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Abstract

This paper outlines the approach of the ISDS-
NLP team in the SemEval 2024 Task 10: Emo-
tion Discovery and Reasoning its Flip in Con-
versation (EDiReF). For Subtask 1 we obtained
a weighted F1 score of 0.43 and placed 12 in
the leaderboard. We investigate two distinct ap-
proaches: Masked Language Modeling (MLM)
and Causal Language Modeling (CLM). For
MLM, we employ pre-trained BERT-like mod-
els in a multilingual setting, fine-tuning them
with a classifier to predict emotions. Exper-
iments with varying input lengths, classifier
architectures, and fine-tuning strategies demon-
strate the effectiveness of this approach. Addi-
tionally, we utilize Mistral 7B Instruct V0.2,
a state-of-the-art model, applying zero-shot
and few-shot prompting techniques. Our find-
ings indicate that while Mistral shows promise,
MLMs currently outperform them in sentence-
level emotion classification.

1 Introduction

Task 10 from SemEval 2024 competition (Kumar
et al., 2024) addresses the complex challenge of
identifying the emotions within dialogues (English
and Hindi). This task comprises two primary ob-
jectives: firstly, assigning an emotion label to each
utterance within a dialogue, and secondly, discern-
ing the trigger utterance or utterances responsible
for an emotion-flip within the dialogue (Kumar
et al., 2022). Emotions play a crucial role in hu-
man interaction and one can understand more from
a text if one knows the underlying sentiment of
the writer. In contexts where disagreements may
arise, such as customer service platforms, virtual
assistant chats or forums, identifying trigger utter-
ances for emotion flips can help mediate conflicts
and prevent escalation. A chatbot dealing with an
angry customer would benefit from knowing how
to speak in order to generate empathetic responses.
If it knows that the chatbot’s current sentence can

trigger an emotion flip from neutral to anger, the
chatbot should refine it, or if the emotion flip is
from anger to joy, the chatbot should be more con-
fident in such a response in the future.

Both types of models we tried for Subtask 1 were
based on transformers. The first one used BERT-
like models and we achieved the best accuracy with
them, while the second one is a state of the art
causal model (Mistral, (Jiang et al., 2023)) that
was tested in zero-shot and few-shot settings with
poorer results.

Although in the first task our system worked
well, placing 12th in the leaderboard, the other 2
tasks were much harder and we placed 14th on
the second subtask. We believed that with a better
strategy to prevent overfitting (like under or over-
sampling), our system would have improved. Our
code is open source and available to use on GitHub.

2 Background

The competition had 3 subtasks explained in Fig-
ure 1 and we participated in all of them with the
best results on subtask 1 where we placed 12th with
an F1 score of 0.43.

Figure 1: Three sub-tasks explained

2.1 Dataset

The dataset contains English and Hindi code-mixed
conversations for Subtask 1 and 2 and English only
conversations for Subtask 3 (Table 1). The dataset
is quite small, except for the training dataset for
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Table 1: Datasets sizes used in this competition by tasks.

Subtask 1 Subtask 2 Subtask 3

Train 8506 98777 35000
Dev 1354 7462 3522
Test 1580 7690 8642

Subtask 2 and 3. If we were to combined them for
Subtask 1, our F1 score would reach 0.97, but it
wasn’t allowed. This fact shows that with more
data our model would do really well. The dataset
is based on MELD, a known emotion recognition
dataset, which was then augmented with triggers
for the emotion-flip task.

There were 8 distinct emotions to predict: neu-
tral, anger, surprise, fear, joy, sadness, disgust, and
contempt. By far the most predominant emotion is
neutral, followed by joy and anger (Figure 2). If
we look at Subtask 2, most often the emotion flips
are from neutral to joy or anger (Figure 3).

Figure 2: Emotion Distribution Comparison between
Task 2 and Task 3

Figure 3: Task 2: Emotion-flip counts

2.2 Previous Work

Since the release of the first small datasets for emo-
tion recognition in 1992 (Ekman, 1992), the field
has evolved substantially, marked by significant
contributions from big companies in the form of
extensive datasets (Demszky et al., 2020). In the be-
ginning, lexicon based methods were used in which
there was a manually curated dictionary which asso-
ciates words with specific emotions. The algorithm
was simply picking the most expressed emotion
according to the dictionary. This method had se-
vere limitations because it was ignoring context,
sentence structure and negations which can flip a
sentiment. Today, state of the art models are based
on transformer architecture and use either Masked
Language Modelling (BERT based models (Devlin
et al., 2018)) or Causal Modelling (GPT (Brown
et al., 2020)) which can capture dependencies and
nuances missed by word-level approaches.

While traditional emotion recognition tasks are
well-established, research on emotion flip recogni-
tion is still in its early stages because it is a new task
within the field of emotion analysis. Research (Ku-
mar et al., 2021) has found that a transformer based
classifier with 6 encoder layer (EFR-TX) works
well, obtaining an F1 score of 40 when trained on
MELD-FR dataset and tested on IEMOCAP-FR
dataset.

3 System overview

We tried two approaches, both of them based on
transformer architecture: Masked Language Mod-
elling and Casual Modelling. We chose these two
architectures because of their recent successes in
NLP.

3.1 Masked Language Modelling

We used pre-trained BERT-like models in a mul-
tilingual setting so that it can tokenise Hindi sen-
tences. These pre-trained models will give us the
features from sentences and then we pass them
through a classifier which will do the prediction for
each task Figure 4.

Figure 4: Model architecture
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3.1.1 Input
Analysis of dialogue sentences reveals a predom-
inantly short length, with a sharp decline in fre-
quency after 30 tokens (see Figure 5). To optimize
performance, various maximum sequence lengths
were tested, with 55 tokens yielding the best results
(Figure 6). Data preprocessing, (such as lemmati-
zation, removing punctuation or stopwords) didn’t
help the model learn better so we kept the input as
is. Probably this is because punctuation and stop-
words contain useful information that the models
is able to learn.

Figure 5: Distribution of utterances lengths.

Figure 6: Best model score with different maximum
utterances lengths.

3.1.2 Output
Selecting the optimal hidden state layer is cru-
cial for leveraging the pre-trained model’s results.
Our experiments demonstrated that using the final
layer’s output yielded the strongest performance,
with accuracy declining in earlier layers. For MLM-
type models, the [CLS] token encodes the features,
which is what we pass to our classification layer.

Among various classifiers tested (Table 2), fully
connected layers excelled, likely due to their ability
to model complex, non-linear relationships. The
top-performing model employed a fully connected

Table 2: Test scores of different classifiers.

Classifier Extra features Score

Fully Connected Dropout(0.5) 0.43
Fully Connected Dropout(0.7) 0.42
Fully Connected Dropout(0.2) 0.40
Fully Connected - 0.40
RandomForest - 0.23

LogisticRegression - 0.21
KNeighbors - 0.20

layer with 0.5 dropout and a Softmax activation
function.

3.1.3 Fine-tuning
The large pre-trained language models we em-
ployed offer a robust foundation for understand-
ing language in general. Through fine-tuning, we
adapt them to the nuances of our emotion recogni-
tion task. Inspired by the strategy presented in (Sun
et al., 2020), we initially train only the classifier
with a larger learning rate (5e-5) and a warm-up
period of 10,000 steps over ’k’ epochs (we tried
a range of ’k’ from 1 to 10). Subsequently, we
fine-tune both the classifier and the transformer’s
final layer using a smaller learning rate (2e-5). Our
goal in freezing the transformer weights at first,
and then training them with a reduced learning rate,
is to minimize the risk of overfitting.

3.2 Causal Modelling
Given the success of generative models we also
tried Mistral 7B Instruct V0.2 which is believed to
be state of the art in its category of models (Jiang
et al., 2023). These type of LLMs have had success
in a large number of NLP tasks, but seem to still
lag Masked Language Models in sentence classifi-
cation.

3.2.1 Prompting
In Causal Modelling, how you prompt the model
significantly influences its performance. We tested
different prompting strategies in both zero-shot and
few-shot settings:

• Zero-Shot Learning: Here, we provide the
model with a single example and ask it to
predict the emotion without any additional
references. For zero-shot learning the best
prompting technique was: "[INS] Given the
following sentence: {sentence}. ### Pre-
dict which emotion is expressed. Chose one
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of the following options: neutral, anger, sur-
prise, fear, joy, sadness, disgust, and contempt.
Answer in one word only. Answer: [\INS]"

• Few-Shot Learning: In this setting, we give
the model several examples – one for each
emotion – along with their corresponding la-
bels. This leverages the model’s in-context
learning ability, potentially boosting its per-
formance for unseen samples. For few-shot
learning the best prompting technique was:
"[INS] This is an example of a sad sentence:
{sentence} {repeat for every emotion}.
### Predict the emotion of the following sen-
tence: sentence. Chose one of the following
options: neutral, anger, surprise, fear, joy, sad-
ness, disgust, and contempt. Answer in one
word only. Answer: [\INS]"

4 Experimental setup

4.1 Data Split Strategy
We employed a classic data split approach:

• Initial Development: We combined the train-
ing and development sets and shuffled the data.
Subsequently, we used 70% for training, 10%
for validation, and the remaining 20% as a
held-out test set.

• Competition Test Set Release: Upon the
competition’s test set release, we directly eval-
uated our models using the platform. To max-
imize training data, we trained on the com-
bined training set with a 20% validation split.

• Final Model: Once we selected our best
model, we re-trained it on the entire dataset
without validation. This re-training didn’t
yield significant improvements

4.2 Subtask 1
We’ll focus on Subtask 1, where we achieved strong
results. The key hyperparameters used:

• Batch Size: A batch size of 64 provided the
best balance. Smaller sizes hurt performance,
while larger sizes exceeded our memory con-
straints.

• Fine-Tuning: We trained for 4 epochs with
frozen model weights, followed by 3 epochs
with only the last layer unfrozen (as detailed
in section 3.1.3).

• Classifier: Our classifier used 128 neurons,
0.5 dropout, and a softmax activation.

• Optimization: We used cross-entropy loss,
the AdamW optimizer, and experimented with
different learning rates (see section 3.1.3).

• Evaluation: We measured performance us-
ing the MulticlassF1Score with 8 classes and
’macro’ averaging.

5 Results

Our top-performing model (Table 3) was a fine-
tuned FacebookAI/xlm-roberta-large (Conneau
et al., 2019). This highlights the superiority of
fine-tuned Masked Language Models (MLMs) over
Mistral for sentence classification tasks. The results
suggest that smaller Causal models remain less ef-
fective than fine-tuned MLMs in this domain. We
also see that few-shot Mistral is worse than zero-
shot, probably because too much data in the prompt
confuses the model.

Model Train Validation Test

xlm-roberta 0.74 0.57 0.43
mdeberta-v3 0.74 0.56 0.42
bert-multi 0.66 0.48 0.35
Mistral zero-shot - - 0.32
Mistral few-shot - - 0.31
distilbert-multi 0.6 0.47 0.29

Table 3: Results for Subtask 1 - Masked Language
Models and Causal Models (Mistral).

In terms of number of epochs, our best model
was overfitting when finetuned for too many epochs
(Table 4) and we finally trained for 4 + 3 epochs.

Frozen Fine-tunning Training Validation Test

3 2 0.67 0.53 0.4
3 3 0.71 0.55 0.42
4 3 0.74 0.57 0.43
4 4 0.78 0.60 0.42
4 5 0.85 0.45 0.38
5 3 0.71 0.56 0.42

Table 4: Finding the optimal number of epochs to avoid
overfitting. First column contains epochs when training
only the classifier. Second columns contains epochs
when training the classifier and the last transformer
layer.
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5.1 Error analysis

Our confusion matrix (Figure 7) reveals that the
model overpredicts the ’neutral’ emotion, likely
due to its prevalence in the training data. This
created a bias, leading the model to misclassify
instances of other emotions as ’neutral’. While
we attempted to mitigate this with class weights
in the loss function, it proves insufficient. In the
future, we should explore more robust techniques
like oversampling or undersampling to address the
class imbalance.

Figure 7: Confusion matrix. On y-axis true labels, on
x-axis predicted labels. Values are normalised.

As seen in the emotion accuracy chart (Figure 8),
the model performs best on the dominant ’neutral’
class, along with well-represented emotions like
’joy’ and ’sadness’. Conversely, the model strug-
gles to predict the ’disgust’ emotion, which aligns
with its under-representation in the training data.
This suggests a direct correlation between dataset
frequency and model proficiency for each emotion.

6 Conclusion

Overall, our system achieved encouraging results
in Subtask 1, despite exhibiting some overfitting
for dominant labels. While performance on the
emotion-flip detection tasks (Subtasks 2 and 3)
highlights areas for improvement, we still placed
in the first half of the leaderboard. Looking ahead,
we plan to investigate hybrid transformer-LSTM
architectures for a more nuanced understanding of
emotion-flip triggers. Additionally, enriching the
data by incorporating a broader conversational con-
text through multi-turn analysis could enhance our
model’s capabilities. Not least, even though we
tried Mistral, there are newer causal models like

Figure 8: Accuracy by emotion. Accuracy directly
correlates with the frequency of each emotion in the
training set.

Mixtral (Jiang et al., 2024) and Solar (Kim et al.,
2023) which could perform better at this type of
task.

Acknowledgements

This work was partially supported by a grant on
Machine Reading Comprehension from Accenture
Labs and by the POCIDIF project in Action 1.2.
“Romanian Hub for Artificial Intelligence”.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

653

http://arxiv.org/abs/arXiv:2005.14165
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116


Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. GoEmotions: A Dataset of Fine-Grained Emo-
tions. In 58th Annual Meeting of the Association for
Computational Linguistics (ACL).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Paul Ekman. 1992. An argument for basic emotions.
Cognition and Emotion, 6(3–4):169–200.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7B. arXiv preprint arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung
Lee, Wonho Song, Yunsu Kim, Hyeonwoo Kim,
Yungi Kim, Hyeonju Lee, Jihoo Kim, Changbae Ahn,
Seonghoon Yang, Sukyung Lee, Hyunbyung Park,
Gyoungjin Gim, Mikyoung Cha, Hwalsuk Lee, and
Sunghun Kim. 2023. SOLAR 10.7B: Scaling large
language models with simple yet effective depth up-
scaling.

Shivani Kumar, Md Shad Akhtar, Erik Cambria, and
Tanmoy Chakraborty. 2024. Semeval 2024 – task 10:
Emotion discovery and reasoning its flip in conver-
sation (ediref). In Proceedings of the 2024 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics. Association
for Computational Linguistics.

Shivani Kumar, Anubhav Shrimal, Md Shad Akhtar, and
Tanmoy Chakraborty. 2021. Discovering emotion
and reasoning its flip in multi-party conversations
using masked memory network and transformer.

Shivani Kumar, Anubhav Shrimal, Md Shad Akhtar,
and Tanmoy Chakraborty. 2022. Discovering emo-
tion and reasoning its flip in multi-party conversa-
tions using masked memory network and transformer.
Knowledge-Based Systems, 240:108112.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2020. How to fine-tune bert for text classification?

654

http://arxiv.org/abs/arXiv:1810.04805
http://arxiv.org/abs/arXiv:1810.04805
http://arxiv.org/abs/arXiv:1810.04805
https://doi.org/10.1080/02699939208411068
http://arxiv.org/abs/arXiv:2310.06825
http://arxiv.org/abs/arXiv:2310.06825
http://arxiv.org/abs/arXiv:2401.04088
http://arxiv.org/abs/arXiv:2401.04088
http://arxiv.org/abs/2312.15166
http://arxiv.org/abs/2312.15166
http://arxiv.org/abs/2312.15166
https://arxiv.org/abs/2402.18944
https://arxiv.org/abs/2402.18944
https://arxiv.org/abs/2402.18944
http://arxiv.org/abs/arXiv:2103.12360
http://arxiv.org/abs/arXiv:2103.12360
http://arxiv.org/abs/arXiv:2103.12360
https://doi.org/https://doi.org/10.1016/j.knosys.2021.108112
https://doi.org/https://doi.org/10.1016/j.knosys.2021.108112
https://doi.org/https://doi.org/10.1016/j.knosys.2021.108112
http://arxiv.org/abs/1905.05583

