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Abstract

This paper presents the results of the
SHROOM, a shared task focused on detecting
hallucinations: outputs from natural language
generation (NLG) systems that are fluent, yet
inaccurate. Such cases of overgeneration put in
jeopardy many NLG applications, where cor-
rectness is often mission-critical. The shared
task was conducted with a newly constructed
dataset of 4000 model outputs labeled by 5 an-
notators each, spanning 3 NLP tasks: machine
translation, paraphrase generation and defini-
tion modeling.

The shared task was tackled by a total of 58 dif-
ferent users grouped in 42 teams, out of which
26 elected to write a system description paper;
collectively, they submitted over 300 predic-
tion sets on both tracks of the shared task. We
observe a number of key trends in how this
approach was tackled—many participants rely
on a handful of model, and often rely either
on synthetic data for fine-tuning or zero-shot
prompting strategies. While a majority of the
teams did outperform our proposed baseline
system, the performances of top-scoring sys-
tems are still consistent with a random handling
of the more challenging items.

1 Introduction

The modern NLG landscape is plagued by two in-
terlinked problems: On the one hand, our current
neural models have a propensity to produce inaccu-
rate but fluent outputs; on the other hand, our met-
rics are most apt at describing fluency, rather than
correctness. This leads neural networks to “halluci-
nate”, i.e., produce fluent but incorrect outputs that
we currently struggle to detect automatically. For
instance, Dopierre et al. (2021) report that when
trying to produce a paraphrase for the input “I am
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Figure 1: The SHROOM logo.

not sure where my phone is”, they obtain the fol-
lowing ‘hallucination’ behavior: “How can I find
the location of any Android mobile”. For many
NLG applications, the correctness of an output is
however mission critical. For instance, producing
a plausible-sounding translation that is inconsistent
with the source text puts in jeopardy the usefulness
of a machine translation pipeline.

This motivates us to organize a Shared-
task on Hallucinations and Related Observable
Overgeneration Mistakes, or SHROOM. With our
shared task, we hope to foster the growing inter-
est in this topic in the community (e.g., Ji et al.,
2023; Raunak et al., 2021; Guerreiro et al., 2023;
Xiao and Wang, 2021; Guo et al., 2022). In partic-
ular, in the SHROOM we adopt a post hoc setting,
where models have already been trained and out-
puts already produced. Participants were asked to
perform binary classification to identify cases of
fluent overgeneration hallucinations in two dif-
ferent setups: model-aware and model-agnostic
tracks. That is, participants had to detect gram-
matically sound outputs which contain incorrect
or unsupported semantic information, inconsistent
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with the reference input, with or without having
access to the model that produced the output.

To that end, we constructed a dataset comprising
a collection of checkpoints, inputs, references and
outputs of systems covering three different NLG
tasks: definition modeling (DM, Noraset et al.,
2017), machine translation (MT) and paraphrase
generation (PG) trained with varying degrees of ac-
curacy. Datapoints were all annotated by 5 human
annotators each resulting in 1000 validation items
and 3000 test items.

Beyond simply detecting factually unsupported
outputs, one of the goals of this shared task was
to establish whether hallucinations are best con-
strued as a categorical phenomenon or a gradient
one. Similar remarks have been made with respect
to textual entailment (Bowman et al., 2015). As
such, participants’ submission were scored both for
accuracy (whether classifiers correctly identify hal-
lucinations) and calibration (whether classifiers are
confident about their prediction when they ought
to be).

The shared task attracted a total of 58 different
users grouped in 42 teams, out of which 26 elected
to write a system description paper. Collectively,
over the three weeks of the evaluation phase, partic-
ipants submitted 300 valid sets of predictions on the
model-aware track, and 320 on the model-agnostic
track. We take this participation rate, along with
the breadth of methodological approaches devel-
oped by participants, as clear signs of success for
our shared task: This large pool of participants al-
lows us to identify and discuss some key trends in
how the task was tackled. Crucially, many partic-
ipants rely on a handful of model, and often rely
either on synthetic data for fine-tuning or zero-shot
prompting strategies. In terms of raw performance,
we note that while a majority of the teams (64 to
71%) did outperform our proposed baseline sys-
tem, the performances of top-scoring systems are
still consistent with a random handling of the more
challenging items. In sum, this first iteration of the
SHROOM underscores both an interest of the re-
search community as well as the current limitations
in our approaches.

The remainder of this article is structured as fol-
lows: Iin Section 2, we provide an overview of
the current research landscape. Section 3 defines
our theoretical framework, and Section 4 summa-
rizes our data collection process. We then present
and discuss shared task results in Sections 5 and 6

before concluding with a few thoughts on further
research in Section 7.

2 Connecting with the past: related works
and state of the art

It is now widely accepted that NLG models often
generate outputs that are not faithful to the given
input, commonly referred to in the community as
hallucinations (Vinyals and Le, 2015; Raunak et al.,
2021; Maynez et al., 2020). Yet there is minimal
consensus on the optimal framework for its appli-
cation. This lack of agreement is due in part to the
diversity of tasks that NLG encompasses (Ji et al.,
2023).

Guerreiro et al. (2023) propose a taxonomy of
hallucinations that includes oscillatory productions,
and fluent but strongly or fully “detached” outputs.
While this taxonomy is well constructed, we find
it inadequate for the needs of the community at
large for four reasons: (i) It conflates some issues
of fluency with semantic correctness (oscillatory
productions are cases of non-fluent overgeneration
where no extraneous semantic material is intro-
duced); (ii) It only considers the most extreme
cases of hallucinations (strongly or fully detached
productions), whereas diagnosis of intermediary
cases is bound to be more challenging and useful
to the community; (7ii) It focuses only on MT, al-
though other tasks are also known to suffer from
fluent overgeneration (e.g., Rohrbach et al., 2018),
including the ones we propose to address; (iv) It
uses only lowest scoring outputs, whereas any tool
built to verify system outputs ought not to flag non-
pathological outputs.

Alternative studies have built benchmarks for
hallucination detection, with a predominant empha-
sis on dialogue systems. Li et al. (2023) propose the
HaluEval benchmark using an annotation frame-
work that does not necessarily center on the input
given to the model and requires the annotators to
search the internet for facts. Moreover, they opted
to annotate the outputs of a popular LLM, with the
major downsides that it is closed, not-transparent
and commercial; rendering the research outputs
that may stem from future studies less interesting.
Other benchmarks include the works of Liu et al.
(2022) and Zhou et al. (2021), which automatically
insert hallucinations into training instances to gen-
erate syntactic data for token-level hallucination
detection; Lin et al. (2022), which work with fac-
tual claims supported by reliable, publicly available
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Figure 2: Shared task overview. Both tracks feature
all three NLG tasks. Datapoints from systems in blue
correspond to target-referential datapoints and in red the
ones that are either target- or source-referential; which
we refer to as dual-referential.

evidence; and Dziri et al. (2022), which focus on
knowledge-based dialogue systems and base their
annotation on NLI, relying only on the system’s
input, just as we do.

3 Tripping over hallucinations: task
definition and annotation

In contrast with previous works (e.g. Guerreiro
et al., 2023; Li et al., 2023), we focus on cases of
fluent overgeneration since judgments pertaining
to the over-generative nature of a production can
be elicited by means of inferential semantics: if
an output cannot be inferred from its semantic ref-
erence, then it contains some information that is
not present in the reference—i.e., the model has
generated more than we expected.! This approach
connects with the theoretical framework sketched
by van Deemter (2024), who likewise relies on in-
ferential semantics but also considers undergenera-
tion issues in NLG outputs. We provide multiple
annotations and a gold majority label, given the
low consensus on semantic annotations (Nie et al.,
2020).

In Figure 2 we provide an overview of the
task. The SHROOM is framed around two key
distinctions: (i) model-aware vs. model-agnostic
approaches, and (ii) source-referential vs. dual-
referential datapoints. The former corresponds to
whether participants have access to the model that
generated the item: Model-agnostic approaches
are practical, as models may not be accessible to
end users; Model-aware approaches can lead to
richer and more accurate diagnoses. The latter
is a consequence of our inferential take on over-

'Note that if the output can be inferred from the reference
but the information is not explicitly present in the reference,
then the model is actually making a correct semantic inference:
it is generating a semantically sound output. E.g., if the the
model produces “my tie is blue” for the reference “my tie is
the color of the sky”, the model output is semantically sound.

{ "hyp":"A cigarette .",

"ref":"tgt",
"src":"I stepped outside to smoke myself a j .
What is the meaning of J ?",

"tgt":" ( plural Js or J 's ) A marijuana

cigarette .",

"model":"1ltg\/flan-t5-definition-en-base",

"task":"DM",

"labels":["Hallucination", "Not Hallucination",
"Not Hallucination", "Hallucination",
"Hallucination"],

"label":"Hallucination",

"p(Hallucination)":0.6 }

Figure 3: Target-referential datapoint example from the
validation set for the model-aware track.

generation: what can effectively serve as a seman-
tic reference varies across NLP systems. For DM,
where we fine-tune a language model to produce
a definition for a given example of usage the data-
points are target-referential, i.e. the target is the
sole usable semantic reference. In this context, the
target serves as the sole usable semantic reference.
Conversely, the target is expected to be semanti-
cally implied from the source in source-referential
tasks, such as summarization. Note that we do not
annotate source-referential tasks due to annotation
challenges that make them unreliable for our pur-
poses. In dual-referential tasks like PG & MT, this
distinction bears no weight.

In Figure 3, we present an example datapoint
displaying how we plan to encode all relevant in-
formation in a JSON format is provided. The dat-
apoint keeps track of the source provided to the
model as input (src), the intended target (tgt),
the model production (hyp), the task this produc-
tion was derived from (task), can correspond to
DM, MT or PG), whether this datapoint is target-
referential (ref), the annotations, the gold label
and the proportion of annotators that labeled the
utterance as a hallucination (labels, label,
and p (Hallucination)). In the model-aware
track, we will also provide a HuggingFace model
name (model).

4 Foraging and harvesting season:
Collected data

All SHROOM data (models, outputs and annota-
tions) are available under a CC-BY license.?

See helsinki-nlp.github.io/shroom
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4.1 Data & model provenance

Participants have access to generated outputs from
multiple systems trained to generate English out-
put at various stages of their training, stemming
from three sequence-to-sequence NLG tasks: DM,
MT and PG. The SHROOM dataset consists of an-
notated rest and dev sets, as well as a unlabeled
training split of 30k datapoints per track and the
full set of possible target references to allow corpus-
wide approaches. To ensure effective annotation
of the development and test sets, and to be able
to guarantee a gradient in quality as measured by
automated metrics, we pre-selected fluent outputs
for the annotators, which we describe in the follow-
ing.3

MT: For the model agnostic track we use the
models from Mickus and Vazquez (2023). We
compute perplexity for the all MT outputs and
BERTScores with regards to the outputs and cor-
responding targets. We filter outputs with perplex-
ity scores above the 2% quantile. From the fil-
tered outputs, we randomly select 200 samples with
BERTscores in the 1/7, 2/7, 3/7, 4/7, and 5/7 quan-
tiles. For the model-aware track, we use the NLLB
model (NLLB Team et al., 2022) and produce trans-
lations on the Flores-200 dataset from languages
marked as low-resource to English. Next, we man-
ually select a sample that is sufficiently fluent.

DM: We use the model of Segonne and Mickus
(2023) for the model-agnostic track, and for
the model-aware track we used the flan-
t5-definition—-en-base (Giulianelli et al.,
2023). We generate outputs on the English portion
of the CoODWOoE dataset (Mickus et al., 2022), and
manually select a sample that is reasonably fluent
and contains no profanities.

PG: We used a pretrained and fine-tuned para-
phrasing model* based on Pegasus (Zhang et al.,
2020) for the model-aware track, and the con-
trolled paraphrase generation model of Vahtola
et al. (2023) for the model-agnostic track.

We generated paraphrase hypotheses using Eu-
roparl (Koehn, 2005) and Opusparcus (Creutz,
2018) for the model-aware and -agnostic tracks,
respectively. For the model-aware setup, we gener-
ated 50 hypotheses for each source sentence using

3Note that we do not warranty that the training split con-
tains fluent outputs.

*https://huggingface.co/tuner007/
pegasus_paraphrase

diverse beam search (Vijayakumar et al., 2016)
using BLEU scores (Papineni et al., 2002) to se-
lect the least similar hypothesis for each source
sentence to serve as its paraphrase. For the model-
agnostic setup, we calculated control tokens for
each source sentence as in Vahtola et al. (2023),
scaled the length-controlling value in range (1, 1.5)
with a uniform probability distribution to provoke
hallucination in the generated sequences, and used
beam search with a beam size of 5 to produce the
paraphrases. We manually curated the final valida-
tion and test examples.

4.2 Annotation

We annotate a total of 4,000 items, which are
split 25%—75% between development and test sets:
1000 datapoints come from PG, 1500 from DM
and 1500 from MT. Each item is annotated by five
annotators on whether the reference entails the out-
put. Annotations are binary, for ease of dataset
construction. Gold labels are defined with respect
to the annotators’ majority vote.

The annotators were enlisted via Prolific,> a paid
platform specialized in gathering human data for
research studies and Al dataset creation, among
other purposes. We did not target any particular
group of participants; the only screening prerequi-
sites were that (i) participants had to be fluent in
English and (ii) they should not have taken part in
an initial pilot study.

We used Potato (Pei et al., 2022), an open-source
annotation tool specifically designed to seamlessly
integrate with Prolific. Annotators were first pre-
sented with a pre-annotation screen outlining the
annotation guidelines, after which they commenced
the annotation of items individually. Each item con-
sisted of the Reference, the Al-generated output,
and relevant context regarding the NLG task (DM,
MT, or PG). The annotators were asked to answer
the question "Does the following Al output only
contain information supported by the Reference?"
responding with either "yes" or "no," and were also
given the opportunity to provide comments if nec-
essary. Additionally, they could navigate back and
forth through their assigned items. We set up a
timer that notified the participants every 60 sec-
onds of the time spent on an item. In Appendix B,
we present a copy of the instructions we used.

To control for annotation quality, we manually
reviewed annotations from two sets of selected an-

Shttps://www.prolific.com/
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notators: (i) five randomly selected annotators; and
(ii) the five annotators who completed the task the
fastest (under 3.5 minutes). All 10 annotators com-
pleted 20 annotations each. We judged all 200 an-
notations to be sound, in that a reasoning could be
reconstructed to explain the provided annotation.

Label distribution. Figure 4 provides an
overview of the distribution of labels in the
SHROOM dataset splits (validation and test), bro-
ken down per NLG task (MT, DM and PG) and
track (model-aware vs. model-agnostic). In this
figure, we consider the empirical probability that a
given item is judged to be a hallucination, i.e., the
proportion of annotators judging the NLG output is
not supported by the intended semantic reference.

We can highlight two trends in this figure. The
first one, and perhaps most important, is that hal-
lucinations are not consensual among our annota-
tors. If intuitions regarding hallucinations were
clear-cut, we would strongly expect a bi-modal
distribution of empirical label distributions being
consistently judged as hallucinations or not halluci-
nations. Instead, we find a number of intermediate
cases, where annotators are split: These account
for 29-32% of the data, depending on the split (val-
idation or test) and track (model-aware or model-
agnostic). Given the small number of annotators
per datapoint, we cannot confidently rule out the
possibility of a sampling bias—it is plausible that a
larger pool of annotator would yield more bimodal
empirical distributions. On the other hand, this ten-
tative evidence is also in line with what has been ar-
gued elsewhere for natural language inference (Nie
et al., 2020; Zhou et al., 2022). This is in fact well
exemplified by the datapoint provided in Figure 3:
Whether the term cigarette is underspecified and
can apply to any smokable substance, or whether
it is to be understood as prototypically referring
to tobacco cigarettes by default is, in fact, up for
discussion—and it stands to reason that different
speakers may form different opinions.

Second, it is difficult to find hallucinations: The
higher the empirical probability, the fewer the dat-
apoints. This is especially true in the PG task:
these outputs rarely yields consensual hallucina-
tions, whereas we can find such items in DM
and MT much more frequently. Looking at the
expected value of the empirical probability per
task, we find that DM consistently ranks higher
than MT, which in turns ranks higher than PG.
Both of these differences are significant under a

one-sided Mann-Whitney U-test in the two test
tracks (p < 0.0003); in the model-aware validation
dataset, only the difference between MT and PG is
significant (p < 2 - 10~%), in the model-agnostic
validation dataset, only the difference between DM
and MT is (p < 0.04). We note that DM requires a
more complex processing of its input, as it has to
rely on facts captured by the underlying LLM dur-
ing its pre-training phase; for MT and PG, the input
of the NLG task contains the semantic information
necessary to produce a valid output. As such, we
conjecture that the difficulty of an NLG task fosters
hallucinatory behavior.®

S They got so high: shared task results

The competition was held via Codalab (Pavao et al.,
2023). The leaderboard was left hidden during the
evaluation phase (i.e., participants were not notified
of their submissions’ scores until the end of the
evaluation phase) but users were allowed to make
a high number of submissions (50).

Systems are evaluated according to two crite-
ria: the accuracy that the system reached on the
binary classification, and their calibration, mea-
sured as the Spearman correlation of the systems’
output probabilities with the proportion of the an-
notators marking the item as overgenerating. We
rank systems by accuracy and break possible ties
using calibration.

5.1 Baseline system

As a baseline for the task, we use an LLM’ to
evaluate whether the generated hypotheses are co-
herent with the provided context. Drawing upon
Manakul et al. (2023), we use the prompt template
listed in Figure 5. The system of Manakul et al.
(2023), which has gathered some attention from
the community, constitutes a straightforward ap-
proach based on a modern LLM, and is therefore
well-suited to serve as a baseline in our shared-task:

®We also remark that the two tracks are broadly comparable
in terms of hallucinatory content. Two-samples Kolmogorov-
Smirnov tests for either split (test or validation) do not provide
sufficient grounds to suggest a difference of distribution in la-
bels between model-aware and model-agnostic tracks—which
again suggests that the relevant difference is at the task level,
rather than at the model level.

"We use quantized Mistral-7B-Instruct-
v0.2 (Jiang et al, 2023), from the Hugging
Face hub huggingface.co/TheBloke/
Mistral-7B-Instruct-v0.2-GGUF or the
llamacpp project github.com/ggerganov/llama.
cpp.
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Figure 4: Distributions of annotations

Context: {}

Sentence: {}

Is the Sentence supported by the Context above?
Answer using ONLY yes or no:

Figure 5: Prompt template used in the baseline system,
adapted from Manakul et al. (2023).

it corresponds to a reasonable default approach to
tackle the problem we challenge participants with.

The specific context varies depending on the
task addressed, i.e. the source sentence for the
paraphrase generation task, and the target sentence
for machine translation and definition modeling
tasks. As for the probability of hallucination, we
rely on the probability assigned by the model to the
first output word.® In cases where the output does
not clearly indicate yes or no, we randomly select
one, attributing a hallucination probability of 0.5.

On the model-agnostic track, our baseline sys-
tem achieves an accuracy of 0.697 (with a calibra-
tion of p = 0.403), on the model-aware track, we
observe an accuracy of 0.745 (with p = 0.488).
We can also indicate some other simple heuristics,
such as picking the most frequent label (viz., Not
Hallucination): In this case, one would ex-
pect an accuracy of 0.593 on the model-agnostic
track, and 0.633 on the model-aware track. A
purely random guess between the two possible la-
bels would result in an accuracy of 0.5. In short,
our baseline systems systematically outperforms
these crude heuristics.

5.2 Participating teams

A total of 59 individual users grouped in 42 teams
participated in the shared task, out of which 26

8We note that this simple heuristic may not accurately
represent the true hallucination probability.

elected to write a system description paper. During
the evaluation phase, we received a total of 512 sub-
missions, out of which 368 were successful. 264
of these submissions targeted both tracks, while
68 only targeted the model-agnostic track, and 36
only targeted the model-aware track. That is, we
received 332 model-agnostic submissions and 300
model-aware submissions.

We present the model-agnostic track rankings
in Table 1a and the model-aware track in Table 1b.
As one might expect, there is a high correlation
between the accuracy and calibration scores of
each team’s top ranking submission, which trans-
lates into a Spearman’s p correlation of 0.909 on
the model-agnostic track and 0.949 on the model-
aware track. Most of the top submissions per
team rank above our baseline (30/42 ~ 71.4%
in the model-agnostic track, 25/39 ~ 64.1% in
the model-aware track). This appears roughly
in line with all submissions globally: 69.9% of
all model-agnostic submissions and 57.0% of all
model-aware submissions score higher than our
baseline.

Another point worth stressing is that teams that
fare well on one track usually fare equally well
on the other: For the 38 teams participating in
both tracks, we find that the rank they obtain on
the model-aware track correlates with the rank
they obtain on the model-agnostic track (Spear-
man’s p = 0.884). This would tentatively suggest
that participants could not effectively leverage the
supplementary data available in the model-aware
track.’

Lastly, we note that there is a ceiling in terms

°An alternative account would be that all teams that partic-

ipated in both tracks equally benefited from the access to the
model weights, which we deem much less likely.
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team Acc p

1 Halu-NLP (Mehta et al., 2024) 0.847  0.770
2 OPDAI (Chen et al., 2024) 0.836  0.732
3  HIT-MI&T Lab (Liu et al., 2024) 0.831 0.768
4 SHROOM-INDEIab (Allen et al., 2024) 0.829 0.721
5 Alejandro Mosquera 0.826  0.709
6 DeepPavlov (Belikova and Kosenko, 2024) 0.821 0.752
7  BruceW 0.821 0.735
8 TU Wien (Arzt et al., 2024) 0.817 0.737
9  SmurfCat (Rykov et al., 2024) 0.814 0.723
10 HaRMoNEE (Obiso et al., 2024) 0.814 0.626
11 AMEX AI LABS 0.813  0.728
12 Pollice Verso (Kobs et al., 2024) 0.803 0.676
13 MALTO (Borra et al., 2024) 0.801 0.681
14 ucc-NLP 0.795 0.664
15 Team CentreBack 0.792  0.623
16 Atresa 0.788  0.646
17 ustc_xsong 0.785  0.695
18 IRIT-Berger-Levrault (Bendahman et al., 2024) 0.783  0.636
19 silk_road 0.781  0.672
20 AILS-NTUA (Grigoriadou et al., 2024) 0.778  0.668
21 zhuming 0.773 0.481
22 SibNN 0.770  0.613
23 UMUTeam (Pan et al., 2024) 0.769  0.561
24 Noot Noot (Bahad et al., 2024) 0.765 0.584
25 HalluSafe (Rahimi et al., 2024) 0.763  0.629
26 Maha Bhaashya (Bhamidipati et al., 2024) 0.749  0.605
27 DUTh (lordanidou et al., 2024) 0.744 0475
28 Compos Mentis (Das and Srihari, 2024) 0.738  0.595
29 daixiang 0.737 0.583
30 NU-RU (Markchom et al., 2024) 0.728  0.595

baseline system 0.697  0.403
31 SLPL SHROOM (Fallah et al., 2024) 0.694 0.423
32 Skoltech 0.684 0.674
33 CAISA 0.677 —0.430
34 Alphalntellect (Choudhury et al., 2024) 0.654  0.295
35 deema 0.646  0.566
36 BrainLlama (Siino, 2024) 0.625 0.204
37 Byun (Byun, 2024) 0.617  0.239
38 Bolaca (Rosener et al., 2024) 0.613 0.217

most frequent guess 0.593
39 AIBlues 0.587  0.025
random guess 0.500

40 MARIA (Sanayei et al., 2024) 0.498  0.025
41 0x.Yuan 0.461 0.134

team Acc p

1 HaRMoNEE (Obiso et al., 2024) 0.813 0.699
2 Halu-NLP (Mehta et al., 2024) 0.806 0.715
3 TU Wien (Arzt et al., 2024) 0.806  0.707
4 OPDAI (Chen et al., 2024) 0.805 0.680
5 HIT-MI&T Lab (Liu et al., 2024) 0.805 0.712
6 SHROOM-INDEIab (Allen et al., 2024) 0.802 0.656
7 AMEX AI LABS 0.801 0.696
8 DeepPavlov (Belikova and Kosenko, 2024) 0.799 0.713
9  silk_road 0.798  0.687
10 AILS-NTUA (Grigoriadou et al., 2024) 0.795 0.685
11 BruceW 0.794  0.660
12 Team CentreBack 0.789  0.606
13 UCC-NLP 0.789  0.644
14 wustc_xsong 0.787  0.658
15 UMUTeam (Pan et al., 2024) 0.784  0.507
16 HalluSafe (Rahimi et al., 2024) 0.783  0.537
17 SmurfCat (Rykov et al., 2024) 0.783 0.671
18 Atresa 0.783 0.624
19 IRIT-Berger-Levrault (Bendahman et al., 2024) 0.781  0.601
20 Pollice Verso (Kobs et al., 2024) 0.777  0.601
21 NU-RU (Markchom et al., 2024) 0.768  0.582
22 zhuming 0.768  0.472
23 SibNN 0.763  0.587
24 Compos Mentis (Das and Srihari, 2024) 0.756  0.566
25 DUTh (Iordanidou et al., 2024) 0.755 0.528

baseline system 0.745  0.488
26 Alphalntellect (Choudhury et al., 2024) 0.711  0.426
27 SLPL SHROOM (Fallah et al., 2024) 0.706  0.426
28 deema 0.688  0.519
29 BrainLlama (Siino, 2024) 0.671 0.244
30 daixiang 0.649 0.218

most frequent guess 0.633
31 Bolaca (Rosener et al., 2024) 0.626  0.283
32 Noot Noot (Bahad et al., 2024) 0.613  0.355
33 Byun (Byun, 2024) 0.610 0.234
34 Maha Bhaashya (Bhamidipati et al., 2024) 0.606  0.209
35 caisAa 0.567 —0.100
36 Skoltech 0.557 —0.011
37 MARIA (Sanayei et al., 2024) 0.505 0.009
random guess 0.500

38 octavianB (Brodoceanu, 2024) 0.483 —0.064

(a) Model-agnostic track rankings

(b) Model-aware track rankings

Table 1: SHROOM team rankings. Codalab usernames are used to define teams when no other information was

provided.

of performances: The most effective systems mis-
classify between 15 to 19% of all items, or almost
one in every six or five datapoints. We have dis-
cussed above that, as hallucinations are a graded
phenomenon, a large segment of our data (30%)
corresponds to ambiguous cases where annotators
are split 2 vs. 3. As such, it is worth stressing that
top scores are consistent with models that classify
consensual items well (where at most one annota-

tor disagree), but perform at random chance on the
more challenging ambiguous datapoints.

6 A bunch of fun guys: qualitative
analysis of participants systems

We derive our analyses from system description pa-
pers as well as self-reports from a handful of partic-
ipants who elected to not provide a full description
of their systems. This corresponds to 33 systems
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m— \ectara (9 /33)
mm Mistral / Mixtral (8 / 33)
m== DeBERTa (7 / 33)
== GPT (3.5 0or 4) (7 / 33)
=== ROBERTa / XLM-RoBERTa (5 / 33)
LLaMA, LLaMA2 (4 / 33)
SBERT (4 / 33)
T5 / Sentence-T5 (4 / 33)
LABSE (3/33)
E5(2/33)
OpenChat (2 / 33)

Figure 6: Known models used by more than one team.
A full circle would correspond to a given model used by
all of respondents, half a circle to 50% of respondents
using said model. Best viewed in color.

out of the 42 identified teams that participated to
the shared task, out of which 7 did not provide a
full description. See also Table 2 in Appendix A
for further details.

How the task was approached. The teams used
a variety of methods to address the problem, rang-
ing from ensemble techniques to fine-tuning pre-
trained language models (LLMs) and prompt engi-
neering. As expected, most teams used popular pre-
trained LLMs such as GPT, LLaMA, DeBERTa,
RoBERTa, and XLLM-RoBERTa; Figure 6 provides
a summary of which models were most popular
among our teams. The Vectara hallucination evalu-
ation model'? turned out to be extremely popular,
as more than 1 in 4 teams that provided information
about their systems report having used it in their
experiments. If we add other DeBERTa-based mod-
els, this number climbs to 16/33, i.e. almost every
other team used DeBERTa or a variant thereof.
Yet, the ways in which these LLMs were used
cover a wide range of approaches: Some either
fine-tuned on hallucination data or optimized with
prompts; others employed in-context learning with
role-playing, automatic prompt generation, and en-
semble methods. Furthermore, some teams focused
on zero-shot and few-shot approaches, while oth-
ers focused on synthetic data generation and semi-
supervised learning techniques to construct a la-
beled training set. Especially noteworthy, Rahimi
et al. (2024) report constructing a manual dataset

Yhttps://huggingface.co/vectara/
hallucination_evaluation_model

of 3000 datapoints for training their systems.

Teams predominantly relied on the data con-
structed for the SHROOM, although some teams
added datasets such as QQP and PAWS. Interest-
ingly, we also note five teams relying on NLI/entail-
ment data or models, including some that achieved
high results (Obiso et al., 2024; Sanayei et al., 2024;
Borra et al., 2024; Liu et al., 2024 and Team Centre-
Back)—and this matches the theoretical framework
adopted in this shared task.

What worked well. We now turn to what dis-
tinguishes top scorers from other submissions.
We note that systems based on the closed-source
models GPT-3.5 and GPT-4 tend to fare well: 4
out of the 6 highest scoring systems on either
track—Mehta et al. (2024); Obiso et al. (2024);
Liu et al. (2024); Allen et al. (2024) and Alejandro
Mosquera—all report using these models. This is
however not a strict requisite as OPDAI (Chen et al.,
2024) manages to rank high (2"¢ on the model-
agnostic track and 4™ on the model-aware track)
without it. Neither does using closed-source mod-
els guarantee a high result: UCC-NLP and Mark-
chom et al. (2024) also use GPT-3.5, and while
the former is ranked 14" on the model-agnostic
track and 13™ on the model-aware track, the latter
is ranked 30™ on the model-agnostic track and 21%
on the model-aware track, and only outperforms the
baseline model in accuracy by 0.02 to 0.03 points.

Remarkably, many of the top-scoring approaches
rely on fine-tuning (Liu et al., 2024; Obiso et al.,
2024; Arzt et al., 2024; Chen et al., 2024) or ensem-
bling (Mehta et al., 2024; Belikova and Kosenko,
2024, Alejandro Mosquera), suggesting that high
performances do not come out of the box from
off-the-shelf LLMs and systems. It is necessary to
adapt existing models or establish to what extent
their predictions are useful to the task at hand.

Another important trend we identify is that the
number of submissions per team anti-correlates
with the rank they obtain: The more participants
submitted, the higher their best scores went. This
is visualized in Figure 7: On both tracks, we find
reasonable anti-correlations (—0.58 < p < —0.44)
indicating that top-scorers tended to submit more.
This might provide an alternative explanation for
what distinguishes top-scorers from other partici-
pants: If we were to model participants’ submis-
sions as a random process, we would expect that
sampling more often (i.e., submitting more) would
mechanically yield a better rank.
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track
model-agnostic
® (p=-0571)
model-aware
(o= —0.442)

number of submissions

Figure 7: Rank obtained vs. number of submissions
made on both tracks.

Overall, the high methodological diversity high-
lights the complexity of hallucination detection,
even when contained the simple inferential seman-
tics framework of our shared task: While a focus
on NLI or using high-performance closed source
models may help, the highest scores are obtained
through thorough involvement—both in terms of
model training and prediction set submissions.

7 Much room to grow: conclusions and
future perspectives

This first iteration of the SHROOM shared task on
detecting hallucinations has allowed us to make
significant headway into understanding the confab-
ulatory behavior of modern NLG systems. The
data collected demonstrate that hallucinations cor-
respond to a gradient phenomenon, and that dif-
ferent speakers form different opinions as to what
counts as a hallucination. We were also able to
showcase that ambiguous items remain challeng-
ing, and that the current state of the art on the
dataset we provided is compatible with simple ran-
dom guesses whenever the data is more ambiguous.
This results underscore the massive gap that NLP
research urgently needs to address: one out of every
six items is still misclassified by the most effective
systems showcased during this shared task.

The diversity of methodologies employed by par-
ticipants underscores how out-of-the-box solutions
are not sufficient: Highest scoring teams had to rely
on fine-tuning or ensembling and made a high num-
ber of submissions. Relatedly, access to the model
parameters was of limited help: Few approaches
attempted to perform model-specific investigations,
and performances on the model-aware track are in

fact lower than what we observed on the model-
agnostic track. Properly leveraging the parameter
space for finer-grained hallucination detection re-
mains a point for future research to investigate.

This shared task has not broached some crucial
aspects and questions: How do these results trans-
late insofar as modern LLMs—often much larger
and better trained than the systems we studied
here—are concerned? Can we leverage sentence-
level predictions to pinpoint token-level issues with
the output of our NLG systems? And will the diffi-
culties that we underscored in this purely English
be exacerbated when studying other languages—
especially those that are less well-resourced and
typologically different? Answering these questions
and more will require further research—and per-
haps future iterations of this shared task.

Overall, the success of this shared task is owed
to its committed participants. We received over 350
submissions in the span of three weeks from across
the world. The width of approaches studied and
reported upon provides a useful snapshot of where
the field is at, what approaches are favored, and
what gaps still need to be overcome. We expect that
the results of the SHROOM will provide a useful
starting point for future work on hallucinations.

Doing SHROOM responsibly: ethical
considerations

We strive to adhere to the ACL Code of Ethics.

Broader Impact. Hallucinated outputs from
large language models can be used to further spread
disinformation and advance misleading narratives.
Detecting hallucinated outputs is an important step
in elucidating the factors of this phenomena and
contribute to ongoing efforts to mitigate halluci-
nation. This leads to the development of more
trustworthy generative language models.

Data and Annotators. Our annotators were suit-
ably compensated for their work in excess of mini-
mum wage. Due to the nature of the proposed task,
the data we release might contain false or mislead-
ing statements. In the case of annotated data, these
statements are labeled as such, but this does not for
the unannotated portions of the data. We manually
pre-filtered the data to remove profanities before
providing them to annotators. Such precautions
were not taken for the unannotated portion of the
dataset, which might therefore contain offensive,
obscene or otherwise unconscionable items.
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A Shared consciousnesses: Overview of
approaches used by SHROOM teams

In Table 2, we provide a short overview of the
various teams, the resources they utilized (models
& datasets), as well as a short description of their
approach.

B What SHROOM makes you do:
Annotation guidelines

In Figure 8, we provide an exact copy of the an-
notation guidelines given to the annotators. These
guidelines are based on five of the organizers’ expe-
rience of annotating the trial set, and were provided
to annotators recruited for the validation and test
splits.
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Annotation guidelines for SHROOM

Thank you for agreeing to participate in the SHROOM survey! The present document will provide you some

general guidelines as to what is expected of you.

What are we looking for?

Our goal is to assess the truthfulness of sentences and documents written with artificial intelligence. In particular,
we are interested in cases when the Al outputs are not supported by the facts. Such unsupported outputs are col-
loquially referred to as 'hallucinations'.

You will be presented with a series of items. Each item contains an Al output, as well as one or more References,
i.e., examples of what the model should have produced in an ideal scenario. Outputs and references can corre-
spond to different types of sentences and paragraphs: news headlines, dictionary definitions, movie subtitles...
We ask that you mark for every item, whether the output contains or describes facts that are not supported by

the provided reference. Such items are instances of hallucinations.

In other words: hallucinations are cases where the Al output is more specific than it should be, given the
available reference.

Some Examples and counterexamples Hallucinations

Hallucinations

Below are some examples of items our research team unanimously considered as hallucinations:

m

xample 1

Reference: The worship of trees.

AI output: (uncountable) The study of trees.

Reference: Why is everyone laughing?

AI output: Why is everyone okay?

Reference: You’'re a scam artist.

AI output: You’'re not a good scam artist.
Not Hallucinations

And next, here are a few items that we unanimously did not consider as hallucinations:

Reference: Capable of being deployed by parachute.
AI output: Capable of being parachuted.

Reference: When did you see him?

AI output:When was the last time you saw him?
One last thing: Hallucinations vs. undergeneration

In some instances, the Al output can contain less information than the reference. We refer to such items as cases
of “undergeneration”. These are not necessarily cases of hallucinations: as long as what is stated in the Al output

is supported by the reference, such items should not be marked as hallucinations.
Here is one straightforward example:

Reference: I can't do it alone. You have to help me.

AI output:I can't do it alone.

Given that all the information present in the Al output is also found in the reference, this should not be marked
as a hallucination.

That's it!

Figure 8: Annotation guidelines.
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SHROOM datasets; Vectara model.

SHROOM datasets; COMET, Vectara,
LaBSE, GPT35 and GPT4 models.
SHROOM dataset, SBERT

SHROOM datasets; Vectara and Open-
Chat models.

SHROOM dataset, SBERT

LLaMA model.

SHROOM dataset, data augmentation,
RoBERTa

HalluEval dataset; Mistral 7B instruct
model.

SHROOM dataset; OpenChat, DeBERTa,
RoBERTa and T5 models.

SHROOM, LaBSE, T5, DistilUSE

SHROOM, labeled 3000 samples of the
training data

SHROOM datasets; GPT, SelfCheckGPT
and Vectara models.

SHROOM, SNLI, MNLI and PAWS
datasets; Vectara and GPT4 models.
SHROOM with training dataset labeled
using GPT-4; DeBERTaV3, InternLM2,
SBERT, and UniEval.

SHROOM datasets; Sentence-t5, BGE, e5
models.

DeBERTa models.

SHROOM model-agnostic dataset, De-
BERTa pretrained and finetuned on MNLI,
SOLAR-10.7B quantized from TheBloke
(for synthetic data generation)

SHROOM dataset, SBERT, bart-large-
mnli, Mixtral

SHROOM dataset; Mixtral and RoBERTa
models.

SHROOM, GPT-3.5, Sentence Transform-
ers

RoBERTa

SHROOM, Mistral-7B-Instruct-v0.2, self
constructed training data

Mistral2, LLaMa2, Phi2 and Zephyr mod-
els; uses SHROOM train set for prompt
optimization.

SHROOM dataset; GPT 3.5 and GPT 4
models.

SHROOM datasets;
model.

XLM-RoBERTa

SHROOM datasets; Vectara model.

SHROOM datasets; LaBSE, DeBERTa,
Zephyr, Mistral and Llama2 models.
SHROOM (synthetically augmented),
QQP and PAWS datasets; ES, TS5, Vectara
models.

SHROOM dataset; DeBERTa model.

SHROOM dataset; Vectara model.
SHROOM dataset; GPT-3.5 and Vectara

models.
SHROOM dataset; TULU-DPO model.

Mistral, Mixtral, LLaMA, Falcon, Wiz-
ardLM and Capybara models.

(No report)
Fine-tuned models and voting classifier.

Ensemble of publicly available models. Logistic Regression was used as final scoring model.
Fully-connected neural network classifiers with SBERT embeddings as input.
Ensemble of LLM (using Openchat) zero shot and few shot with Vectara cross encoder based scores.

(No report)
Logistic regression and feed-forward classifier trained on SBERT embeddings

Prompt-based approach with LLaMA.

(No report)
Finetuned a BERT or RoBERTa model with a softmax layer to output the probability of hallucinated text.
Finetuning data is the labelled SHROOM data augmented with data points constructed by replacing words
with synonyms.

(No report)
Ensemble of several role-based LLMs, which were either fine-tuned on hallucination data or role-based
prompting.

(No report)

(No report)
Ensemble of several pretrained Transformer-based models to get features for validation and test data of
SHROOM dataset and trained a boosting-based meta-model on top.

Using pre-trained LLMs and classifiers
Fine-tuned a DeBERTa-v3-large

Prompts and GroupCheckGPT. NB: due to a team name change, this team is also referred to as
GroupCheckGPT by some participants.

Highest results obtained with zero-shot prompting in the model-aware track; pretraining on NLI and
PAWS followed by finetuning on the model-agnostic track.

Fine-tune the DeBERTaV3 and InternLM2 models, and call the SBERT and UniEval models to select the
optimal threshold usinf SHROOM & syntheticaly labeled data. The system obtians the final results by
combining the prediction results of each model.

Computes the cosine similarity of sentence embeddings and classify based on an empirical threshold
value.

Zero shot inference, pretrained cross encoder model

Encoder and classifier, fine-tuned in various ways (including with synthetic data)

Three approaches: (1) Cosine similarity of SBERT embeddings between source-hypothesis and source-
target pairs; (2) NLI classification using bart-large-mnli model; and (3) Mixtral prompting. Only the
Mixtral results were submitted.

Mixtral prompting and RoBERTa finetuning.

Tried two approaches: (1) hypothesis-target cosine similarity, using a threshold value to determine whether
the hypothesis is a hallucation. (2) SelfCheckGPT with a customized prompt for each NLG task, designed
to assess its coherence with the provided source and target. Each prompt is iterated through the GPT-3.5
model five times, and the final label is determined by the majority response.

Used a pretrained model (roberta-large-openai-detector) that has been trained to distinguish between text
generated by LLMs and text written by humans.

Supervised fine-tuning over synthetically constructed weakly supervised training data.

Ensembling over the output logits of prompt-based LLMs (mistral, llama etc) after automatically optimiz-
ing their prompts ("OPRO").

In-context learning with role-play and automatic prompt generation in a few-shot classfier, using a closed-
source LLM.
Fine-tunes a self-adaptive hierarchical variant of XLM-RoBERTa-XL twice: first as an embedder (in a
few-shot mode), then as a binary classifier. More details at
https://huggingface.co/bond005/x1lm-roberta-xl-hallucination-detector.
Fine-tunes an off-the-shelf Cross-Encoder hallucination evaluation model.

(No report)
Using two LLMs to classify and explain their decision and another LLM to judge and decide based on
those explanations.
Fine-tuning of e5-mistral-7b-instruct using synthetic data collected with LLaMA2-7B adapters trained
to produce data with and without hallucinations. However, there are two other systems: one works as a
voting ensemble of multiple LLMs, and another uses the Mutual Implication Score architecture.
Uses an off-the-shelf library (SelfCheckGPT’s SelfCheckNLI function) to calculate contradiction scores
on a small labeled test set and then defined a threshold for hallucination.
Model-aware track best submissions uses a Vectara hallucination detection model finetuned on the
validation set. The best model-agnostic track submission is a meta-model that utilizes linear regression
and is trained on features that correspond to probabilities predicted by individual systems we implemented.
Uses BertScore and GPT-3.5 to create synthetic labels and fine-tune a Vectara LLM.

Zero-shot approach

(No report)

(No report)
Zero-shot prompt engineering. Expects most LLMs will have different hallucination patterns, and tests
whether ensembling can mitigate this.

Table 2: Participating teams and their respective works.
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