
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 403–411
June 20-21, 2024 ©2024 Association for Computational Linguistics

Team Unibuc - NLP at SemEval-2024 Task 8:
Transformer and Hybrid Deep Learning Based Models for

Machine-Generated Text Detection
Teodor-George Marchitan1,3,* , Claudiu Creanga2,3,* , Liviu P. Dinu1,3

1 Faculty of Mathematics and Computer Science,
2 Interdisciplinary School of Doctoral Studies,

3 HLT Research Center,
University of Bucharest, Romania

teodor.marchitan@s.unibuc.ro, claudiu.creanga@s.unibuc.ro, ldinu@fmi.unibuc.ro

Abstract

This paper describes the approach of the
UniBuc - NLP team in tackling the Se-
mEval 2024 Task 8: Multigenerator, Multido-
main, and Multilingual Black-Box Machine-
Generated Text Detection. We explored
transformer-based and hybrid deep learning
architectures. For subtask B, our transformer-
based model achieved a strong second-place
out of 77 teams with an accuracy of 86.95%,
demonstrating the architecture’s suitability for
this task. However, our models showed over-
fitting in subtask A which could potentially
be fixed with less fine-tunning and increas-
ing maximum sequence length. For sub-
task C (token-level classification), our hybrid
model overfit during training, hindering its
ability to detect transitions between human
and machine-generated text.

1 Introduction

Task 8 from SemEval 2024 competition (Wang
et al., 2024a) aims to tackle the complex challenge
of distinguishing between human and AI gener-
ated text. Doing so is crucial for maintaining the
integrity and authenticity of information as it helps
prevent the spread of misinformation and ensures
that content sources are accountable. By develop-
ing tools for this task, which work in a multilin-
gual setting, and releasing them open source we
can combat non-ethical uses of AI such as propa-
ganda, misinformation, deepfakes, social manipu-
lation and others.

The systems developed for subtasks A and B are
based on transformer models with different layers
selection and merging strategies, followed by a set
of fully connected layers. The training is split in
two phases: a) freezing phase, where the trans-
former weights are not updated, only the fully con-
nected layers are updated with a specific learning

* Equal contributors

rate; b) fine-tuning phase, where the selected lay-
ers of the transformer and the fully connected lay-
ers are updated with a different (usually smaller)
learning rate. For the subtask C, a different archi-
tecture was used, combining character level fea-
tures, extracted with a CNN model, with word em-
beddings and fed into a Bidirectional LSTM fol-
lowed by a set of fully connected layers. The same
training strategy with different learning rates was
used.

Our error analysis revealed that overfitting re-
mains a primary challenge, despite our initial pre-
cautions. We learned that for future fine-tuning of
transformer models, we should dedicate a lot more
time to prevent overfitting. We made our models
open source in a GitHub Repository.

2 Background

The competition had 3 tasks explained below (Fig-
ure 1). Subtask A had 2 sub-tracks: monolingual
(English only) and multilingual.

Figure 1: Three sub-tasks explained

We participated in all 3 tasks with the best result
being second place on subtask B (Table 1).

2.1 Dataset
The data for this task is an extension of the M4
dataset (Wang et al., 2024b,c). Compared to sub-
task A and B, subtask C had much less data to
work with. We found out that we could increase
the size of our datasets for subtask A monolingual

403

https://github.com/ClaudiuCreanga/semeval-2024-task-8


A mono A multi Track B Track C

Score 85.13 79.43 86.95 74.28
Place 33 / 137 30 / 68 2 / 77 31 / 33

Table 1: Team results

A mono A multi Track B Track C

Train 119757 172417 71027 3649
Dev 5000 4000 3000 505
Test 34272 42378 18000 11123

Table 2: Datasets sizes used in this competition by
tasks.

by adding the dataset from subtask B and remove
duplicated items (Table 2).

2.2 Previous Work

Since GPT-2, it has been particularly difficult to
detect machine-generated text, such that classi-
cal machine learning methods can no longer help.
Previously, when models used top-k sampling,
this resulted in text filled with too many common
words and models could detect this anomaly eas-
ily (Ippolito et al., 2020). But now with bigger
and bigger models and other type of sampling (like
nucleus sampling), fewer artifacts are left for a de-
tector to spot. Solaiman et al. (2019) showed that
by fine-tuning a RoBERTa model we can achieve
state of the art results for GPT-2 generated text
with a 95% accuracy.

If for GPT-2, expert human evaluators achieved
an accuracy of 70% (Ippolito et al., 2020), for
GPT-3 and later models their accuracy is on par
with random chance (Clark et al., 2021). It is still
an open question if we can improve automated de-
tection. Many companies (like OpenAI and Tur-
nitin) are releasing products and claim to do it, but
suffer from low rates of accuracy. In July 2023,
OpenAI removed its product for this reason.

3 System overview

In this paper, we focused our research on two dif-
ferent system architectures: Transformer based
models (3.1) and Hybrid deep learning models
(3.2).

Both architectures use a block of fully con-
nected layers (Figure 2) with the base structure be-
ing initiated with a linear layer, succeeded by nor-
malization, a tanh activation function, followed by

a dropout layer (0.5). Finally, it concludes with a
linear layer with an output size of 1 for subtask A
and 6 for subtask B .

Figure 2: Fully connected layer base structure

3.1 Transformer based models
The core of this architecture is based on trans-
former models (Figure 3). The strategy is to
use the transformer model as a feature extractor,
pass the information through fully connected lay-
ers (Figure 2) and apply the activation function
based on the predictions for each task.

Figure 3: Transformer based models architecture

During the process of developing our system
with this architecture, we encountered three dif-
ficulties that we had to address: 1) Long texts but
limited number of tokens accepted by the trans-
former models (3.1.1); 2) Layer selection for fea-
ture extraction step (3.1.2); 3) Fine-tuning strategy
to prevent overfitting (3.1.3).

3.1.1 Long text problem
Most of the transformer models accept a maxi-
mum of 512 tokens per sequence. We have also
experimented the same strategies as described by
Sun et al. (2020) in order to handle long texts.

I. Truncation methods:

• Head only: Keep only the first 510 to-
kens from the entire text. (extra 2 tokens
for [CLS] and [SEP] tokens)

404

https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text


• Tail only: Keep only the last 510 tokens
from the entire text. (extra 2 tokens for
[CLS] and [SEP] tokens)

• Head and Tail: Combined the first 128
tokens with the last 384 tokens from the
entire text.

II. Hierarchical methods: Each text is split into
k = L/512 chunks. For each chunk we get
the pooled representation of [CLS] token and
merge all chunk representations using mean
or max.

Our experiments proved that truncation method
with head only works best for the given dataset as
well.

3.1.2 Layer selection
Most transformer models have multiple layers and
each layer is capturing different features from the
input text (Sun et al., 2020). Intuitively, lower lay-
ers capture more general features at the token level
and as we move up the layers, the captured fea-
tures are more contextualized and more sensitive
to the context of the tokens.

From our experiments, concatenating the last 4
layers and using only the last layer from the trans-
former proved to give the best results. Because of
the limited resources, we chose to use only the last
layer.

3.1.3 Fine-tuning strategy
Fine-tuning the transformer model for a down-
stream task is also challenging. Each layer of the
transformer captures a different level of seman-
tic and syntactic information from the input text
(Yosinski et al., 2014; Howard and Ruder, 2018;
Sun et al., 2020). We implemented a Head-First
Fine-Tuning (HeFit) strategy (Michail et al., 2023)
and used different learning rates for different lay-
ers (Sun et al., 2020):

1. For the first number of epochs [1, k] we com-
pletely freeze the transformer layers without
updating any of the weights.

2. For the rest of the epochs [k+1, N ] we fine-
tune only the selected layers used for feature
extraction.

Using this strategy, we are not only using less
resources, but we can also preserve the more gen-
eral information of the transformer (freezing lower

layers) and updating information that is most rel-
evant to the downstream task (fine-tuning selected
upper layers).

3.2 Hybrid deep learning models

This model architecture (Figure 5) was inspired by
the work of Chiu and Nichols (2016) which proved
to be very efficient for named entity recognition
task. The idea was to convert words and charac-
ters into vector representations using lookup tables
and concatenate them in order to be fed into a neu-
ral network. For the character-level features we
used a lookup table for the character embeddings
and applied a 1D convolution followed by a 1D
max pooling layer (Figure 4). For the word-level
features we used a lookup table for the word em-
beddings. We concatenated the word and charac-
ter features and fed them through a bidirectional
LSTM and then a set of fully connected layers
(Figure 5 - method 1).

This model was mainly used for the subtask C,
which we treated as a token classification task.
Therefore we have also made some experiments
adding a conditional random field (Sutton and Mc-
Callum, 2010) on top of the fully connected layers
(Figure 5 - method 2). This method was proved to
be very efficient for sequence tagging by the work
of Huang et al. (2015).

Figure 4: CNN-character level features

3.3 Experimental setup

During the training phase, we utilized the develop-
ment (dev) dataset as our test set, while the train-
ing dataset was divided into a training subset and
a validation subset, following an 80%-20% split.
For the construction of the final model, the entire
training dataset was used for training purposes,
with the dev set serving as our validation set. In
terms of text preprocessing, we experimented with

405



Figure 5: Hybrid deep learning model architectures.
Method 1 to use the predictions directly from the fully
connected block and method 2 using CRF before pre-
dictions.

three different approaches:

• Heavy: Involved removing pre-trained lan-
guage model special tokens such as <pad>,
<s>, <unk>, etc., converting numbers into
words, and eliminating special characters or
formats like emails and URLs.

• Light: Consisted of converting text to lower-
case and removing special characters, includ-
ing numbers.

• None: Text was used as is, without any pre-
processing.

We observed that the model performed best
with no preprocessing, a finding that aligns with
the inherent flexibility of Masked Language Mod-
els to efficiently process raw text.

To determine the optimal number of training
epochs, both when the pre-trained layers were kept
frozen and during the fine-tuning phase, we moni-
tored the validation set’s loss and the test set’s per-
formance, opting for conservative epoch counts to
prevent overfitting.

3.4 Subtask A
For this subtask, in order to be able to run the mod-
els based on the transformer architectures, we used

the head only truncation strategy (3.1.2 - I.) with
the first 512 tokens.

3.4.1 Monolingual
In the monolingual track, the final submission is
a transformer-based model architecture (3.1) with
RoBERTa-base pre-trained model. The extracted
features from the transformer are only from the
[CLS] token of the last hidden layer with a 0.3
dropout applied. The fully connected block is
built with 2 base structures (Figure 2) consisting
of [256, 64] neurons. A 0.5 dropout is applied
and sigmoid activation function is used in order
to make the predictions. We trained this model in
total for 5 epochs with the entire transformer ar-
chitecture freezed and a batch size of 24 using the
AdamW optimizer with a learning rate of 2e − 4
and the binary-cross entropy loss.

Regarding the layer selection, most of the ex-
periments were done only using the last layer. We
did some testing with last 4 layers (for some pre-
trained transformers) but we could not batch size
24 anymore because of the limited resources if it
were to also fine-tune the transformer’s selected
layers. We have also tested with multiple batch
sizes and 24 seemed to work best in our case. Re-
sults in Table 4.

3.4.2 Multilingual
For the multilingual track we used models pre-
trained in a multilingual context (Table 3) and for
the final submission we chose mdeberta-v3-base
which, even though it didn’t support Indonesian,
it gave the best results. The hyper-parameters that
we chose were: batch size of 32, token max length
of 512, a fully connecter layer (Figure 2) of 128,
learning rate for the "frozen step" of 0.001 (where
we train only the output layer) and smaller for fine-
tuning: 0.0002.

3.5 Subtask B

In the subtask B, the final submission is a
transformer-based model architecture (3.1) with
RoBERTa-base pre-trained model. The extracted
features from the transformer are only from the
[CLS] token of the last hidden layer with a 0.3
dropout applied. The fully connected block is
built with 2 base structures (Figure 2) consisting
of [512, 128] neurons and the final output size of
the model being 6. A 0.5 dropout is applied with
no activation function for making the predictions.
We trained this model in total for 8 epochs, first

406



6 epochs with the entire transformer architecture
freezed, and the last 2 epochs also fine-tuning the
last layer of the transformer (3.1.3). The batch size
used was 32 and optimizer AdamW with a learn-
ing rate of 3e−4 for the freeze part of the training
(updating only the fully-connected block weights)
and 2e − 4 for the fine-tuning part with a linear
scheduler with 50 warmup steps and cross entropy
loss.

Regarding the layer selection, most of the ex-
periments were done only using the last layer. We
did some testing with last 4 layers (for some pre-
trained transformers) but we could not batch size
32 anymore because of the limited resources if it
were to also fine-tune the transformer’s selected
layers. We have also tested with multiple batch
sizes and 32 seemed to work best in our case. Re-
sults in Table 5.

3.6 Subtask C

We treated this subtask as a token classification
one and changed the labels from positions to list
of 0 and 1, where 0 means that the token at that
specific position is not machine generated and 1
otherwise.

The tokenization was done by splitting the text
by space and kept only the first 1024 tokens from
the entire text. As for the maximum character
length of the tokens we went with 25.

The final submission is a hybrid deep learning
model architecture (3.2). We used the method
2 variation of the architecture (Figure 5 with the
CRF model right before making the predictions.

For the CNN-character features we set the char-
acter embeddings dimension to 10 and randomly
initialized the lookup table using uniform distri-
bution with range [−0.5, 0.5]. We used the convo-
lution with kernel size 3 and 20 filters with a 0.5
dropout afterwards. The word embedding dimen-
sion used is 300 and the lookup table randomly ini-
tialized in the same manner. For the bidirectional
LSTM we used 2 filters with 32 hidden dimension
each. The fully connected block is build with a
fully connected base structure (2) with 32 neurons
and final output size of 2.

We trained this model in total for 3 epochs with
a batch size of 12 and optimizer AdamW with a
learning rate of 5e− 3 for the first 2 epochs of the
training and 3e− 3 in the last epoch together with
a linear scheduler with no warmup steps and cross
entropy loss.

4 Results

4.1 Subtask A

For both monolingual and multilingual our model
under-predicted the human-written class. In the
case of the monolingual track our model performs
equally well in detecting machine-generated text
for each model, but under calls the negative class
(Figure 6). It predicts 23043 items as machine
generated and 11229 as human-written while the
truth was more balanced (18000 vs. 16272). We
obtain good accuracy for each machine generated
model, but we under-call the human label (0.68
accuracy) so in the end the final score is 0.85.

Figure 6: Subtask A: monolingual - accuracy by model
for test set

In the case of multilingual, testing on dev data
gave us an accuracy of 0.96 but the final test score
was 0.79. Our model predicted 30764 samples
as machine generated and only 11614 as human-
written, while the true distribution was more bal-
anced (22140 vs. 20238). This suggests that our
model was overfit and had a bias for the positive
class. If we look at the distribution per model we
can see that we have a good accuracy on all mod-
els, except for human and a bit worse for chatGPT
(Figure 7), ending up with a final score of 0.79.

Figure 7: Subtask A: multilingual - accuracy by model
for test set

407



If we look at sequence length we can see an
U shaped graph at 500 - 1500 number of tokens,
where the model performs worst (Figure 8) for
both monolingual and multilingual tracks. We be-
lieve this is because our transformers had a limit
of 512 for token length and we didn’t have the re-
sources to train on a bigger sequence length.

Figure 8: Subtask A: accuracy by sequence length in
tokens, monolingual and multilingual

4.2 Subtask B
Our most notable performance was achieved in
subtask B, where we secured the second posi-
tion from a total of 77 participating teams, with
an accuracy score of 86.95%, very close to first
position. Upon examining the accuracy break-
down by model, it becomes evident that our model
exhibited strong performance, particularly with
bloomz and chatGPT outputs, while facing more
challenges with cohere (refer to Figure 9). The
elevated score compared to Task A implies that
our model’s architecture and training methodology
were well-suited for the demands of a multiclass
classification task.

Figure 9: Subtask B: accuracy by model for test set.

4.3 Subtask C
Our results on the subtask C show that the model
architecture we chose alongside the hyperparam-
eters overfitted drastically on this dataset. The

MAE on training data decreased from 18.8 to 4.39
and on validation data decreased from 18.04 to
8.34 during the training phase, while on the fi-
nal test dataset the MAE increased to 74.28. This
proves that the character and word embeddings
could not generalize that good in order to be able
to find that transition spot from human text to ma-
chine generated text.

5 Conclusions and Future Work

In conclusion, our architecture and training meth-
ods produced good results for subtask B (securing
the second place). However, our models demon-
strated signs of overfitting for subtask A. We could
not find a proper explanation for why the model
architecture work better on subtask B and is over-
fitting that much on the other task. Our future en-
deavors will explore several avenues:

• Extended Sequence Lengths: With more
powerful machines we plan to increase the
token length from 512 to 1024 in order to
capture a wider context, which could improve
their performance.

• Ensemble Learning with Model Special-
ization: Split the dataset by originating
model (chatGPT, cohere etc.) and train spe-
cialized models on each subset. Each special-
ized model will become adept at discerning
text generated by its corresponding model.
By aggregating predictions from these spe-
cialized models, we aim to construct a meta-
model capable of making better final predic-
tions.

• LLM: We plan to investigate the efficacy of
large language models (like Mistral/Mixtral
or Solar) with either zero shot learning or few
shot learning scenarios. For few-shot learn-
ing, we intend to exploit the in-context learn-
ing capabilities of LLMs by presenting them
with pairs of examples (one human-written
and one machine-generated) within the same
context window. We will then ask the model
to predict an unseen example.

Acknowledgements

This work was partially supported by a grant on
Machine Reading Comprehension from Accenture
Labs and by the POCIDIF project in Action 1.2.
"Romanian Hub for Artificial Intelligence".

408



References
Jason P. C. Chiu and Eric Nichols. 2016. Named entity

recognition with bidirectional lstm-cnns.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A. Smith.
2021. All that’s ‘human’ is not gold: Evaluating
human evaluation of generated text. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7282–7296,
Online. Association for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are
fooled. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 1808–1822, Online. Association for Compu-
tational Linguistics.

Andrianos Michail, Stefanos Konstantinou, and Si-
mon Clematide. 2023. Uzhclypatsemeval −
2023task9 : Head − firstfine −
tuningandchatgptdatagenerationforcross −
linguallearningintweetintimacyprediction.
In Proceedings of the The 17th International
Workshop on Semantic Evaluation (SemEval-2023).
Association for Computational Linguistics.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, and Jasmine Wang. 2019. Release strategies
and the social impacts of language models. ArXiv,
abs/1908.09203.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2020. How to fine-tune bert for text classification?

Charles Sutton and Andrew McCallum. 2010. An in-
troduction to conditional random fields.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, jinyan
su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024a. Semeval-2024 task 8: Multidomain,
multimodel and multilingual machine-generated text
detection. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
pages 2041–2063, Mexico City, Mexico. Associa-
tion for Computational Linguistics.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek Mah-
moud, Toru Sasaki, Thomas Arnold, Alham Fikri

Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024b. M4: Multi-generator, multi-domain,
and multi-lingual black-box machine-generated text
detection. In Proceedings of the 18th Conference of
the European Chapter of the Association for Com-
putational Linguistics, Malta.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Akim
Tsvigun, Jinyan Su, Artem Shelmanov, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puc-
cetti, Thomas Arnold, Alham Fikri Aji, Nizar
Habash, Iryna Gurevych, and Preslav Nakov. 2024c.
MG-Bench: Evaluation benchmark for black-box
machine-generated text detection.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks?

A Further experiments - Subtask A

For most of the experiments in subtask A mono-
lingual, we used two fully connected layers (2)
with [256, 64] neurons, batch size 24 and trained
the model in total for 5 epochs. For all experi-
ments we used AdamW optimizer with learning
rate 2e−4 and binary-cross entropy loss. For some
of the experiments we have also tried fine-tuning
the last n selected layers (in most cases just the
last layer) for the last k epochs. In those cases, we
have also used a linear scheduler with 50 warmup
steps and changed the learning rate as well. The
results can be seen in Table 4. Experiments for the
multilingual track kept the same architecture as the
monolingual one but used multilingual pre-trained
models Table 3.

Model Train Validation Test Final

mdeberta-v3 0.96 0.95 0.94 0.79
xlm-roberta 0.97 0.95 0.92 0.78
bert-multi 0.95 0.92 0.91 0.75

distilbert-multi 0.93 0.90 0.89 0.73

Table 3: Experiment results by pre-trained model -
multilingual. Validation was the dev set, test size was
0.2 and final score is the test score in competition.

B Further experiments - Subtask B

For most of the experiments in subtask B, we used
two fully connected layers (2) with [512, 128] neu-
rons, batch size 32 and a trained the model in total
8 epochs. For all experiments we used AdamW
optimizer with learning rate 3e − 4 and cross en-
tropy loss. For some of the experiments we have
also tried fine-tuning the last n selected layers (in
most cases just the last layer) for the last k epochs.

409

http://arxiv.org/abs/1511.08308
http://arxiv.org/abs/1511.08308
https://doi.org/10.18653/v1/2021.acl-long.565
https://doi.org/10.18653/v1/2021.acl-long.565
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2023.semeval-1.140
https://doi.org/10.18653/v1/2023.semeval-1.140
https://doi.org/10.18653/v1/2023.semeval-1.140
https://doi.org/10.18653/v1/2023.semeval-1.140
https://api.semanticscholar.org/CorpusID:201666234
https://api.semanticscholar.org/CorpusID:201666234
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1011.4088
http://arxiv.org/abs/1011.4088
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792


In those cases, we have also used a linear sched-
uler with 50 warmup steps and changed the learn-
ing rate as well. The results can be seen in Table 5.

410



Base model Epochs before fine-tune LR fine-tune Train Validation Test Final

roberta-base 5 — 0.89 0.94 0.89 0.85
flan-t5-base 5 — 0.98 0.97 0.95 0.84

deberta-v3-large 5 — 0.98 0.97 0.96 0.85
albert-base-v2 5 — 0.77 0.82 0.74 0.83
bert-base-cased 5 — 0.79 0.80 0.76 0.86

distilbert-base-uncased 5 — 0.84 0.85 0.79 0.74
gpt2 5 — 0.92 0.92 0.86 0.76

xlm-roberta-base 5 — 0.74 0.79 0.75 0.83
xlnet-base-cased 5 — 0.74 0.80 0.79 0.79
roberta-base 4 0.0002 0.88 0.92 0.88 0.83
roberta-base 3 0.0001 0.99 0.99 0.93 0.68

Table 4: Experiment results for Subtask A - monolingual track. Validation was the dev set, test size was 0.2 and
final score is the test score in competition.

Base model Epochs Epochs before fine-tune LR fine-tune Train Validation Test Final

roberta-base 8 6 0.0002 0.98 0.97 0.90 0.87
roberta-base 6 6 — 0.76 0.86 0.74 0.59
bert-base-cased 8 6 0.0002 0.92 0.88 0.90 0.57
bert-base-cased 6 6 — 0.67 0.76 0.63 0.47

Table 5: Experiment results for Subtask B. Validation was the dev set, test size was 0.2 and final score is the test
score in competition.

411


