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Abstract

This paper describes our system developed
for SemEval-2024 Task 8, “Multigenerator,
Multidomain, and Multilingual Black-Box
Machine-Generated Text Detection” Machine-
generated texts have been one of the main con-
cerns due to the use of large language mod-
els (LLM) in fake text generation, phishing,
cheating in exams, or even plagiarizing copy-
right materials. A lot of systems have been
developed to detect machine-generated text.
Nonetheless, the majority of these systems rely
on the text-generating model. This limitation
is impractical in real-world scenarios, as it’s
often impossible to know which specific model
the user has used for text generation. In this
work, we propose a single model based on
contrastive learning, which uses ~40% of the
baseline’s parameters (149M vs. 355M) but
shows a comparable performance on the test
dataset (21st out of 137 participants). Our key
finding is that even without an ensemble of
multiple models, a single base model can have
comparable performance with the help of data
augmentation and contrastive learning. '

1 Introduction

In recent years, Natural Language Processing
(NLP) has been totally dependent on Deep Learn-
ing rather than statistical machine learning. With
multi-task learning (Caruana, 1997), attention-
based transformers (Vaswani et al., 2017), and the
use of Reinforcement Learning in NLP (Christiano
et al., 2017), it has been used in our day-to-day
life from mathematical calculations (Yang et al.,
2023) to email writing. But with huge help, it has
also been used to generate fake news (Zellers et al.,
2019), to plagiarize copyright materials (Dehouche,
2021), and also to cheat in exams or assignments
(Cotton et al., 2023; Fyfe, 2023). Humans can iden-
tify machine-generated text only at the chance level
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(Jawabhar et al., 2020). There has been a dire need
to develop a system to detect machine-generated
text.

Though a lot of works (Badaskar et al., 2008;
Gehrmann et al., 2019; Zellers et al., 2019; Jawa-
har et al., 2020; Ippolito et al., 2020; Chakraborty
etal., 2023; Pu et al., 2023; Mitchell et al., 2023; He
et al., 2023; Guo et al., 2023) have already been de-
ployed for detecting machine-generated text, with
the current development of LLMs, most of the sys-
tems are failing to find out which one is human-
generated vs. machine-generated (mostly due to
the improvement of coherency, fluency and usage
of real-world dataset (Radford et al., 2019)). In this
context, the task "Multigenerator, Multidomain,
and Multilingual Black-Box Machine-Generated
Text Detection" provides a dataset for training mod-
els to classify machine-generated texts. The shared
task consists of three sub-tasks: Binary Classifi-
cation (Machine vs. Human), Multi-class Classifi-
cation (Which model/human generated this?), and
Span Detection (Which part of the text is machine-
generated?). A detailed description of the task can
be found in the shared task paper (Wang et al.,
2024).

In this paper, we describe our final submission
on Subtask A (Binary Classification). There were
two big challenges of this task: First, five Different
models have been used to generate the machine-
generated text. Zellers et al. (2019) has shown that
the best defense for machine-generated text is the
model itself that was used for generation. However,
in reality, there is a massive surge in large language
models (LLMs), each with its own unique style
of text generation. The challenge in this particu-
lar subtask has heightened due to the utilization of
five different LLMs. This complexity demands a
versatile, model-agnostic architecture capable of
detecting text generated by LLMs in a generalized
manner. Second, Following the previous challenge,
the organizers have employed a different model
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for generating the validation and test datasets com-
pared to those used in the training set. This implies
that the text was drawn from a completely distinct
distribution. As a result, participants must develop
a generalized model capable of performing effec-
tively regardless of the specific model used in the
text generation process.

In response to the key challenges, we have in-
vestigated the performance of contrastive learning
for this particular task. Contrastive learning has
been used as a valuable technique across various
domains, including Text Embedding (Neelakantan
et al., 2022), Document Embedding (Luo et al.,
2021), Event Embedding (Roy Dipta et al., 2023),
vision (Chen et al., 2020) and Language-Vision
learning (Radford et al., 2021). Notably, unlike
the majority of submissions in any shared task like
competition, Our final submission utilized a sin-
gle model to classify the machine-generated texts
rather than an ensemble of multiple models. Hence,
our contributions to this paper are as follows,

1. We proposed a novel data augmentation tech-
nique, which nearly makes the data X times
bigger (X is the number of models used for
data augmentation).

2. We propose a single unified model that shows
a comparable performance on the test dataset.

3. We have shown that even with a single model,
contrastive learning with data augmentation
shows a comparable performance, which
opens up a door for future exploration.

2 Related Works

In this section, we will provide the prior works
that have been done in the realm of machine-
generated text detection (§2.1) and contrastive
learning (§2.1).

2.1 Machine Generated Text detection

With the progress of LLMs, much prior research
has been done to counter-attack the misuse of
the LLMs. Before the attention and transform-
ers, Badaskar et al. (2008) has shown how the syn-
tactic and semantic features can help in classify-
ing between human and machine-generated text.
Later, Gehrmann et al. (2019) has provided a sta-
tistical detection system based on the assumption
that the machine samples from the high probabil-
ity words through max sampling (Gu et al., 2017),
k-max sampling (Fan et al., 2018), beam search

(Shao et al., 2017). So, the authors used the prob-
ability, rank, and entropy of words as features to
classify a machine-generated text. Jawahar et al.
(2020) has shown that state-of-the-art LLM can
generate texts with human-like fluency and coher-
ence without grammatical or spelling errors. Lastly,
Mitchell et al. (2023) have used the change of log-
probability between the original text and after ran-
dom perturbation.

2.2 Contrastive Learning

Contrastive learning was first introduced in the vi-
sual domain (Chen et al., 2020). Later, it has been
widely used in NLP for representation learning (Xu
et al., 2023; Wang and Dou, 2023), event similar-
ity tasks (Gao et al., 2022) and event modeling
(Roy Dipta et al., 2023). Inspired by the latter
works, we have explored whether contrastive learn-
ing can help in machine-generated text detection.

3 System Overview

Our system is divided into three parts: where the
first part is data augmentation (described on §3.1),
the second part is contrastive learning (described
on §3.2), and the last part is the classification head
(described on §3.3) over the document embeddings.

3.1 Data Augmentation

The dataset provided in the shared task has text
and their corresponding label. However, we need
a positive and a (hard) negative pair to use con-
trastive learning. Our main inspiration for using
contrastive learning is that as the texts come from
two different entities (machine vs. human), the
embedding space should also be different. To facil-
itate the task, we have used a paraphrase model
to generate alternate texts for each text in the
dataset. In that way, now, every instance of the
dataset has one human/machine-generated text and
one machine-generated text. We have utilized the
human-generated text as the hard negative > and
the machine-generated text as the soft positive 3.
Another challenge we faced during the para-
phrasing of the dataset is that the texts are long.
If we give the whole text to the paraphrase model
and ask for alternate text, it gives a much shorter
text (an issue we observed in the used paraphrase
model). In our primary validation, that gives bad

*Hard negatives are the total opposite of the given text
3Soft positives expressed the same idea but might not be
the exact one
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results due to the loss of information while short-
ening the text. So, instead of giving the whole text
at once, we have split the data by end-of-sentence
or newline. Then, each sentence was paraphrased
on its own and then joined together again to get
the previous structure. The technical details be-
hind generating paraphrases and using them for
contrastive learning have been discussed in §4.1
and §4.2, respectively.

3.2 Contrastive Learning

With the availability of an appropriate dataset for
contrastive learning, we proceeded to develop our
model. Our main assumption was that the em-
bedding of the machine-generated text and human-
generated text would exhibit significant differences.
A simple overview of the model is shown in the
Fig. 1.

The positive and negative data go through the
same shared encoder to generate an embedding.
This embedding is then used in contrastive learning.
We have used the following loss formulation for
our contrastive learning:

Leon = (1 —y) % cos(x1, x2) 0
+ y * max(0, cos(xy, x2))

Here, x; and x3 are the embeddings of two dif-
ferent pairs, respectively. cos(x1, z2) is the cosine-
similarity score between two embeddings. y is +1
for positive-positive pairs and —1 otherwise. In our
task, y is 41 if the data instance contains text from
a machine and the other is paraphrased text and —1
if the given text is from a human and the other is
paraphrased.

3.3 Classification Loss

In contrastive learning, our primary objective
is to acquire meaningful embeddings contain-
ing sufficient information for distinguishing be-
tween human-generated and machine-generated
text. However, we also need to use a classifier
model for the downstream task of outputting the
actual label. Keeping that in mind, we have used
a simple two-linear layer classifier head on top of
the embeddings generated by the encoder. During
inference time, we used this classifier head to out-
put the labels. We have optimized our model using
a simple binary cross-entropy (BCE) loss.
The total loss of our model is defined as,

Eza*£00n+,8*£cls++’y*£cls_ (2)

Here, L, is the BCE loss of the positive ex-
ample, and L. is the BCE loss of the negative
sample of the data instance. «, (3, and ~ are hy-
perparameters that were set to 0.7, 0.8, and 0.1,
respectively, based on validation data.

4 Experimental Setup

The following sections are used to describe the
technical details behind our data augmentation tech-
nique (§4.1), Encoder (§4.2), Classifier Head (§4.3)
and Hyperparameters (§4.4).

4.1 Data Augmentation & Pre-processing

We preprocess the raw input, splitting each docu-
ment into multiple sentences for paraphrasing. Af-
ter the preprocessing, we got ~ 3.6 million sen-
tences. Even if we are splitting by new lines or
end-of-sentences, we kept exactly the same format
during joining, i.e., two new lines rather than 1, to
keep most information intact. As the paraphrasing
is done on the sentence level rather than the para-
graph level, the number of paraphrased sentences is
the same as the input sentences (3.6M). So, ideally,
we got double the number of training data just by
using the data augmentation.

We have tried multiple models from Hugging-
faceHub * > to generate paraphrase. In our final
submission, we have used Bandel et al. (2022)’s
model # for our data augmentation. Use of multiple
models or use of prompt-based models (Achiam
et al., 2023; Touvron et al., 2023) for data augmen-
tation has been left out for future exploration due
to time and compute constraints. For data split, we
use the official train & dev data split. Only train
data is used for data augmentation, and the dev data
is used to calculate evaluation metrics.

4.2 Pre-trained Encoder

To encode the document, we have used a pre-
trained version of longformer-base (Beltagy et al.,
2020) 6. The reason behind using this encoder
rather than others is, One, longformer is good for
getting embeddings for long documents because
of using global vs. local attention (more details in
Beltagy et al. (2020)). Second, the pre-trained ver-
sion was fine-tuned for paraphrase detection, which
is kind of similar to our task.

4ibm/qcpg-sentences
3 ceshine/t5-paraphrase-paws-msrp-opinosis
%jpwahle/longformer-base-plagiarism-detection
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Total Loss
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Figure 1: Overview of our model architecture. The same color weights are shared (encoder & classifier head).
Diamond boxes represent the loss function, and the plus sign represents the summation of the three losses. The
input to the contrastive loss depends on the original label (y=+1 if human, else —1).

4.3 Classifier Head

We have used two linear layers for classifier heads
with fanh activation loss between them. We also
have used a dropout layer between them with a
probability of 60%. The primary rationale for using
a high dropout rate was to enhance the model’s
generalization ability and reduce its dependence on
the training data.

4.4 Hyperparameters

For training our model, we have used AdamW
(Loshchilov and Hutter, 2017) optimizer with a
learning rate of 1e-5. We have used a batch size of
2 with gradient accumulation for 8 steps (effective
batch size 16). We have used early stopping on
the validation data with patience 10. Maximum
document length was set to 4096 as most of the
documents are large. We use the PyTorch-lightning
7 library to run the experiments and Weight & Bi-
ases 8 for logging. All of our experiments are run
on NVIDIA Quadro RTX 8000 48GB.

5 Results

In this section, we report our results on subtask A
and discuss our analysis. Our evaluation is based
on the accuracy metric, but we have provided the
micro and macro-fl for better comparison. All
the results are averaged on 3 runs with 3 different
random seeds.

"https://lightning.ai/
8https://wandb.ai/

5.1 Baseline & Our Model

We use the official baseline provided by the task
organizers. They have used RoBERTa-large (Liu
et al., 2019) as the encoder and fine-tuned on the
train data. Throughout the paper, we refer to this
model as baseline,p.

We have fine-tuned our model (shown in Fig. 1)
on the training dataset. Throughout the paper, we
refer to this model as ourscon

In the Table 1, we have reported the results on
the official test file. Ours,,, is the final submis-
sion, and OQurs..p+ is the modified version of our
final model for more analysis (not official results;
used for ablation study - details on §5.2). We can
get a comparable result using 60% fewer parame-
ters than the baseline. In the next section, we will
see that after hyperparameter tuning, we can get
around 5.7% improvement over the baseline. This
supports our assumption that using a contrastive
learning-based method can help machine-generated
text identification.

5.2 Ablation Study

Effect of Maximum Sentence Length: The
maximum sentence length is used to tokenize the
document. The optimal test score is achieved
with a maximum sentence length of 256. This
demonstrates that the model can effectively iden-
tify machine-generated text even with documents
as large as 256 words. This underscores the effec-
tiveness and adaptability of our model’s learning
capabilities.
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Max Sen CLS Effective

Macro-f1 ~ Micro-fl ~ Accuracy

Length  Dropout Batch Size
Ourscon 4096 0.6 16 88.81 89.07 89.07
baseline,qp - - - - - 88.47
Maximum Sentence Length

[128 T 88388  89.14  89.14
Scon+ 256 93.30 93.37 93.36
Ourscon+ 512 06 16 88.78 89.04 89.04
Ourscon+ 1024 i 90.99 91.13 91.13
Ourscon+ 2048 91.81 91.93 91.93
Ourscon 4096 88.81 89.07 89.07

Classification Layer Dropout

Ourseon+ | 0 T 9273 9281 9281
Ourscon+ 0.2 90.16 90.33 90.33
Ourscon+ 4096 0.4 16 78.98 80.21 80.21
Ourscon 0.6 88.81 89.07 89.07
Ourscon+ 0.9 82.60 83.31 83.31

Effective Batch Size

Ourseon+ | 27 9380  93.86 9386
Ourscon+ 4 70.79 73.52 73.52
Ourscon+ 8 76.82 78.43 78.43
Ourscon 4096 0.6 16 88.81 89.07 89.07
Ourscon+ 32 79.72 80.83 80.83
Ourseon+ 64 90.64 90.80 90.80
Ourseont 128 91.39 91.51 91.51

Table 1: Macro-fl, Micro-f1, and Accuracy score on
the test result. Ours.,, - final submitted model on the
shared task, baseline,.,, - official baseline model, and
Ourscon+ - modified versions of our final model with
more hyperparameter tuning. The bold value signifies
the best score within a specific section, whereas the
underlined value denotes the best score across all sec-
tions.

Effect of Classification Dropout: The classifica-
tion dropout is applied between the two classifica-
tion layers. Contrary to our initial assumption, the
results presented in Table 1 indicate that using a low
dropout rate (as low as 0.0) contributes positively
to the model’s learning process. This suggests that,
even without dropout, the model’s generalization
to unseen data (text generated by a new model) is
enabled primarily through contrastive learning and
data augmentation.

Effects of (Effective) Batch Size: Due to com-
putational constraint, we have used a fixed batch
size of 2 and gradient accumulation steps of
{1,2,4,8,16,32,64} resulting in an effective
batch size of {2,4,8,16,32,64,128}. From the
results report on Table 1, we found that using only
an effective batch size of 2 yielded superior per-
formance compared to gradient accumulation. No-
tably, this configuration represents the most optimal
result obtained following hyperparameter tuning,
positioning us at the 8 rank in the final standings.
This suggests that, in this particular context, the
benefits of gradient accumulation may be limited
compared to simply using a smaller batch size.

6 Conclusion & Future Work

In this work, we introduce our contrastive learning-
based system, which shows a comparable perfor-
mance. We demonstrate that a model with half
the parameters and without an ensemble of large
models or hand-engineered features can show a
comparable performance, which requires more ex-
ploration in this field. For future work, the use of
recent prompt-based models ? can be used for data
augmentation. Also, the effect of more advanced
contrastive loss, i.e., Triplet loss (Chechik et al.,
2010) or InfoNCE loss (Oord et al., 2018), need to
be explored.
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