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Abstract

Detecting Machine-Generated Text (MGT)
has emerged as a significant area of study
within Natural Language Processing. While
language models generate text, they often leave
discernible traces, which can be scrutinized
using either traditional feature-based methods
or more advanced neural language models.
In this research, we explore the effectiveness
of fine-tuning a RoBERTa-base transformer,
a powerful neural architecture, to address
MGT detection as a binary classification
task. Focusing specifically on Subtask A
(Monolingual - English) within the SemEval-
2024 competition framework', our proposed
system achieves an accuracy of 78.9% on
the test dataset, positioning us at 57th
among participants. Our study addresses
this challenge while considering the limited
hardware resources, resulting in a system that
excels at identifying human-written texts but
encounters challenges in accurately discerning
MGTs.

1 Introduction

Recent advancements in large language models
(LLMs) have endowed them with an impressive
capability to generate written text that closely
resembles human writing (Adelani et al., 2019;
Radford et al., 2019). However, this technological
progress brings along significant challenges, as
the proliferation MGT poses various threats in
digital environments. MGTs have been implicated
in spreading misinformation in online reviews,
eroding public trust in political or commercial
campaigns, and even facilitating academic fraud
(Crothers et al., 2022; Song et al., 2015; Tang

"https://semeval.github.io/SemEval2024/

et al., 2023). The identification of MGT remains
a pressing concern, as distinguishing between
human-written and machine-generated content
is often challenging for humans. Consequently,
there is a growing imperative to develop automatic
systems capable of discerning MGT (Mitchell
et al., 2023). In this study, we address this
challenge within the English language context
using the dataset provided by Wang et al. (2023).

As highlighted in Wang et al. (2024b)
overview paper on the task, recent approaches
to MGT detection predominantly employ binary
classification methods. Existing literature
highlights the superior performance of transformer-
based methods over alternative approaches Wang
et al. (2024a). However, a significant challenge
in utilizing these models lies in the requirement
for GPU hardware and computational resources.
Our study aims to address this challenge within the
constraints of limited hardware capacity. Keeping
this in mind, we propose a system that leverages
fine-tuning of the RoBERTa transformer model
(Liu et al., 2019) to automatically classify input
text as either human-written or machine-generated.
Our system architecture involves augmenting
the RoBERTa-base model with a Classifier
Head. The Embeddings component facilitates
contextual understanding of texts, while the
Encoder component processes input texts in
parallel, and the Classifier Head performs binary
classification by linearly outputting a single value.

Our proposed system achieves an accuracy of
78.9% on the test data, surpassing the average
results provided by the task’s baseline and ranking
57th among 140 participants. The area under the

565

Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 565-572
June 20-21, 2024 ©2024 Association for Computational Linguistics


https://semeval.github.io/SemEval2024/

ROC curve (AUC) metric is measured at 0.69.
While the ROC curve analysis demonstrates our
model’s capability to classify substantial portions
of positive cases, its proximity to the diagonal
line indicates room for further improvement.
Notably, our primary challenge stemmed from
computational constraints, which limited our
ability to implement larger token sizes or batch
sizes. Further discussions reveal that our system
encounters difficulties in accurately detecting
MGTs. To facilitate reproducibility and further
research in this area, the code for our system is
available on GitHub?.

2 Background

2.1 Dataset Overview

SemEval-2024 Task 8 (Wang et al., 2024b)
comprises three subtasks, with our investigation
centering on Subtask A: binary classification
of human-written versus MGT. Specifically, we
concentrated our efforts on analyzing English
monolingual data, as outlined dataset is provided
by Wang et al. (2023).

Subtask A encompasses a dataset consisting of
119,757 training examples and 5,000 development
examples, all presented in JSON format. Each data
instance includes the following attributes:

* id: An identifier number for the example.

e label: A binary label indicating whether
the text is human-written (0) or machine-
generated (1).

e text: The actual textual content.

* model: The Al machine responsible for
generating the text.

e source: The web domain from which the text
originates.

2.2 Related Work

MGT detection is feasible through both traditional
feature-based methods and neural language models.
Frohling and Zubiaga (2021) and Nguyen-Son
et al. (2018) discussed how feature-based methods
leverage statistical techniques. These methods
primarily utilize frequency features such as
TF-IDF, linguistic cues, and text style (Frohling
and Zubiaga, 2021). However, feature-based
methods have limitations, as different samplings

2https://github.com/Sharif-SLPL/Sharif-MGTD

in language models can lead to varied generated
outputs (Holtzman et al., 2019). In contrast,
methods that harness neural language models,
particularly those employing transformer models,
have shown high effectiveness (Crothers et al.,
2022). Neural language model methods often
involve zero-shot classification or fine-tuning
pre-trained language models (Sadasivan et al.,
2023). Grover by Zellers et al. (2019), RankGen
by Krishna et al. (2022), and DetectGPT (Mitchell
et al., 2023) are prominent examples of zero-
shot methods. However, these methods may
be misleading at times and exhibit limited
performance in out-of-domain tasks (Crothers
et al., 2022; Wang et al., 2023).

Bakhtin et al. (2019) demonstrated outstanding
performance in MGT detection by harnessing
bidirectional transformers. Additionally, Solaiman
et al. (2019) highlight that the zero-shot methods
often fall short compared to a simple TF-IDF
baseline when detecting texts from diverse
domains. He argues that bidirectional transformers
offer significant advantages for MGT detection,
advocating for the fine-tuning of these models
as a superior alternative to zero-shot methods.
In this regard, Rodriguez et al. (2022) observed
a significant enhancement in performance of
cross-domain MGT detection by fine-tuning the
RoBERTa detector.

Jawahar et al. (2020) conducted a comprehensive
survey of various approaches to developing MGT
detectors. Their findings suggest that fine-tuning
the ROBERTa detector consistently delivers robust
performance across diverse MGT detection tasks,
surpassing the efficacy of traditional machine
learning models and neural networks. Additionally,
Crothers et al. (2022) reported a notable trend
towards the increased utilization of bidirectional
transformer architectures, particularly ROBERTa,
in MGT detection tasks. Lastly, Wang et al.
(2024a) conducted a comprehensive benchmark
of supervised methods on M4 dataset. Their
findings revealed that transformer models such
as RoBERTa and XLM-R exhibited superior
performance across all tests, respectively achieving
99.26% and 96.31% accuracy in MGT binary
classification.

While this review does not provide a
comprehensive examination of all aspects of
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MGT detection, prior research underscores
the prevalence of transformer-base methods,
like RoBERTa and XLM-R, in comparison to
alternative approaches, especially in supervised
tasks. Moreover, the superiority of ROBERTa over
other models is evident. A significant challenge for
studies utilizing pre-trained transformer models
lies in the necessity for robust GPU hardware and
computational resources.

3 System Overview

This section presents an overview of our system’s
architecture, highlighting implementation details
and challenges. Drawing on the preceding works
discussed above, which showed the efficacy of
fine-tuning ROBERTa models, our system aims to
attain peak performance in MGT detection while
optimizing configurations for limited hardware
resources.

The decision to employ the transformer architecture
for detecting synthetic texts is motivated by
its capacity to capture intricate dependencies
within textual data. This choice seems logical
considering that such texts often exhibit semantic
features that can be harnessed for fact-checking,
cohesion, coherence, and other properties that
may unveil their origin (Raj et al. (2020). In
contrast to traditional architectures, the transformer
model overcomes the constraints of fixed window
sizes or sequential processing, enabling it to
utilize contextual information from the entire
input sequence. Additionally, the self-attention
mechanism empowers the model to selectively
focus on pertinent segments of the input, rendering
it highly effective for tasks necessitating long-range
dependencies and contextual comprehension.

As for RoBERTa, it is specifically chosen for
its extensive training duration, broader dataset
coverage, ability to handle longer sequences, and
focus on Natural Language Understanding tasks,
making it more suitable than other BERT-based
models. Additionally, a wealth of research, such as
the recent study of Wang et al. (2024a), has further
highlighted the inherent potential of RoBERTa for
this specific task.

3.1 Core Algorithms and System Architecture

At the core of our system lies the concept of binary
classification, distinguishing input texts as either
machine-generated or human-written through
fine-tuning a pre-trained RoBERTa transformer

(Liu et al., 2019). Our system architecture
entails augmenting the RoBERTa-base model
with a Classifier Head. The RoBERTa model’s
Embeddings component incorporates a 768-
dimensional embedding matrix, alongside position
and token type embeddings, enhancing contextual
understanding. The Encoding component
features a 12-layer RoBERTaEncoder, each layer
employing a multi-head self-attention mechanism.
This facilitates simultaneous attention to different
parts of the input text, crucial for analyzing textual
similarities. Intermediate sub-layers utilize a
fully connected feed-forward network with GELU
activation, followed by an output sub-layer for
feature transformation and normalization.

The Classifier Head, integrated into the Encoder
for sequence classification, comprises a linear layer
with 768 input features and a dropout layer to
mitigate over-fitting. The final output is generated
through an additional linear layer with a solitary
output neuron, making it conducive to binary
classification tasks. In essence, the primary model
processes input data, with the Classifier Head
making predictions. When viewed as a regression
task, the Classifier produces a linear output tailored
for a singular class, providing a probabilistic value.
Implementation of the system is facilitated using
PyTorch, incorporating specific parameters such as
the AdamW optimizer (Radford and Narasimhan,
2018) and the CrossEntropyLoss function (Hui and
Belkin, 2020). AdamW, renowned for training
deep neural networks, integrates weight decay
to mitigate over-fitting. The Cross Entropy
Loss function, commonly employed in multi-
class classification scenarios, combines softmax
activation with negative log-likelihood loss. The
training process involves iterating through the
entire dataset for two epochs, with early stopping
mechanisms in place to terminate training at the
optimal point.

3.2 System Challenges

While larger machine-generated documents often
exhibit more discernible patterns and clues, such
as incoherence or repetition, they also entail
substantial computational costs. Our primary
challenge lay in efficiently processing these large
documents using cost-effective computing systems.
To mitigate this challenge, we explored strategies
such as reducing token size and batch size.
However, these adjustments necessitate trade-
offs, potentially leading to reduced accuracy or
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increased processing time.

Our system was trained using a token size of
512, but optimal performance could potentially be
achieved with larger token sizes, such as 1024 or
2048, given sufficient computing resources.

4 Experimental Setup

4.1 Dataset

Table 1 presents detailed statistics on the dataset
used for each class.

Class/Split Train Test Development
Human-Written Text 57075 6276 2500
Machine-Generated Text | 50706 5700 2500

Table 1: Dataset Statistics

As shown in Table 1, nearly 90% of the dataset
is dedicated to training, while the remainder is used
for evaluation. To enhance model performance, we
utilized the entire development dataset for model
selection, compensating for the scarcity of training
data.

4.2 Pre-processing and Hyper-Parameter
Tuning

Input texts are tokenized using the RoBERTa
tokenizer before processing, both during training
and inference. = Our hyper-parameter tuning
process involved a comprehensive exploration
across various parameter ranges. Specifically, we
conducted experiments with learning rates ranging
from 0.0001 to 0.00004, dropout rates spanning
from 0.1 to 0.3, batch sizes varying between
4 and 16, and token sizes ranging from 64 to
1024. Through experimentation and analysis, we
determined the optimal hyper-parameter settings,
which are as follows: a learning rate of 0.00004, a
dropout rate of 0.1, a token size of 512, a batch size
of 10, and a weight decay of 0.01. Further details
are given in Appendix A.

As illustrated in Appendix A, the number of
training instances is correlated with the input
token size and may influence the model accuracy.
Given the length of input texts, a suitable token
size is essential to capture all tokens adequately.
However, computational costs associated with
larger token sizes present a significant challenge
during model training. Consequently, we selected
512 as the optimal token size. Truncation was
employed during tokenization to accommodate the

chosen token size, ensuring efficient model training
without compromising data representativeness.

4.3 Training Procedure

For training the model, we utilized the Task
dataset Wang et al. (2023), which underwent
preprocessing by tokenizing the text into sub-word
units and padding sequences to a fixed length.
CrossEntropyLoss was employed as the loss
function. The implementation also involved the
AdamW optimizer, known for its effectiveness in
training deep neural networks and its incorporation
of weight decay to address over-fitting. The Adam
optimizer was utilized with a learning rate of 4e-
05. During training, the loss was monitored on
a held-out validation set, and early stopping was
applied to prevent over-fitting. Early stopping was
implemented with the condition that the training
loss reached a specific threshold (0.35 in this
case), typically occurring around the third epoch.
Therefore, if there was no improvement in the
validation loss for a certain number of epochs,
training was halted to prevent over-fitting of the
model.

4.4 Evaluation Measures

The evaluation of our model involves calculating
its accuracy in predicting whether a text is
human-written or machine-generated. Accuracy, a
fundamental metric in classification tasks, assesses
the overall correctness of predictions and is
calculated as:

Accuracy = % x 100 (H

where n; represents the number of correctly
classified instances, and N is the total number of
instances.

5 Results

Using the official accuracy metric of SemEval-
2024 Task 8 (Wang et al., 2024b), our system
achieved the following accuracy scores on different
data splits:

Testset
78.9%

Devset
74.8%

Language /Split
English

Table 2: Accuracy Metric

A direct comparison of our results with prior
works is challenging due to the unique nature of
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our research. To the best of researchers’ knowledge,
the most comprehensive benchmark on supervised
MGT detection is presented by Wang et al. (2024a)
using the M4 dataset and employing RoBERTa,
XLM-R, GLTR-LR, GLTRSVM, Stylistic-SVM,
and NELA-SVM. However, our primary objective
was to determine strategies for addressing limited
hardware resources as discussed in Appendix A.
As a contribution to this field, through
repeated experiments, we identified that among
hyperparameters, token size plays a slightly more
significant role in model accuracy. While the
system’s accuracy is influenced by increasing
the token size, drawing meaningful scientific
conclusions necessitates further controlled
experiments. Additionally, the expansion of token
size is restricted by hardware limitations, requiring
a detailed investigation with robust computational
resources like GPU or TPU. Considering the
constraints of Google Colab’s® Free runtimes,
we opted for a token size of 512 as a balance

between hardware limitations and time constraints.

Consequently, based on the official accuracy metric
of SemEval2024 Task 8 (Wang et al., 2024b), our
system achieved the following accuracy scores on
various data splits:

Receiver Operating Characteristic (ROC) Curve

0.8 4

True Positive Rate
°
@
\,

°
S
\,

ROC Curve (AUC = 0.69)

0.0 02 0.4 0.6 0.8 1.0
False Positive Rate

Figure 1: The ROC Curve Plot

The evaluation of our model also included
analysis of the Area Under the Curve (AUC), a
crucial metric that reflects the discriminative power
of a binary classification model. Our fine-tuned
RoBERTa model demonstrated an AUC of 0.69,
suggesting its ability to effectively distinguish
between positive and negative instances. Figure
1 illustrates the Receiver Operating Characteristic

Shttps://colab.research.google.com

Confusion Matrix

True Labels

Predicted Labels

Figure 2: The Confusion Matrix Plot

(ROC) Curve, depicting the model’s capability
to accurately classify a significant proportion of
positive cases. However, the proximity of the
curve to the diagonal line suggests opportunities
for further enhancement.

Interestingly, analysis of the confusion matrix,
as depicted in Figure 2, revealed notable patterns
in our model’s classification tendencies. While
our system effectively identified human-written
documents with low False Positives, it exhibited
difficulties in correctly identifying MGTs. This
observation suggests potential areas for refinement,
particularly in enhancing the model’s ability to
detect subtle cues and characteristics unique to
machine-generated content.

Overall, our study contributes to the ongoing
efforts in the field of NLP by showcasing the
effectiveness of fine-tuned transformer models,
particularly RoBERTa, in MGT detection tasks.
Moving forward, future research directions could
explore novel approaches to mitigate computational
costs and further improve the performance of
MGT detection systems, ultimately advancing
the capabilities of NLU models in real-world
applications.

6 Conclusion

In summary, our study focused on fine-tuning
a RoBERTa-base transformer model for binary
classification, specifically in distinguishing human-
written from MGT. While our system showed
promise in identifying human-written text, it faced
challenges with accurately classifying machine-
generated content. As discussed in Appendices
A and B, we recommend exploring larger token
sizes to improve model performance, albeit with
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awareness of computational costs. Additionally,
we advocate for the development of low-cost
algorithms capable of efficient processing across
hardware platforms. Our findings contribute to
advancing MGT detection, with implications for
combating misinformation and enhancing cyber-
security in the digital age.
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A Hyper-Parameter Tuning
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Figure 3: Number of Training Instances by Token Size

To determine the appropriate settings for
hyper-parameters, we utilized Google Colab’s
free GPU runtime. Free Colab users have access
to GPU and TPU runtimes without charge for a
maximum of 12 hours. The GPU runtime includes
an NVIDIA Tesla K80 with 12GB of VRAM.
[Date: 5 Dec 2023]. We were unable to use
premium runtime accounts due to financial issues
arising from Iran sanctions. Therefore, we couldn’t
change our model’s token size to larger than 512
due to the 12-hour time limit in free Colab. To
understand the impact of increasing token size, we
aimed to experiment on a local laptop GPU.

During the experiments aimed at finding the
proper token size, we encountered the "CUDA
error: device-side assert triggered" frequently,
which was resolved by restarting the session.
Our experiments were conducted using an RTX
2060 mobile with 6 GB of VRAM. Throughout
all experiments, we maintained fixed parameters,
including Number of Epochs = 3, Train Split =
0.7, and Learning Rate = 4e-05. Increasing the
Max Length from 512 to 1024 in this experimental
setup resulted in an improvement in Test Accuracy
by at least 2%. However, this enhancement came
at the cost of a nearly 15-fold decrease in training
speed, making it challenging to implement on
limited hardware. Additionally, this requires plenty
of controlled experiments by researchers to shed
light on finding the proper hyper-parameters.

B Detect-GPT as a Zero-Shot Method

In our pursuit of effective MGT detection,
we also experimented with Mitchell et al.
(2023)Detect-GPT model, a zero-shot approach
utilizing probability curvature analysis. Training
the model resulted in an accuracy rate of
60%, and when applied to a test dataset

of approximately 1500 samples, it achieved
a remarkable accuracy of approximately 84%.
We conducted a comprehensive analysis by
implementing 10 perturbations for each dataset.
To address data and mask filling tasks, we
employed the TS5 small model, leveraging its
robust capabilities. Furthermore, to accurately
assess the log likelihood, we utilized the GPT-2
model, ensuring precise calculations and reliable
results.This method surpassed alternative text
detection methodologies, demonstrating superior
accuracy and reliability in identifying MGT.
Notably, the inclusion of threshold configuration
added granularity to the experiment, enabling
fine-tuning of detection sensitivity across varying
threshold settings.
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