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Abstract

In this system description, we report our pro-
cess and the systems that we created for the
subtasks A monolingual, A multilingual, and
B for the SemEval-2024 Task 8: Multigener-
ator, Multidomain, and Multilingual Black-Box
Machine-Generated Text Detection. (Wang et al.,
2024) This shared task aims at discriminating be-
tween machine-generated text and human-written
text. Subtask A focuses on detecting if a text
is machine-generated or human-written both in a
monolingual and a multilingual setting. Subtask B
also focuses on detecting if a text is human-written
or machine-generated, though it takes it one step
further by also requiring the detection of the cor-
rect language model used for generating the text.
For the monolingual aspects of this task, our ap-
proach is centered around fine-tuning a deberta-
v3-large LM. For the multilingual setting, we cre-
ated a combined model utilizing different mono-
lingual models and a language identification tool
to classify each text. We also experiment with the
generation of extra training data. Our results show
that the generation of extra data aids our models
and leads to an increase in accuracy.

1 Introduction

The SemEval-2024 shared task focuses on multi-
generator, multidomain, and multilingual black-
box machine-generated text detection. The shared
task is split into three different subtasks. Each sub-
task is monolingual except for the first subtask,
which has a monolingual (English) and a multilin-
gual track. The languages covered in this shared
task include English, Chinese, Russian, Urdu, In-
donesian, Italian, German, and Arabic.

This paper presents our the systems that we cre-
ated for the shared task. The paper provides an

overview of our research strategies and results for
subtasks A and B.

Subtask A focuses on the detection of machine-
versus human-written text, we differentiate be-
tween mono- and multilingual data. Our approach
involves fine-tuning LLMs, DeBERTa-v3 (large)
in particular. We experimented with different pa-
rameters for the model, searching for the best per-
formance possible.

Subtask B extends the challenge presented in
subtask A, we now attempt to recognize the spe-
cific language model used for text generation. We
do this in addition to distinguishing between hu-
man and machine-generated text. We again use
DeBERTa-v3 (large) to classify the data. To opti-
mize model accuracy, we fine-tune hyperparame-
ters.

Additionally, we generate extra Wikipedia arti-
cles to further expand the training data. We hy-
pothesize that extra data will lead to better model
performance, and thus better applicability to real-
world applications. Our research focuses on find-
ing both the best possible language model settings
to recognize machine- and human-written text and
distinguish between different language generation
models. Our code and the additionally generated
data can be found on Github1

2 Related work

Previous research has been done on the topic
of automatically discriminating between human-
text and machine-generated text (Chichirau et al.,
2023), where DeBERTa (v3) (He et al., 2021) is
utilized as a target-only classifier. The model can
distinguish machine translations well when tested
on the test set after training on texts generated
from different source languages and different ma-

1https://github.com/thijsbrekhof1/
RUG-D-at-SemEval2024-task8
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Train Dev Test

Subtask A-Mono 119757 5000 34272

Subtask A-Multi 172417 4000 42378
en 136589 0 28200
ar 0 1000 2103
ru 0 2000 0
zh 11934 0 0
id 5995 0 0
ur 5899 0 0
bg 12000 0 0
de 0 1000 6000
it 0 0 6075

Subtask B 71027 3000 18000

Table 1: Statistics of train, dev, and test sets pro-
vided by organizers

chine translation systems. They found that both
the monolingual and multilingual DeBERTa mod-
els outperformed other LLMs that they evaluated.

Langid.py (Lui and Baldwin, 2012) is a super-
vised language identification tool trained using a
naive Bayes classifier. Langid.py has the follow-
ing advantages: fast, usable off-the-shelf, unaf-
fected by domain-specific features (e.g. HTML,
XML, markdown), single file with minimal depen-
dencies, and flexible interface. Langid.py was ap-
plied in our system to identify the multi-language
training set of subtask A and we found that it can
identify languages with very high accuracy.

3 Data

The dataset provided by the shared task creators
originates from the benchmark M4 (Wang et al.,
2023). M4 is a comprehensive dataset encompass-
ing machine-generated text from diverse genera-
tors, domains, and languages. M4 focuses on the
development of automated systems for detecting
machine-generated text and identifying potential
abuse.

The dataset comprises text samples sourced
from various platforms, including Wikipedia,
Reddit, WikiHow, PeerRead, Arxiv, Chinese QA,
Urdu News, Russian RuATD, Indonesian News,
and Arabic Wikipedia. It spans multiple languages
and domains, presenting a rich and diverse col-
lection of machine-generated text for analysis and
classification.

Table 1 presents the statistics of the dataset, in-
cluding the number of samples in the train, dev,

and test sets for subtasks A and B. For subtask A,
both monolingual (subtask A-Mono) and multilin-
gual (subtask A-Multi) tracks are included, with
train, dev, and test set sizes specified for each lan-
guage. Subtask B involves multi-way classifica-
tion of machine-generated text and includes corre-
sponding train, dev, and test set sizes.

4 System overview

This section presents an overview of the methods
we employed for subtask A, both the monolingual
and multilingual data setting, as well as subtask
B. We follow previous work on a similar topic
(Chichirau et al., 2023), by fine-tuning LLMs, pre-
dominantly DeBERTa (He et al., 2021), on this
task. We were further stimulated to explore this
model specifically, as DeBERTa is developed as an
improvement over the RoBERTa model (Liu et al.,
2019), the latter being employed by the task orga-
nizers as a baseline. Specifically, we looked at us-
ing both the base and large variants of deberta-v3,
as this improved version of DeBERTa is reported
to significantly outperform previous iterations on
numerous tasks.

As the goal of this task was to create systems
that can discriminate between human-written and
machine-generated text regardless of generator,
textual domain, or language, we opted not to pre-
process our data any further than what the task or-
ganizers already did. This will keep our data as
close to instances that can be encountered in real-
world scenarios as possible. We fine-tuned these
pre-trained language models using the Transform-
ers library from Huggingface (Wolf et al., 2020).

4.1 Subtask A: Monolingual

For the monolingual track of subtask A, we eval-
uated the performance of the base (86M parame-
ters) and large (304M parameters) variants of De-
BERTa. We tested out numerous combinations of
hyperparameters such as learning rate, batch size,
maximum input sequence length, and epochs to
found out which model would perform best. The
large DeBERTa model emerged superior over the
base model, ostensibly due to its larger model size.

For this track of the task, we also experimented
with generating additional training data. The goal
for this subtask is for our model to differentiate be-
tween human-written and machine-generated text,
regardless of what generative model was used to
obtain data. We were inclined to experiment with
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additional data generation by a model different
from the ones already present in the provided base
dataset, as this should allow our model to gener-
alize better across generators and not learn only
about those present in the base dataset. For po-
tential real-world applications, this would be es-
pecially interesting to experiment with, as in such
scenarios there would be no prior indication of
what model could be used to generate such texts.

We employed Llama 2 (Touvron et al., 2023)
to generate additional articles in the style of
Wikipedia and manually skimmed through the
generated texts to see if they were on a compara-
ble level to the data provided by the task organizer.
Subsequently, we took the hyperparameter config-
urations of our best-performing model trained on
only base data and trained a new model using the
same configurations on a combination of the base
data and our additionally generated articles. The
selection of Wikipedia as our domain of focus is
based on its comprehensible documentation and
the strong performance demonstrated by LLama
2 in generating texts within this specific domain.

4.2 Subtask A: Multilingual

Different from the monolingual strategy, we cre-
ated a combined model for this subtrack. We ex-
plored a way to use separate monolingual models
for different languages after determining the lan-
guage of each text. After discovering that there
was no data in the same language both in the orig-
inal train and dev set (see Table 1, we decided
to merge the two data sets and extract each lan-
guage separately for analysis. We embarked on a
language-specific modeling approach, recognizing
the importance of selecting models optimized for
each language’s unique characteristics.

To determine the most suitable approach for
each language, we compared the performance of
multilingual DeBERTa with specific monolingual
models. We employed a 10-fold cross-validation
approach within each language, evaluating mod-
els based on accuracy and standard deviation. The
best-performing model for each language was se-
lected for further evaluation.

Upon completion of the cross-validation pro-
cedure, we selected the model that exhibited the
highest performance on the development set for
each language. The selected models were then
applied to the test set for final evaluation, encom-
passing the full spectrum of languages represented

in the dataset. To handle the multilingual nature of
the test set effectively, we employed the language
identification tool Langid, to discern the language
of each text sample, which enabled us to tailor
model predictions to the specific linguistic context
of each sample.

Notably, we also employed Llama 2 to generate
additional training data for each language. We uti-
lized a 10-fold cross-validation process to assess
the impact of additional training data on model
performance across different languages and only
kept those that improved the results.

4.2.1 LangID
In our multilingual subtask A experiment, we pro-
posed the idea of using specific language mod-
els per language instead of a single model for
each of the languages. Our motivation was that
this approach could improve the accuracy of dis-
criminating between machine-generated text and
human-written texts better than a single multilin-
gual model could. To achieve this goal, we em-
ployed LangID to enable language-specific mod-
eling. After merging the train and dev sets and
extracting samples for each language separately,
we utilized LangID to determine the language of
each text sample in the test set and employed
MDeBERTa-v3-base for languages that were not
in the train or dev sets and could not be recognized
by LangID. Thus, we were able to effectively han-
dle the multilingual nature of the task.

4.3 Subtask B

For this subtask, we, similarly to our approach
for subtask A, compared the performance of the
base and large variant of DeBERTa. By testing
out different values for epochs, learning rate, max-
imum input sequence length, and batch size, we
obtained the hyperparameter configurations of our
best-performing model. The large variant of De-
BERTa once again outperformed the base version.

We opted not to use additionally generated data
for this subtask. The goal of subtask B is to de-
termine not only if the text is human-written or
machine-generated but also what generative model
was used to do so. This would make generating
data by models outside of the already provided list
of models in the base dataset futile.

4.4 Generating data

While we realize that it is not allowed to add ad-
ditional data for the shared task we see generating
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it as a real-world contribution that can also easily
be done by others. We generated our own extra
training data with the use of Llama 2 (Touvron et
al., 2023). Starting off, we wanted to exploit the
largest model available, because this should offer
the best performance in data generation. However,
due to limited resources, we opted to utilize the 7
billion parameter version.

We focussed our generation endeavors on lan-
guages that were already in the dataset but were
highly underrepresented. These included Rus-
sian, Arabic, German, and Indonesian. For each
of these languages, we extended the dataset so
that each of these languages had a total of 30,000
samples. Notably, for every sample generated
by the model, we also included a human-written
counterpart in the dataset. By doing this, we
aimed to maintain a balance between computer-
and human-written data in the training and devel-
opment sets.

To match the already generated Wikipedia arti-
cles in the dataset, we adopted a similar method to
the original M4 dataset, as outlined by (Wang et
al., 2023). Using the Wikipedia dataset available
on HuggingFace (Wikimedia-Foundation, 2023),
we randomly selected articles with a minimum
length of 1,000 characters. Subsequently, we
prompted Llama 2 to generate Wikipedia articles
based on provided titles. As an extra criterion, we
told the model that the resulting articles should
contain at least 250 words, as this was also the
criteria used in the original paper (Wang et al.,
2023). This approach enabled us to enrich our
dataset across multiple languages, with the pur-
pose of increasing the performance of our models.

5 Experimental setup

5.1 Datasets and Evaluation Metrics

For both subtask A’s monolingual part and subtask
B, we utilized standard data splits: train, dev, and
test sets. The train set was employed for model
training, the dev set for monitoring performance
and hyperparameter tuning, and the test set for fi-
nal evaluation. Accuracy is the main evaluation
metric to assess model performance in each task.

For multilingual subtask A, we adopted a differ-
ent strategy, as motivated in Section 4.2. We con-
catenated the train and dev sets, extracted samples
for different languages, and employed separate
models for each language. We utilized the 10-fold
cross-validation approach within each language to

select the most suitable model based on accuracy
and standard deviation. The selected models from
each language were then used to predict the test
set.

5.2 Training Details

For monolingual subtask A, the final selected hy-
perparameters were as follows: batch size 2, gra-
dient accumulation 64, learning rate 1e-5, three
epochs, formatting style fp16, and an input length
of 1024 tokens.

For multilingual subtask A, we employed uni-
form hyperparameters throughout the 10-fold
cross-validation process within each language.
These hyperparameters included a learning rate of
2e-5, three epochs, a formatting style of fp16, and
an input length of 512 tokens.

For subtask B, the following hyperparameters
were identified as optimal: batch size 4, gradient
accumulation 32, learning rate 1e-5, three epochs,
formatting style fp16, and an input length of 512
tokens.

All of our hyperparameter values were chosen
after extensive experimentation on the dev set to
optimize model performance. A full list of all the
hyperparameter values that we experimented with
regarding the monolingual subtasks can be found
by referring to Appendix A. Regarding multilin-
gual subtask A, specific model selection and re-
sults for each language can be seen in Table 6 of
Appendix B.

Additionally, all training processes were con-
ducted on several Nvidia A100 and V100 GPUs.

6 Results and Analysis

In this section, we show and analyze the results
achieved for each of the subtasks. Table 2 shows
the quantitative results we achieved when running
our models on our dev set and the organizer’s test
set. Tables 4, 7 and 5 in the appendix show the
accuracy across languages and the impact of the
usage of extra data on each subtask. Besides that,
we made a qualitative analysis to find out where
we think our systems make the most mistakes.

6.1 Analysis

Our analysis showed us several noteworthy points.
First, our monolingual models achieved signifi-
cantly higher scores on the dev sets than on the
test set, as can be seen in Table 2. A reason for this
could be the introduction of texts created by LLMs
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Subtask Baseline Dev Test

A Monolingual 88.46% 87.80% 63.68%
A Multilingual 80.88% 65.90% 71.79%
B 74.60% 72.80% 61.50%

Table 2: Scores of each subtask in dev and test
compared to the baseline.

that our system had not seen before. This shows
us a risk our systems may lack robustness against
different types of LLMs. Our multilingual system
did perform better on test than on dev, however,
which could be related to the different ratios of
languages present in both datasets. e.g., more Ger-
man texts were present in the test dataset than in
the dev dataset, and our system is able to classify
them effectively, which can be seen in Table 6.

Furthermore, our systems were unable to ef-
fectively detect human-written texts, in both the
mono- and multilingual tasks, when classifying
the test set. In subtask A monolingual, our system
was able to get very impressive scores on all texts
created by generative models, though it had a lack-
luster performance on human-written text. This
might indicate our model’s inclination to classify
a text as machine-generated over human-written.
Subtask B has a very similar distribution of pre-
dictions, the only notable exception being the ob-
stacle of detecting texts written by Cohere.

Also noticeable was the performance of texts
generated by the Llama 2 model. Both our mod-
els with- and without added data scored badly on
these texts. What is interesting, is that the extra
data added by us originates from Llama 2. A rea-
son for this could be that we used the smaller, 7
billion parameter, version of Llama 2 due to per-
formance and runtime issues.

We can see that both in the mono- and multi-
lingual data setting of subtask A our model’s per-
formance had improved after training on our ex-
tra generated data. Although the increase in ac-
curacy of the monolingual model was negligible,
the multilingual model had a notable improvement
in score. We propose that this stems from the
absence of certain languages in the training set,
which we were able to supplement with our ex-
tra data. Because of this, the monolingual models
we employed in the multilingual setting were able
to perform better.

7 Discussion/Conclusion

In conclusion, we think our participation in the
shared task resulted in some valuable insights into
the challenges of machine- versus human-written
text. Despite our efforts, our systems unfortu-
nately fell short of surpassing the baseline scores
established by the task organizers.

Across the different subtasks, our models
showed varying performance. For subtask A
monolingual, our models achieved some promis-
ing results on the development set, with an accu-
racy of 87.80%. However, our model did not man-
age to generalize enough, leading to an accuracy
of 63.68% on the test set.

For the multilingual part of subtask A, our
model reached 65.90% on the development set.
In this case, the model did manage to generalize
the data, leading to an accuracy of 71.79% on the
test set. However, this was still below our expec-
tations, and the baseline accuracy of 80.88%.

In subtask B, our models struggled to identify
the specific language model used for text genera-
tion accurately, with accuracies of 72.80% on the
development, and 61.50% on the test set. Despite
optimizing hyperparameters and training on both
original and additional data, our models failed to
outperform the baseline accuracy of 74.60%.

We think our analysis revealed several points
for improvement. Our models tended to misclas-
sify human-written text, indicating a potential bias
towards machine-generated content. Furthermore,
the models seemed unable to generalize, leading to
worse performance on the test set for monolingual
task A.

Moving forward, we think there are many im-
provements to be made. Future research could
focus on using other model architectures or ex-
ploring other data augmentation techniques. Also,
training the model in more languages could im-
prove the performance of multilingual models. Of
course, using larger pre-trained models could also
lead to an easy increase in performance, although
it does require significant resources. Lastly, our
findings also show generating extra training data
is essential for improving model performance.
Therefore, a promising direction for future work
is to explore new data sources and methods to cre-
ate richer and higher-quality training data to fur-
ther improve the performance and generalization
ability of the model.
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A Hyperparameters

Hyperparameter Value

Learning rate 1e-5, 2e-5, 5e-5, 5e-6
Batch size 16, 32, 64, 128
Epoch 1, 2, 3
Input length 512, 768, 1024

Table 3: The full hyperparameter search space em-
ployed for our DeBERTa-v3-large model in both
subtask A monolingual and subtask B.

B Detailed scores

Data Model Accuracy
A Monolingual - Original Data

Overall 63.61% (± 2.60E-3)
Human 23.56% (± 3.33E-3)
GPT4 99.77% (± 8.81E-4)
Cohere 100.0% (0)
ChatGPT 100.0% (0)
Bloomz 99.1% (± 1.72E-3)
Dolly 100.0% (0)
Davinci 99.97% (± 3.33E-4)

A Monolingual - Added Data
Overall 63.68% (± 2.60E-03)
Human 24.23% (± 3.36E-03)
GPT4 99.9% (± 5.77E-04)
Cohere 100.0% (0)
ChatGPT 100.0% (0)
Bloomz 96.2% (± 3.49E-03)
Dolly 100.0% (0)
Davinci 100.0% (0)

Table 4: Accuracy scores on the test set for subtask
A Monolingual with original and added data.

Model Accuracy
Overall 61.54% (± 3.63E-03)
Human 13.53% (± 1.37E-03)
Bloomz 99.43% (± 6.25E-03)
Dolly 86.1% (± 6.32E-03)
ChatGPT 99.93% (± 4.71E-04)
Cohere 1.23% (± 2.02E-03)
Davinci 69.0% (± 8.44E-03)

Table 5: Accuracy scores for subtask B on the test
set.
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Lang. Model Accuracy Reference

en deberta-v3-base 95.9% ± 5.82E-3 (He et al., 2021)
en mdeberta-v3-base 95.6% ± 5.94E-3 (He et al., 2021)
ar bert-base-arabert 94.0% ± 4.10E-2 (Antoun et al., 2020)
ar mdeberta-v3-base 90.5% ± 4.46E-2 (He et al., 2021)
ru rubert-base-cased 98.7% ± 8.12E-3 (Kuratov and Arkhipov, 2019)
ru mdeberta-v3-base 98.8% ± 6.00E-3 (He et al., 2021)
zh chatgpt-detector-roberta-chinese 97.6% ± 5.64E-3 (Guo et al., 2023)
zh bert-base-chinese 96.8% ± 1.04E-2 (Devlin et al., 2019)
zh mdeberta-v3-base 96.9% ± 1.37E-2 (He et al., 2021)
id bert-base-indonesian-522M 99.4% ± 4.68E-3
id mdeberta-v3-base 98.8% ± 7.85E-3 (He et al., 2021)
ur mdeberta-v3-base 99.98% ± 5.08E-4 (He et al., 2021)
bg bert-base-en-bg-cased 97.2% ± 6.29E-3 (Abdaoui et al., 2020)
bg mdeberta-v3-base 99.3% ± 4.99E-3 (He et al., 2021)
de bert-base-german-cased 92.9% ± 3.53E-2 (Chan et al., 2020)
de gbert-base 93.8% ± 1.99E-2 (Chan et al., 2020)
de mdeberta-v3-base 91.0% ± 4.4E-2 (He et al., 2021)

Table 6: The accuracy and standard deviation of different models in each language under 10-fold cross
validation. The best-performing models (in bold) were utilized in our combined model for multilingual
subtask A. We only employed one (multilingual) model for Urdu, as we could not find any monolingual
models trained on that language.

Data Model Accuracy Language Accuracy
A Multilingual - Original data

Overall 70.11% (± 2.22E-03) English 72.32% (± 2.66E-03)
Human 40.89% (± 4.28E-03) German 84.45% (± 4.68E-03)
ChatGPT 83.91% (± 3.51E-03) Arabic 57.73% (± 1.08E-02)
Bloomz 100.0% (0) Italian 50.01% (± 6.42E-03)
Davinci 99.9% (± 5.77E-04)
Llama 2 50.01% (± 6.42E-03)
Dolly 99.93% (± 4.71E-04)
Cohere 100.0% (0)
Jais-30b 61.29% (± 3.91E-02)

A Multilingual - Added data
Overall 71.79% (± 2.19E-03) English 72.32% (± 2.66E-03)
Human 40.89% (± 4.28E-03) German 90.92% (± 3.71E-03)
ChatGPT 90.14% (± 2.85E-03) Arabic 73.13% (± 9.67E-03)
Bloomz 100.0% (0) Italian 50.01% (± 6.42E-03)
Davinci 99.9% (± 5.77E-04)
Llama 2 50.01% (± 6.42E-03)
Dolly 99.97% (± 3.33E-04)
Cohere 100.0% (0)
Jais-30b 80.0% (± 3.21E-02)

Table 7: Accuracy scores and language-specific accuracies on the test set for subtask A Multilingual with
original and added data.
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