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Abstract

This paper presents the participation of team
QUST in Task 8 SemEval 2024. We first per-
formed data augmentation and cleaning on the
dataset to enhance model training efficiency
and accuracy. In the monolingual task, we eval-
uated traditional deep-learning methods, mul-
tiscale positive-unlabeled framework (MPU),
fine-tuning, adapters and ensemble methods.
Then, we selected the top-performing mod-
els based on their accuracy from the mono-
lingual models and evaluated them in sub-
tasks A and B. The final model construction
employed a stacking ensemble that combined
fine-tuning with MPU. Our system achieved
8th (scored 8th in terms of accuracy, offi-
cially ranked 13th) place in the official test
set in multilingual settings of subtask A. We
release our system code at:https://github.
com/warmth27/SemEval2024_QUST

1 Introduction

Large language models (LLMs) enable quick, co-
herent responses and content creation but also raise
ethical concerns about misinformation and aca-
demic integrity (Wang et al., 2023). To differenti-
ate between machine-generated and human-created
content, previous study (Guo and Yu, 2023) has
been extensively discussed in industry and aca-
demic works.

Semeval 2024’s Task 8 (Wang et al., 2024a) en-
courages the participants to develop an automatic
system for detecting AI-generated text by leverag-
ing an extended version of the M4 dataset (Wang
et al., 2023, 2024b). We engaged in subtasks A and
B, during which we encountered the challenges
of overcoming linguistic differences, data scarcity,
and inadequate cross-lingual generalization capa-
bilities. Furthermore, existing multilingual models
are less discussed in detecting AI-generated text,
compared to monolingual ones, which further ex-
acerbates the difficulty in model selection.

Meanwhile, we found that the multilingual
dataset in subtask A contains data from both mono-
lingual data and subtask B, as shown in Figure
1. To enhance the diversity and scale of the text
dataset, we performed back-translation on the mul-
tilingual training set to increase the volume of
monolingual data and conducted data cleaning to
improve data quality.

Figure 1: The data distribution in subtask A and B.

In our approach to subtasks A and B, we ini-
tially applied deep learning methods for a swift
assessment in subtask A and proceeded to fine-tune
multiple pre-trained language models (PLMs), in-
spired by recent studies highlighting the efficacy
of fine-tuning methods in text classification. How-
ever, the training cost of the fine-tuning method
is relatively high. We further utilize the Adapter
(Hu et al., 2021) to parameter efficiency fine-tune
(PEFT) (Hu et al., 2021) the model while preserv-
ing its performance. We also noted that despite the
reduced training time, the performance of adapter
models was not consistently stable, showing vari-
ability across experiments. Given the critical impor-
tance of model performance, decided not to utilize
adapters in the testing phase.

To enhance model performance and general-
izability, we adopted a stacking-based ensemble
learning method, utilizing the logits from the top
two performing models as inputs for a linear layer
to generate final predictions. Finally, our experi-
mental results on the test set show that integrating

1
463

https://github.com/warmth27/SemEval2024_QUST
https://github.com/warmth27/SemEval2024_QUST


data augmentation and ensemble learning signif-
icantly improves model efficacy in task-specific
settings.

2 System description

2.1 MPU framework

Recent research on machine-generated text recog-
nition has evolved into treating it as a binary classi-
fication problem, with the latest advancements in-
cluding the Multiscale Positive-Unlabeled (MPU)
(?) training framework. This approach introduces a
length-sensitive MPU loss combined with abstract
recurrent models and a text multi-scale module,
significantly enhancing detection performance for
short texts.

Upon analyzing the text lengths in official
datasets, As shown in table 2, we observed a pre-
dominance of short texts, with those exceeding 512
characters making up a quarter of the total. This in-
sight highlighted the MPU framework’s suitability
for subtask A. The MPU model, previously tested
only on the HC3 (Guo et al., 2023) Chinese and
English datasets, needed assessment for its effec-
tiveness on multilingual datasets. To address this,
we integrated the MPU framework with the XLM-
Roberta (XLM-R) model to enhance its adaptabil-
ity for multilingual tasks and employed stacking
ensemble techniques, yielding significant improve-
ments in our experimental outcomes.

2.2 Fine-tuning

Fine-tuning PLMs such as BERT or RoBERTa have
been extensively discussed in text classification
tasks (Jiang, 2023; Jiang et al., 2023, 2020). Re-
cently, the DeBERTa model (He et al., 2020) is an
enhancement built upon the foundations of BERT
and RoBERTa through the incorporation of a dis-
entangled attention mechanism and an enhanced
masked decoder. We utilized the DeBERTa model
and performed fine-tuning on it in our experiment.
Although fine-tuning PLMs to specific domains or
downstream tasks is a crucial and common practice,
fully fine-tuning its large number of parameters be-
comes time-consuming and costly.

2.3 Adapter

In our experiments, due to the substantial size of
the DeBERTa model and the size of the official
datasets, each fine-tuning run required a significant
amount of time. Adapter-based fine-tuning is an ap-
proach to fine-tuning a PLM that involves freezing

the most of layers and inserting low-dimensional
adapter modules into each layer to improve parame-
ter efficiency. Research has shown that introducing
adapters reduces the number of trainable param-
eters to 3.6%, with only a marginal performance
drop of 0.4% (Houlsby et al., 2019). Furthermore,
in some cases, models applying adapters perform
even better (Bapna et al., 2019).

In our task, we employed the LoRA (Low-Rank
Adapter) method (Hu et al., 2021), which injects
trainable rank-decomposition matrices into each
layer of the Transformer architecture, effectively
freezing the PLM’s weights. This significantly re-
duces the number of trainable parameters for down-
stream tasks. Therefore, we added a sequence clas-
sification head on top of the model to adapt the
PLMs to the classification task. This has reduced
the training costs and shortened the training time.

2.4 Stacking

Ensemble learning combines multiple base learners
to form a predictive model with enhanced general-
ization capabilities (Sagi and Rokach, 2018). Ini-
tially, predictions are generated employing various
machine learning algorithms. Then, these predic-
tions serve as inputs for a subsequent classifier.
Upon training the subsequent classifier, the inte-
grated model is optimized to produce a new predic-
tion set.

3 Methodology

Upon obtaining the dataset, we conducted a com-
prehensive statistical analysis of its scale and distri-
bution. We observed that the multilingual training
dataset contains both monolingual data and Subtask
B-related data, along with an additional portion. To
enhance the model’s generalization capability, we
opted to augment the training data through the fol-
lowing steps 2:

Firstly, we employed Google Translate to uni-
formly translate the multilingual training dataset
into English. Subsequently, considering the pres-
ence of monolingual datasets within the multilin-
gual training data and to prevent leakage of vali-
dation data, we excluded the validation dataset for
monolingual tasks and Subtask B from the multi-
lingual training dataset.

In accordance with the multi-class nature of Sub-
task B, we balanced the categories of the translated
multilingual training dataset. We reorganized the
dataset into multiple categories to better align with
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the data distribution of Subtask B. To ensure data
quality, we conducted thorough cleaning of the
datasets.

Following data preprocessing, we separately
fed the cleaned training datasets into the respec-
tive models for training. In order to leverage the
strengths of different models and enhance clas-
sification accuracy, we contemplated performing
stacking. We selected the top two models based
on their performance on the validation dataset and
saved their generated logits. Finally, we stacked
these logits to obtain the ultimate results.

4 Experimental setup

4.1 Data preprocessing

The subtasks A and B involving diverse do-
mains and sources with both human and machine-
generated texts, we encountered chaotic symbols
and extraneous content such as hyperlinks, numer-
als, and escape characters. To improve data quality,
we undertook preprocessing steps including: re-
moving special characters; eliminating excessive
whitespace and line breaks; discarding Unicode
escape characters and numerically formatted texts;
removing hyperlinks; excluding irrelevant text lines
like those for sharing, surveys, comments, ads,
terms of use, and copyright notices; and deleting
duplicate sentences. Notably, we avoided remov-
ing escape characters from multilingual training
and validation sets to preserve original characters
in non-English texts.

4.2 Data augmentation

We evaluated our models on the original dataset
(v1) before the test set was released. We found
that the multilingual set contained training and val-
idation data for the monolingual and subtask B. To
enlarge the monolingual dataset and improve model
performance, we removed 5000 monolingual vali-
dation entries from the multilingual set, translated
Chinese, Indonesian, Urdu, and Bulgarian data to
English using Google API, and then cleaned the
data to produce a refined dataset (v2).

we calculated the statistics of different versions
of datasets, as shown in Table 1. For the multi-
class subtask B, we re-labeled the dataset based on
multilingual tags, addressing a severe imbalance by
reducing instances in overrepresented categories
for balance. After receiving the test set, we in-
cluded the multilingual validation set into our train-
ing dataset and performed the same enhancement

processes, creating a v3 version for final model
training and prediction.

We further analyzed the augmented version of
the v2 dataset, as shown in Table 2. This analy-
sis includes the average sentence length and aver-
age text length, as well as the proportion of texts
exceeding 512 characters in length. The average
sentence count was obtained through sentence to-
kenization using the sent-tokenize tool, while the
average sentence length was calculated using the
word-tokenize tool from the NLTK python library.
Model performance for subtasks A and B was eval-
uated based on accuracy.

4.3 Monolingual models
In subtask A, submissions were made using two
systems based on the different language tracks. For
the monolingual English track, the system con-
sisted of five approaches across ten models, as
detailed in Table 3. The final submission system
employed a stacking ensemble method, which was
composed of the two best-performing models out
of the ten.

In Table 3, these models had a learning rate
of 1e-4, were trained for 3 epochs, and the best-
performing models on the validation set were saved.
For the fine-tuned models, we adhered to the inher-
ent 512-token length limitation to ensure consis-
tency in the input data and effective processing by
the models.

The final monolingual model selected the
top-performing two models, DeBERTa-v3-large
and RoBERTa-base model based on MPU
framework(RoBERTa-base-MPU), for stacking en-
semble learning. The learning rate for the ensem-
ble model remained set at 1e-4, trained for 1000
epochs. Only the best-performing stacking model
was retained, and the final predictions were based
on this optimal stacking model.

4.4 Multilingual models
In the multilingual track, we conducted experi-
ments employing the top five models that exhibited
promising performance in monolingual contexts.
We opted to substitute the RoBERTa model with
the XLM-R model, which is specifically designed
for multilingual tasks.

Derived from the RoBERTa architecture, the
XLM-R model has undergone training across 100
distinct languages, endowing it with multilingual
capabilities. This versatility enables the model to
process and comprehend various languages effec-
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Figure 2: This is the workflow diagram for our paper."Mon-task" and "Mul-task" respectively refer to the mono-
lingual and multilingual tasks for Subtask A, while "SubB-task" refers to Subtask B. "Mon-data", "Mul-data",
and "SubB-data" respectively refer to the datasets for the corresponding tasks."Top1-model" and "Top2-model"
respectively denote the models with the highest and second-highest performance among those utilized for the
subtask.

Subtask v1 v2 v3
train dev train dev train dev test

Monolingual 119,757 5,000 167,252 5,000 176,252 5,000 34,272
Multilingual 172,417 4,000 172,417 4,000 176,417 4,000 42,378
subtask B 71,027 3,000 105,908 3,000 176,252 3,000 18,000

Table 1: The overall data statistic. "v1" and "v2" respectively refer to the original dataset, and the dataset processed
after data augmentation. "v3" refers to the training dataset that has undergone data augmentation and other processing
after the official test dataset was released.

tively, leading to notable enhancements in perfor-
mance across diverse cross-lingual transfer tasks.
Subsequently, we identified the top two models for
integration through stacking ensemble. The integra-
tion of predictions from these two models yielded
superior predictive performance.

Following this, we trained the multilingual mod-
els on the v2 version of the multilingual training
dataset. We set the learning rate to 1e-4 and 3
epochs while retaining the models that performed
best on the validation set.

During the experimentation, we observed that
the addition of adapters to the DeBERTa-v3-large
model resulted in unstable performance, while di-
rect fine-tuning of the DeBERTa-v3-large model
exhibited better results. Based on this observa-
tion, we ultimately chose to integrate the XLM-
R-MPU model and the DeBERTa-v3-large model.
To achieve this, we saved the best models from
each training session and utilized these two opti-

mal models to generate logits. Subsequently, we
merged the logits from both sets of models as part
of the training data for the stacking ensemble’s in-
put linear layer. We set the learning rate to 1e-4
and extended the training epochs to 1000 to ensure
thorough model training. Throughout this process,
we continuously monitored and retained the best-
performing stacking model, which was ultimately
applied to the test set for final predictions.

4.5 Subtask B models

We extended the binary classification capabilities
of the RoBERTa-base model combined with the
MPU method to address multi-class problems in
subtask A, employing a one-vs-rest strategy for six
categories including human, ChatGPT, etc. This
resulted in six separate classifiers, with classifica-
tion based on the highest confidence level among
positive predictions from these classifiers for each
category.
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Statistic SubA-mono SubA-multi SubB
Train Dev Test Train Dev Test Train Dev Test

avg-sent 16.5 13.0 18.4 15.7 8.9 17.1 15.3 10.2 17.5
avg-sent-len 24.7 26.8 23.7 25.5 22.9 23.1 23.5 24.1 23.6
sent-len>512 16.7% 13.1% 23.5% 17.3% 1.2% 14.6% 15.2% 6.6% 18.9%

Table 2: The statistics of the v2 dataset. "avg-sent" represents the average number of sentences per document,
"avg-sent-len" represents the average number of words per document, "sent-len>512" represents the percentage of
documents that their sent-len are greater than 512 words.

Following this, we opted for the consistently ex-
cellent performance of the LoRA adapter-based
DeBERTa-v3-large (DeBERTa-v3-Large-LoRA)
model and applied it to subtask B. Additionally, we
introduced a new adapter-based RoBERTa-large
model. The model configurations were consistent
with the monolingual models. In the final ensemble
model, we employed stacking with the DeBERTa-
v3-Large-LoRA and RoBERTa-large models. The
learning rate was set to 1e-4, with a training pe-
riod of 3000 epochs, and only the model with the
highest score was retained.

5 Results

5.1 Monolingual results

Our evaluation work is divided into two main
stages: first, the evaluation based on the officially
provided monolingual dataset (Mon1), and second,
the evaluation based on our back-translated and
processed monolingual dataset (Mon2).

In the Mon1 evaluation stage, we aimed for a
quick baseline model implementation, using tradi-
tional deep-learning methods. The results in Ta-
ble 3 on the Mon1 dataset show that traditional
models generally outperformed the fine-tuned deep
learning models, likely due to the small size of the
official monolingual dataset, which contains only
about 110,000 entries. Consequently, large models
like RoBERTa-base may not be adequately trained,
while smaller models such as CNN or RNN could
perform better by being less prone to overfitting.

By integrating the MPU framework with the
RoBERTa-base model, performance improved by
20 percentage points over direct fine-tuning, high-
lighting MPU’s benefits in boosting short-text per-
formance and enhancing machine-generated long
text detection. Despite being designed for long doc-
uments, Longformer-base-4096 underperformed
compared to CNN and Self-Attention methods on
the Mon1 dataset.

The DeBERTa model, an advancement over

BERT and RoBERTa, excelled in our tests, espe-
cially after fine-tuning with adapters, which im-
proved both efficiency and performance, slightly
surpassing the fully fine-tuned DeBERTa. Stacking
and re-predicting logits from the top two models
led to a nearly 7% improvement over the best sin-
gle model, underscoring the effectiveness of model
fusion in increasing prediction accuracy and stabil-
ity.

In the Mon2 evaluation stage, we retrained
them on the Mon2 dataset after selecting the top
five best-performing models on the Mon1 dataset.
After retraining, the performance of the models
on the Mon2 dataset improved by approximately
20%. likely due to shorter texts enhancing feature
detection, noise reduction from removing poor-
quality data, and increased dataset diversity and
size. These factors combined allowed the models
to gain a deeper understanding of language charac-
teristics.

5.2 Multilingual results

Experiments performed on a refined multilingual
dataset employing the DeBERTa-v3-Large-LoRA
model produced a performance score of merely
0.669, notably inferior to the baseline model’s per-
formance on the unprocessed dataset. This discrep-
ancy may stem from improperly removing crucial
features during the dataset cleaning process or in-
troducing errors. Therefore, we opted to directly
train the selected model on the raw official multi-
lingual dataset, as detailed in Table 3 above. We
found that the XLM-R model integrated with the
MPU framework outperformed the baseline XLM-
R model by 7% on the dataset, thus confirming the
effectiveness of the MPU framework.

While the BERT model excels in monolingual
tasks, its performance lags behind the baseline by
approximately 7% in multilingual tasks, suggest-
ing that BERT may be less suitable for multilin-
gual classification tasks. The DeBERTa-v3-large
model, which is an improvement based on BERT
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Methods Models Mon1 Mon2 Mul SubB

Deep learning

CNN (Jiang et al., 2019) 0.762 - - -
RNN (Lin et al., 2017) 0.729 - - -
RCNN (Lin et al., 2017) 0.702 - - -
Self-Attention (Jiang and Wang, 2023) 0.762 - - -

MPU RoBERTa-base-MPU (?) 0.894 0.979 - -
XLM-R-MPU (Ours) - - 0.798 0.7

Fine-tuning

DeBERTa-v3-base (He et al., 2021) 0.823 - - -
DeBERTa-v3-large (He et al., 2021) 0.84 0.979 0.763 -
longformer-base-4096 (Beltagy et al., 2020) 0.737 - - -
BERT (Devlin et al., 2018) 0.769 0.955 0.654 -
RoBERTa-base (Liu et al., 2019) - - - 0.75
XLM-R (Liu et al., 2019) - - 0.72 -

Adapter DeBERTa-v3-Large-LoRA (Ours) 0.843 0.948 0.669 0.858
Roberta-large-LoRA (Ours) - - - 0.862

Stacking RoBERTa-base-MPU+DeBERTa-v3-large (Ours) 0.96 0.99 0.795 -
RoBERTa-large+DeBERTa-v3-large (Ours) - - - 0.94

Table 3: The overall accuracy comparison in subtask A and B. "Mon1", "Mul", and "SubB" respectively represent
the accuracy of monolingual models, multilingual models, and subtask B models trained on the v1 dev set. "Mon2"
is the dev accuracy on the v2 dataset.

and RoBERTa, outperforms the baseline XLM-R
by 3.55% on multilingual datasets. This improve-
ment can be attributed to DeBERTa’s optimizations
to both architectures, which prove particularly ef-
fective in multilingual processing, enhancing the
model’s learning capabilities and generalization.

In our experimental results table, we observe
that the performance of the DeBERTa-v3-Large-
LoRA model is 5.1% lower than the baseline model,
while also exhibiting a 9.4% decrease compared to
directly fine-tuning the DeBERTa-v3-large model.
This discrepancy in performance may stem from
significant differences in data distribution between
the pre-training task and incremental training.

Specifically, there exists a substantial differ-
ence in data distribution between the DeBERTa
model and the model fine-tuned via LoRA adapters,
resulting in insufficient parameter updates to ef-
fectively capture these differences. This phe-
nomenon suggests that although LoRA adapters
offer a parameter-efficient fine-tuning method, re-
lying solely on limited parameter adjustments may
not suffice to achieve optimal performance in situ-
ations with substantial disparities in data distribu-
tion.

The stacking results in the multilingual task
failed to surpass the performance of the XLM-R-
MPU model, which could be attributed to the al-
ready robust nature of XLM-R-MPU, potentially

causing the ensemble model to overfit on the train-
ing data, thereby reducing performance on valida-
tion or test data. Another possibility is that the two
top-performing models exhibit high correlation in
predictions (i.e., commonly making the same type
of errors), thus stacking them may not yield signifi-
cant performance improvements.

5.3 Subtask B results

Table 3 indicates that the performance of the XLM-
R-MPU model continues to deteriorate on the
dataset for subtask B, indicating poor results. This
could be attributed to the model originally being de-
signed for binary classification tasks and not being
well-suited for multi-class tasks.

We found that by directly freezing the model and
fine-tuning the adapter-based DeBERTa-v3-Large
(DeBERTa-v3-Large-LoRA) and RoBERTa-large
(Roberta-large-LoRA) models, the classification
effectiveness significantly improved, outperform-
ing the official baseline by approximately 10 per-
centage points.The use of the LoRA adapter al-
lows models to more effectively utilize pre-trained
knowledge while avoiding over-fine-tuning and
reducing the risk of overfitting on specific tasks.
After data cleaning, the pre-trained data used
by DeBERTa-v3-large and RoBERTa-large were
closer to the target multi-class task, potentially fur-
ther enhancing their performance.
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6 Ablations

We conducted ablation experiments using the
DeBERTa-v3-large and Roberta-base models on
the Mon1 dataset. As shown in Table 4, the experi-
mental results indicate that the introduction of the
MPU framework and stacking ensemble method
significantly improves the model’s performance,
resulting in a notable performance enhancement

However, despite the inclusion of the LoRA
adapter, the performance improvement is not sig-
nificant. This could be attributed to the insuffi-
cient number of parameters fine-tuned solely by
the adapter when faced with complex tasks, which
hinders the model from learning additional knowl-
edge effectively.

Methods Results
DeBERTa-v3-large 0.84
DeBERTa-v3-large w/ LoRA 0.843
Roberta-base 0.694
Roberta-base w/ MPU 0.894
Stacking 0.96

Table 4: Ablation experiments. "Stacking" refers to
the aggregation of results from the "DeBERTa-v3-large
with LoRA" model and the "Roberta-base with MPU"
model.

7 Official test results

Our system ranks 8th on Semeval 2024 Task 8
official multilingual test set of subtask A. It is note-
worthy that, employing the same method, Only the
model trained on the multilingual dataset surpassed
the baseline of 0.80 with a score of 0.90, while
models on monolingual datasets and Task B exhib-
ited comparatively inferior performance, with none
of the submissions reaching the respective domain
baselines.

This phenomenon could be attributed to several
factors. Firstly, although monolingual validation
sets were removed from the multilingual training
set, the processed multilingual training data may
still share similarities with monolingual validation
sets. This could lead to superior model perfor-
mance during evaluation; however, due to dispari-
ties between the final test set data and the processed
multilingual data, models may fail to meet baseline
performance on the test set. Secondly, model train-
ing based on fine-tuning may encounter instability
and catastrophic forgetting issues, thus affecting
the model’s generalization ability. Therefore, even

with the same model, discrepancies in performance
on official test sets may arise due to differences be-
tween datasets, resulting in significant performance
gaps.

8 Conclusion

In conclusion, our team developed three distinct
systems for SemEval-2024 Task 8, targeting the
monolingual and multilingual aspects of subtask A
and addressing subtask B. We achieve 8th place in
the multilingual setting of subtask A. We leveraged
back-translation to expand the training datasets for
both monolingual and subtask B. The RoBERTa-
base and XLM-R models, enhanced by the MPU
framework, showed improved detection of short
texts in both monolingual and multilingual settings.
Finally, the stacking method allowed us to com-
bine the strengths of multiple models, improving
our system’s predictive accuracy. Future efforts
will consider incorporating advancements in cross-
lingual pre-trained models in our subsequent work
to further enhance the model’s understanding of
texts across diverse languages and cultural back-
grounds.
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