
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 399–402
June 20-21, 2024 ©2024 Association for Computational Linguistics

Kathlalu at SemEval-2024 Task 8:
A Comparative Analysis of Binary Classification Methods

for Distinguishing Between Human and Machine-generated Text

Lujia Cao and Ece Lara Kılıç and Katharina Will
University of Tübingen

{lujia.cao, ece-lara.kilic, katharina.will}@student.uni-tuebingen.de

Abstract

This paper investigates two methods for
constructing a binary classifier to distin-
guish between human-generated and machine-
generated text. The main emphasis is on a
straightforward approach based on Zipf’s law,
which, despite its simplicity, achieves a mod-
erate level of performance. Additionally, the
paper briefly discusses experimentation with
the utilization of unigram word counts.

1 Introduction

This paper addresses the task of classifying textual
data as human or machine-generated, focusing on
Subtask A Wang et al. (2024) with monolingual En-
glish data. The rise of technologies like ChatGPT
has led to a surge in the use of machine-generated
content in academia and workplaces. The task is
crucial for ensuring the authenticity of texts, es-
pecially as individuals may potentially claim au-
thorship of machine-generated content as their own
work, raising concerns about academic integrity.
By focusing on Subtask A and utilizing English-
language data, this research addresses the chal-
lenges associated with the increasing prevalence
of machine-generated text in academic and pro-
fessional contexts, offering effective classification
methods. In this paper, we use simple methods
based on linguistic intuition to distinguish between
human and machine-generated text. Our primary
approaches involve leveraging Zipf’s Law as one
method, and employing word unigram counts as
another.
We explored multiple approaches, ultimately nar-
rowing our focus to two strategies. Although we
submitted only one approach for leaderboard con-
sideration, we believe the other one offers valuable
insights as well. Surprisingly, we found that our
simple methods based on linguistic intuition can
rival the performance of large language models in
the same task. While this approach could have

been applied to the multilingual track, regrettably,
time constraints prevented us from pursuing this
direction. We ranked in the middle compared to
other teams participating in this task.

2 Background

In configuring our task, we utilized the subtask
A monolingual training data to train all three ap-
proaches, encompassing texts from both humans
and models such as ChatGPT OpenAI (2022), Co-
here Cohere (n.d.), Davinci OpenAI (n.d.), and
Dolly Hugging Face (n.d.). Each data entry in-
cluded the text, its source, the model used, the
assigned label (either 0 or 1), and a unique iden-
tifier. For development purposes, we employed
the subtask A monolingual development data,
which featured texts generated by humans and the
Bloomz BigScience (n.d.) model, along with their
corresponding source, model, label, and ID. The
final test data exclusively included texts and their
respective IDs, with all other information omitted.
The output data comprised jsonl files containing
only the text IDs and their predicted labels (either
0 or 1). These files were generated once using the
development data to refine our approach and again
for the final test data, aligning with the task objec-
tive of predicting the label for a given text using
our approach.
Our research delved into the practical implementa-
tion of Zipf’s Law for binary classification. While
consulting Linders and Louwerse’s paper Linders
and Louwerse (2020), as well as Nguyen-Son et
al. Nguyen-Son et al. (2017), we found theoreti-
cal mentions of its potential application. However,
none of these sources provided an actual approach.
In contrast, our approach involves the concrete im-
plementation of Zipf’s Law, resulting in a function-
ing system.

399



3 System Overview

3.1 Zipf’s Law
Following an extensive review of the literature con-
cerning methodologies aimed at discriminating be-
tween human and machine-generated textual con-
tent, our inquiry identified Zipf’s Law as a poten-
tially promising avenue of investigation. Despite
the limited prevalence of existing methodologies
leveraging this distribution, we deemed it worthy
of investigation. Our rationale for pursuing this
direction stems from the observed advantages in
terms of computational efficiency and simplicity
compared to Large Language Model (LLM) based
approaches, which typically incur higher computa-
tional demands.
Zipf’s Law is characterized by the following equa-
tion.

f =
C

rs

• f(r) represents the frequency of the rank rth
term.

• C is a constant.

• s is the Zipf exponent, typically close to 1.

This formula illustrates the inverse relationship be-
tween the frequency of a term and its rank in a
given dataset, with the Zipf exponent governing the
rate of decline in frequency as rank increases.
Our code initiates by tokenizing the text into indi-
vidual words, followed by the computation of each
word’s frequency within the text. This preliminary
step is pivotal for acquiring the empirical frequency
distribution of words. After computing word fre-
quencies and their corresponding ranks, we fit a
curve to the Zipfian distribution. This step takes
into account the Zipfian distribution function, word
ranks, and frequencies as input parameters. By
optimizing the scaling parameter s of the Zipfian
distribution, fitting the observed data to a curve
reveals the text’s adherence to Zipf’s law. This
process aims to determine the optimal parameters
(such as the scaling parameter s and constant C)
for the Zipfian distribution function.

Leveraging the parameter s, the Zipfian distribu-
tion, we computed mean values for texts of label
0 and label 1. Subsequently, we determined their
midpoint (-0.125) to serve as the threshold for clas-
sifying a text as either label 0 (human-generated)
or label 1 (machine-generated).
In the system overview, following label prediction

label 0 label 1

min -0.539 -1.778
max 2.212e-09 -1.550e-10
mean -0.111 -0.139

Table 1: Zipfian distribution of labels 0 and 1

Figure 1: Zipfian distribution of labels 0 and 1

for the development data in subtask A monolingual
track, we conduct a thorough evaluation by man-
ually computing a preliminary F1 score using the
actual labels as references. Our prediction process
involves assigning labels based on Zipfian values,
where values below the predefined threshold re-
ceive label 0 and those exceeding it are labeled
as 1. We systematically apply the Zipfian distribu-
tion method to the texts extracted from the develop-
ment data, facilitating precise label determination
during subsequent analysis.
Our system obtained an F1 score of 0.72 on the de-
velopment set. We used the same threshold/model
to predict the labels on the test set.
The F1 score obtained on the official leaderboard
for this approach yielded a value of 0.729. This
metric provides a robust assessment of our ap-
proach’s performance in the context of the shared
task.

3.2 Unigram

Although we did not submit the predictions of the
unigram approach, we will clarify its setup here.
This method mirrors the structure of the Zipf’s Law
approach, yet diverges in its focus on calculating
the number of words per text.

The mentioned values led us to establish a thresh-
old of 450.303. With this threshold in place, the
prediction process commenced: texts with word
counts surpassing it were predicted as 0, indicating

400



label 0 label 1

min 2 6
max 33220 2665
mean 583.755 316.850

Table 2: Word counts of labels 0 and 1

Figure 2: Word counts of labels 0 and 1

a human author, while those falling below were
labeled as 1, indicating machine-generated text.
Subsequently, we proceeded with text extraction
for the test data, calculating the word counts for
each text. We made predictions based on this.
Our preliminary F1 score for this approach stood
at 0.59 on the development set, which, while re-
spectable, fell short of the performance achieved
by the Zipf’s Law approach. This discrepancy led
us to opt against pursuing further development of
the unigram approach.

3.3 Comparing Zipf’s Law and Unigram

The unigram method focuses on capturing informa-
tion related to word frequencies, providing insights
into the overall lexical diversity and richness of
the text. In contrast, the Zipf method leverages
the distributional characteristics of word frequen-
cies, emphasizing patterns of occurrence and rank-
order relationships. Together, these approaches
offer complementary perspectives on textual con-
tent, enabling a more comprehensive analysis of
linguistic features.
The unigram method may excel in scenarios where
the distribution of word frequencies significantly
impacts classification outcomes, such as detecting
texts with distinct lexical signatures or vocabulary
usage patterns. On the other hand, the Zipf method
may prove more effective in identifying structural
patterns and deviations from expected frequency

distributions, particularly in texts generated by lan-
guage models with predictable language patterns.
While the unigram and Zipf methods differ in their
primary focus and underlying principles, there is
some overlap in the information they capture. The
unigram method operates at the level of individual
word occurrences, providing insights into the fre-
quency and distribution of specific terms within the
text, while the Zipf method considers the broader
distributional patterns of word frequencies, focus-
ing on rank-order relationships and overall distri-
bution shapes.

4 Experimental Setup

For implementing the Zipf’s Law and word uni-
gram approach, we relied on Counter Python Soft-
ware Foundation (2022), numpy NumPy (2022),
and curve_fit from scipy.optimize SciPy (2022),
without requiring any additional external tools or
libraries. We utilized the provided data without
creating additional splits. During testing on the de-
velopment data, we employed the function f1_score
from sklearn.metrics scikit-learn (2022).

5 Results

Our initial two approaches exhibit commendable
performance in accurately predicting labels. The
F1 score for the labels predicted by the Zipf’s Law
approach was 0.729 in the official ranking, with
the task organizers’ baseline set at 0.884. Our sub-
mission secured the 83rd position out of 137 in
the official rankings. The preliminary F1 score for
the unigram approach was 0.60, reflecting the test
phase; however, this result was not included in the
final submission.

6 Conclusion

In conclusion, we are satisfied with the perfor-
mance of our Zipf’s Law system in the shared
task, particularly given its simplicity compared to
other model-based approaches. The unigram sys-
tem demonstrated commendable performance as
well. We also explored training a linear Support
Vector Classifier (SVC) scikit-learn (n.d.a) using
character n-grams and employing a sublinear tf-
idf scikit-learn (n.d.b) approach. We integrated sev-
eral models, partitioning the training data into dis-
tinct files representing specific models used, such
as ChatGPT, Cohere, Davinci, and Dolly, ensuring
a balanced distribution of human-generated texts
across all model categories. Despite our careful

401



preparations, all four models unexpectedly pro-
duced identical labels for all texts during prediction,
rendering the system ineffective. This unexpected
outcome highlights the necessity of rigorous test-
ing and debugging to ensure the reliability of our
methods. Identifying and resolving the underly-
ing issues will be crucial for future improvements
in model performance and credibility. Moving for-
ward, we intend to enhance both the Zipf’s Law and
unigram systems through a comprehensive review
of relevant literature. Additionally, we’re dedicated
to fixing the bug in our tf-idf vectorizer to maxi-
mize its potential in future iterations.

References
BigScience. n.d. Bloomz. Hugging Face. Accessed:

February 13, 2024.

Cohere. n.d. Cohere. Cohere. Accessed: February 13,
2024.

Hugging Face. n.d. Databricks/dolly-v2-12b. Hugging
Face. Accessed: February 13, 2024.

Guido M. Linders and Max. M. Louwerse. 2020. Zipf’s
law in human-machine dialog. In Proceedings of
the 20th ACM International Conference on Intelli-
gent Virtual Agents, IVA ’20, New York, NY, USA.
Association for Computing Machinery.

Hoang-Quoc Nguyen-Son, Ngoc-Dung T. Tieu, Huy H.
Nguyen, Junichi Yamagishi, and Isao Echi Zen. 2017.
Identifying computer-generated text using statistical
analysis. In 2017 Asia-Pacific Signal and Informa-
tion Processing Association Annual Summit and Con-
ference (APSIPA ASC), pages 1504–1511.

NumPy. 2022. NumPy: Array processing for numbers,
strings, records, and objects. Accessed: February 13,
2024.

OpenAI. 2022. ChatGPT. AI language model. Ac-
cessed: February 13, 2024.

OpenAI. n.d. DaVinci. DaVinci. Accessed: February
13, 2024.

Python Software Foundation. 2022. Python Collections
Module. Accessed: February 13, 2024.

scikit-learn. 2022. scikit-learn: Machine Learning in
Python. Version 1.0.2.

scikit-learn. n.d.a. Linear SVC. scikit. Accessed:
February 18, 2024.

scikit-learn. n.d.b. tf-idf. scikit. Accessed: February
18, 2024.

SciPy. 2022. SciPy: Scientific Library for Python. Ac-
cessed: February 13, 2024.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, jinyan
su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024. Semeval-2024 task 8: Multidomain,
multimodel and multilingual machine-generated text
detection. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
pages 2041–2063, Mexico City, Mexico. Association
for Computational Linguistics.

Acknowledgements

We extend our appreciation to Çağrı Çöltekin for
his assistance during this shared task.

402

https://huggingface.co/bigscience/bloomz
https://cohere.com/
https://huggingface.co/databricks/dolly-v2-12b
https://doi.org/10.1145/3383652.3423878
https://doi.org/10.1145/3383652.3423878
https://doi.org/10.1109/APSIPA.2017.8282270
https://doi.org/10.1109/APSIPA.2017.8282270
https://numpy.org/
https://numpy.org/
https://openai.com/gpt-3
https://davinci.ai/
https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/collections.html
https://scikit-learn.org/
https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://www.scipy.org/
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275
https://aclanthology.org/2024.semeval2024-1.275

