### Response: No

Annotated Label: Entailment

<s>### Instruction: Read the input text and answer the following question with Yes or
No.

### Input:
Primary trial evidence are INTERVENTION 1: Moderated Group one 12-week online support
group led by a professional healthcare providerINTERVENTION 2: Non-facilitated
(Peer-led) 12-week online support in a peer-led format Secondary trial evidence are
INTERVENTION 1: Sentinel Lymph Node Biopsy With Radiolabeled Methylene Blue One arm
diagnostic using 1 mCi of 125-I Methylene blue dye to find sentinel lymph nodes

Question: Does this imply that Neither the primary trial or the secondary trial use
Low Dose Magnesium Oxide, Biopsies or Mometasone in their intervention.?

### Response: Yes

Annotated Label: Contradiction

A.9 Potential Mislabeled Instances
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### Instruction: Read the input text and answer the following question with Yes or No.

### Input:

Primary trial evidence are Adverse Events 1: Total: 4/42 (9.52%) Perforation, GI 1/42

(2.38%) Febrile neutropenia 1/42 (2.38%) Syncope 1/42 (2.38%) Rash/desquamation 1/42

(2.38%)

Question: Does this imply that 1/42 patients in cohort 2 of the primary trial

fainted.?

### Response: Yes

Annotated Label: Contradiction

### Instruction: Read the input text and answer the following question with Yes or No.

### Input:

Primary trial evidence are Adverse Events 1: Total: 267/744 (35.89%) Neutropenia

*2/744 (0.27%) Anaemia *1/744 (0.13%) Leukopenia *1/744 (0.13%) Thrombocytopenia

*1/744 (0.13%) Thrombotic thrombocytopenic purpura *1/744 (0.13%) Atrial flutter

*1/744 (0.13%) Cardiac arrest *1/744 (0.13%) Myocardial ischaemia *1/744 (0.13%)

Arrhythmia *0/744 (0.00%) Cardiac failure congestive *0/744 (0.00%)Adverse Events 2:

Total: 67/736 (9.10%) Neutropenia *1/736 (0.14%) Anaemia *0/736 (0.00%) Leukopenia

*0/736 (0.00%) Thrombocytopenia *0/736 (0.00%) Thrombotic thrombocytopenic purpura

*0/736 (0.00%) Atrial flutter *0/736 (0.00%) Cardiac arrest *0/736 (0.00%) Myocardial

ischaemia *0/736 (0.00%) Arrhythmia *2/736 (0.27%) Cardiac failure congestive *1/736

(0.14%) Secondary trial evidence are Adverse Events 1: Total: 6 Atrial fibrillation

1/67 (1.49%) Ventricular fibrillation 1/67 (1.49%) Gastrointestinal perforation 1/67

(1.49%) Periproctitis 1/67 (1.49%) General physical health deterioration 1/67 (1.49%)

Escherichia sepsis 1/67 (1.49%) Pneumonia 1/67 (1.49%) Tumour pain 1/67 (1.49%) Renal

failure acute 1/67 (1.49%) Pleurisy 1/67 (1.49%)

Question: Does this imply that The most common adverse events in the primary trial and

the secondary trial is Neutropenia with a total of 3 cases across all cohorts.?

### Response: No

Annotated Label: Entailment

A.10 Cohorts and Trial Confusion
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