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Abstract

The inclination of large language models
(LLMs) to produce mistaken assertions, known
as hallucinations, can be problematic. These
hallucinations could potentially be harmful
since sporadic factual inaccuracies within the
generated text might be concealed by the over-
all coherence of the content, making it im-
mensely challenging for users to identify them.
The goal of the SHROOM shared-task is to
detect grammatically sound outputs that con-
tain incorrect or unsupported semantic infor-
mation. Although there are a lot of existing
hallucination detectors in generated AI content,
we found out that pretrained Natural Language
Inference (NLI) models yet exhibit success in
detecting hallucinations. Moreover their en-
semble outperforms more complicated models.

1 Introduction

Over the past few years, Natural Language Genera-
tion (NLG) models have experienced substantial ad-
vancements, particularly due to transformer-based
architectures like a Generative Pretrained Trans-
former (GPT) (Radford et al., 2019). However, two
interconnected issues challenge the field: firstly,
the tendency of present neural systems to generate
incorrect yet smooth outputs and, secondly, the in-
adequacy of existing metrics in evaluating accuracy
over fluency. This causes NLG models to “halluci-
nate”, i.e., produce fluent but incorrect outputs that
we currently struggle to detect automatically (Ji
et al., 2023).

The Shared-task on Hallucinations and Related
Observable Overgeneration Mistakes (SHROOM)
has been suggested to address this challenge. In
particular, the SHROOM task aims at addressing
the existing gap in assessing the semantic cor-
rectness and meaningfulness of NLG models.1

Within the Shared task (Mickus et al., 2024), one

1https://helsinki-nlp.github.io/shroom/

needs to detect grammatically sound English out-
put that contains incorrect semantic information
(i.e.,unsupported or inconsistent with the source
input) in case there is no labeled training data avail-
able.

We propose to address the SHROOM task by
leveraging an ensemble of pretrained transformer-
based Natural Language Inference (NLI) models.
The NLI models are used to derive features of hal-
lucination probabilities, and then a tree-based gra-
dient boosting model (Prokhorenkova et al., 2019)
provides a final decision. Our results indicate that
NLI-based models can be effectively used to de-
tect hallucinations. Moreover, the ensemble model
highly outperforms the base estimators in correla-
tion with annotators’ decisions.

To summarize, this work includes the following
contributions:

• We conducted a systematic study, re-
evaluating existing NLI models for halluci-
nation detection tasks.

• We trained an ensemble of NLI models to de-
tect hallucination that correlates with human
judgment.

Additionally, we made the code publicly avail-
able.2

2 Background

Nowadays, it is well known that NLG models often
generate coherent outputs that are not faithful to
the given input, commonly referred as hallucina-
tions (Maynez et al., 2020). Hallucination has been
studied in a wide range of tasks, including but not
limited to summarization (Huang et al., 2021), dia-
logue generation (Shuster et al., 2021) and a variety
of other NLG tasks.

2https://github.com/ivan-kud/
semeval-2024-shroom
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There are several benchmarks for hallucination
detection. HaluEval includes 5,000 general user
queries with ChatGPT responses and 30,000 task-
specific examples from three tasks, i.e., question
answering, knowledge-grounded dialogue, and text
summarization (Li et al., 2023). FaithDial is
a benchmark for hallucination-free dialogues by
modifying hallucinated responses in the Wizard of
Wikipedia (WoW) benchmarks (Dziri et al., 2022).

The SHROOM shared task organizers went one
step further. The shared task was conducted with
a newly constructed dataset of 4,000 model out-
puts labeled by five annotators each, including
three NLP tasks: machine translation (MT), para-
phrase generation (PG), and definition modeling
(DM). Participants were asked to detect hallucina-
tions in two different settings: a model-aware track
where the organizers also provided a checkpoint
to a model that generated the output and a model-
agnostic track where they did not. The checkpoints
are publicly available on HuggingFace.

All three NLG tasks are in English, with the
exception of the input for the MT task, which is in
Russian for the model-agnostic task and in many
other languages for the model-aware task (Mickus
et al., 2024).

3 Dataset

The dataset for the SHROOM challenge comprises
a compilation of model-generated text entries with
the aim to classify each output as either a halluci-
nation of the generative model or not.

Information for the data sample includes the fol-
lowing fields: (i) src – the input text given to the
generative language model; (ii) hyp – the generated
textual output of the model; and (iii) tgt – the in-
tended reference or the ground truth text that the
model is supposed to generate; (iv) task – the task
being solved; (v) labels – five labels, either "Hal-
lucination" or "Not Hallucination" labeled by five
annotators, and finally, (vi) p(Hallucination) indi-
cates the proportion of annotators that labeled the
data sample as a hallucination.

The dataset was split in the following way: train-
ing data of 30,000 samples without annotations
with 10,000 samples for each task; validation data
of 499 labeled samples with 187, 187, and 125 sam-
ples for DM, MT, and PG tasks, respectively; and
test data of 1,500 examples without annotations
to evaluate and rank the results of the competitors
with 563, 562, and 375 examples for DM, MT, and

PG tasks, respectively. Validation data sample is
presented in Table 1.

All participants’ submissions were evaluated us-
ing two criteria:

• Accuracy that the system reached on the bi-
nary classification.

• Spearman correlation of the system’s output
probabilities with the proportion of the anno-
tators labeling the item as a hallucination.

4 Methodology

NLI task determines whether a hypothesis follows
a premise and classifies it as either entailment, con-
tradiction, or neutral. Previous research showed
that NLI can be successfully used for hallucination
detection in summarization (Gekhman et al., 2023).

Our system is an ensemble of several NLI pre-
trained transformer-based models. Each model de-
fines a new feature set, then a tree-based gradient
boosting final estimator is trained on top of these
features.

It’s well known that in-domain training data are
crucial for classifier performance (Konovalov et al.,
2016). However, organizers do not provide us with
the labeled training set, so we train final estimator
on the labeled validation set.

The following is a list of NLI transformer-based
models used in our pipeline:

• RoBERTa by Liu et al. (2019) is a robustly
optimized BERT that outperformed BERT on
the MNLI task.

• Sentence-RoBERTa by Reimers and
Gurevych (2019) that returns sentence em-
beddings. Thus, we calculate the probability
of hallucination as 1 − S, where S is cosine
similarity between the premise and hypothesis
embeddings.

• DeBERTa by Manakul et al. (2023) uses
an disentangled attention mechanism and an
enhanced mask decoder being pre-trained
on MNLI-m/mm outperformed BERT and
RoBERTa of comparable sizes.

• T5 by Honovich et al. (2022) was trained
on a binary problem (entailment or con-
tradiction) on the bunch of NLU datasets:
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2017), Fever (Thorne et al., 2018), Sc-
itail (Khot et al., 2018), PAWS (Zhang et al.,
2019), VitaminC (Schuster et al., 2021).
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Task Input Output Reference p(Halluc.)
DM Because redpillers are usually

normies or <define> Chadlites
</define> while incels are ugly
low - value males that women
feel innately repulsed by .

(slang) An incel. (incel, _, slang) A
man of a slightly
lower ranking on
a scale of physical
attractiveness than
Chad.

0.2

MT �dr�n baton! Nuclear Baton! Blimey! 1.0
PG Are we resolved? So, what, we’re in

the clear now?
Do we have a deal? 0.4

Table 1: Data examples from the validation sample of the model-agnostic track. Hallucination probability of
0.2 means that one of the annotators classified the example as a hallucination and the remaining four annotators
classified it as not a hallucination. The resulting class label is determined by majority voting. For the DM task, the
model had to define a word between two special tokens: <define> and </define>.

In addition to the output of the before-mentioned
models, we add as features the lengths of input,
output and reference texts. Then we train Cat-
Boost (Prokhorenkova et al., 2019) models as meta-
models on top of these features. Besides CatBoost
model, we also train Random Forest (Breiman,
2001) implemented in scikit-learn library (Pe-
dregosa et al., 2011) and LightGBM (Ke et al.,
2017). CatBoost yields the best results among
them.

5 Experimental setup

We do not use any preprocessing of input texts
(premises and hypotheses). Neither do we use an
unlabeled training set. So, the transformer-based
models serve to obtain features from the valida-
tion and test sets, then the CatBoost metamodel is
trained on the validation set and predicts the test
set.

As for the CatBoost metamodel, we performed
the following steps:

• We found the hyperparameters on the val-
idation set by using Optuna (Akiba et al.,
2019). Stratified k-fold cross-validation 3

with 10 splits was used for the classification
model and k-fold cross-validation with 10
splits – for the regression model. The best
parameters for the classification model for
the model-agnostic task: iterations = 216,
learning_rate = 0.010, depth = 12, and
for the model-aware task: iterations = 129,
learning_rate = 0.005, depth = 9. The
best parameters for the regression model for

3https://en.wikipedia.org/wiki/
Cross-validation_(statistics)

the model-agnostic task: iterations = 356,
learning_rate = 0.029, depth = 5, and
for the model-aware task: iterations = 317,
learning_rate = 0.012, depth = 9.

• We evaluated the metrics on the validation
sample using repeated stratified k-fold cross-
validation with 10 splits and 5 repeats.

• We trained it on the whole labeled validation
set.

• We predicted test set labels.

6 Results

The results on the test set for both model-agnostic
and model-aware tracks are presented in Table 2.
There are scores for the baseline provided by orga-
nizers, best scores from the leader-board, individ-
ual transformer-based models and our system as a
whole.

Among NLI pre-trained models, T5 model sig-
nificantly outperformed other NLI models. How-
ever, our ensemble approach using features from all
NLI pre-trained models significantly outperformed
T5 in terms of correlation with annotators’ deci-
sions.

Our approach for model-agnostic case provided
us with an accuracy of 82.1% and Spearman cor-
relation of 0.752. With this approach, our team
achieved the 6th place out of 41 in the competition
for model-agnostic track. Only two teams achieved
a higher Spearman correlation.

The same approach was applied for the model-
aware track and provided us with an accuracy of
79.9%, which is the 8th place out of 38 in the com-
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Model
model-agnostic model-aware

Accuracy Corr. Accuracy Corr.
nli-roberta-large 62.8 0.608 66.2 0.566
roberta-large-mnli 73.7 0.611 73.0 0.549
deberta-base-mnli 72.8 0.617 73.1 0.597
deberta-large-mnli 75.7 0.701 75.5 0.688
deberta-xlarge-mnli 73.5 0.699 74.4 0.681
deberta-v2-xlarge-mnli 74.4 0.711 74.7 0.677
deberta-v2-xxlarge-mnli 76.1 0.729 75.9 0.691
deberta-selfchecknli 75.3 0.683 75.9 0.683
t5_xxl_true_nli_mixture 81.1 0.650 79.6 0.626
baseline 69.7 0.403 74.5 0.488
Our systemsubmitted 82.1 0.752 79.9 0.713
Our systembest 82.5 0.757 79.9 0.722
Best leaderboard 84.7 0.770 81.3 0.715

Table 2: The results of the accuracy and Spearman correlation metrics on the test sample for the model-agnostic and
model-aware tracks.

petition. The value of Spearman correlation turned
out to be 0.713.

More detailed results of the competition can be
found in Mickus et al. (2024).

7 Conclusion

In this paper, we describe the ensemble system
for hallucination detection by using transformer-
based models. We present a simple, yet effective
ensemble pipeline that provided us with results
comparable with the best scores for the both tracks.

Future work might include thoughtful error anal-
ysis. Improved quality can be achieved by annotat-
ing unlabeled training set with LLMs (Ostyakova
et al., 2023). In addition, a multilingual setup of
NLI models can be used to develop multilingual
hallucination detection system (Chizhikova et al.,
2023; Konovalov et al., 2020). The proposed ap-
proach can be used standalone or can be integrated
into the DeepPavlov framework (Burtsev et al.,
2018).
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