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Abstract

Large Language Models (LLMs) are at the fore-
front of NLP achievements but fall short in
dealing with shortcut learning, factual incon-
sistency, and vulnerability to adversarial inputs.
These shortcomings are especially critical in
medical contexts, where they can misrepresent
actual model capabilities. Addressing this, we
present SemEval-2024 Task 2: Safe Biomed-
ical Natural Language Inference for Clinical
Trials. Our contributions include the refined
NLI4CT-P dataset (i.e. Natural Language In-
ference for Clinical Trials - Perturbed), de-
signed to challenge LLMs with interventional
and causal reasoning tasks, along with a com-
prehensive evaluation of methods and results
for participant submissions. A total of 106 par-
ticipants registered for the task contributing to
over 1200 individual submissions and 25 sys-
tem overview papers. This initiative aims to ad-
vance the robustness and applicability of NLI
models in healthcare, ensuring safer and more
dependable AI assistance in clinical decision-
making. We anticipate that the dataset, models,
and outcomes of this task can support future
research in the field of biomedical NLI. The
dataset1, competition leaderboard2, and web-
site3 are publicly available.

1 Introduction

Large Language Models (LLMs) excel in numer-
ous Natural Language Processing (NLP) tasks, as
evidenced by their state-of-the-art achievements
(Brown et al., 2020; Chowdhery et al., 2022).
Despite these advancements, LLMs are prone to
several critical vulnerabilities. These include a
tendency towards shortcut learning, which may
compromise their learning process and accuracy
(Geirhos et al., 2020; Poliak et al., 2018; Tsuchiya,

1https://github.com/ai-systems/nli4ct
2https://codalab.lisn.upsaclay.fr/

competitions/16190
3https://sites.google.com/view/nli4ct/

Figure 1: The goal of NLI4CT is to predict the rela-
tionship of entailment between a Statement and a CTR
premise (Jullien et al., 2023a). In this task, we introduce
a set of perturbations (NLI4CT-P) applied to the state-
ments to test the semantic consistency and faithfulness
of NLI models.

2018). Additionally, they exhibit factual inconsis-
tencies (Elazar et al., 2021) and are sensitive to
changes in word distributions (Miller et al., 2020;
Lee et al., 2020), data transformations (Xing et al.,
2020; Stolfo et al., 2022; Meadows et al., 2023;
Rozanova et al., 2023), and adversarial attacks (Li
et al., 2020). These issues are particularly concern-
ing as they may lead to an overestimation of LLMs’
capabilities in practical applications, a risk that is
notably significant in fields requiring high reliabil-
ity, such as healthcare (Patel et al., 2008; Recht
et al., 2019).

Clinical trials play a pivotal role in evaluating
the efficacy and safety of novel treatments, thereby
significantly contributing to the progress of experi-
mental medicine (Avis et al., 2006). Clinical Trial
Reports (CTRs) document the methodologies and
outcomes of these trials, serving as a foundation for
healthcare professionals to devise and administer
experimental therapies. However, the sheer volume

1947

https://github.com/ai-systems/nli4ct
https://codalab.lisn.upsaclay.fr/competitions/16190
https://codalab.lisn.upsaclay.fr/competitions/16190
https://sites.google.com/view/nli4ct/


of CTRs, exceeding 400,000 and continually grow-
ing (Bastian et al., 2010), renders it impractical for
a manual comprehensive analysis of all pertinent
literature in treatment planning (DeYoung et al.,
2020). In this context, Natural Language Inference
(NLI) (Bowman et al., 2015) emerges as a viable
solution, facilitating the large-scale interpretation
and synthesis of medical evidence. This approach
effectively bridges the latest research findings with
clinical practice, thereby supporting the delivery of
personalized care (Sutton et al., 2020).

Previously, we created the Multi-Evidence Natu-
ral Language Inference for Clinical Trial Reports
(NLI4CT) dataset, detailed in Jullien et al. (2023a).
This dataset, enriched with Clinical Trial Reports
(CTRs) and expert-annotated statements for entail-
ment and contradiction, exemplified in Figure 1,
served as the foundation for organizing "SemEval-
2023 Task 7: Multi-Evidence Natural Language
Inference for Clinical Trial Data".

While the preceding version of NLI4CT spurred
the creation of models based on Large Language
Models (LLMs) (Zhou et al., 2023; Kanakarajan
and Sankarasubbu, 2023; Vladika and Matthes,
2023) that demonstrated commendable perfor-
mance (i.e., F1 score ≈ 85%), deploying LLMs
in sensitive areas like real-world clinical trials man-
dates additional scrutiny. This necessitates the in-
vention of new evaluation frameworks that allow
thorough behavioural and causal analysis (Wang
et al., 2021).

In pursuit of these goals, we present the latest
iteration of our dataset, NLI4CT-P, an extension
of the original NLI4CT with data perturbations.
Moreover, we provide a comprehensive analysis
of the systems that participated in "SemEval-2024
Task 2: Safe Biomedical Natural Language Infer-
ence for Clinical Trials" a task conducted using the
NLI4CT-P dataset. This initiative aims to improve
our understanding of LLMs behaviour and advance
evaluation methodologies for clinical Natural Lan-
guage Inference (NLI).

The task is structured around the systematic ap-
plication of controlled interventions, each designed
to investigate specific semantic and numerical infer-
ence challenges typical of clinical NLI (see Table
1). The interventions enable a comprehensive eval-
uation of LLMs’ reasoning capabilities within a
clinical framework, emphasizing robustness, con-
sistency, and faithfulness.

Our efforts aim to significantly contribute to the
crafting of more dependable and insightful evalu-

Original Statement: The primary trial intervention protocol
lasts a total of 14 days.
Label: Entailment

Perturbed Statement Intervention Type

The primary clinical trial’s
intervention treatment plan
has a duration of 14 days.

Paraphrase Preserving

The primary clinical trial
intervention protocol spans
an entire year

Contradiction
rephrasing

Altering

Lacks energy refers to
whether an individual has/had
a lack of energy. The primary
trial intervention protocol
lasts a total of 14 days

Text
appended

Preserving

The primary trial intervention
protocol lasts 2 weeks

Numerical
paraphrase

Preserving

The primary trial intervention
protocol lasts a total of 3
hours

Numerical
contradiction

Altering

Table 1: Example of perturbations applied to the state-
ments with the type of intervention and its semantic
effect (i.e., preserving vs. altering).

ation standards and metrics for NLI systems, en-
suring their reliability and efficacy in healthcare
applications.

This second iteration is intended to ground
NLI4CT in interventional and causal analyses of
NLI models (YU et al., 2022). By enriching the
original NLI4CT dataset with a novel contrast set
derived from targeted interventions to statements
in the NLI4CT test and development sets, we estab-
lish a direct causal link between these interventions
and the anticipated labels. This enhancement in-
troduces two innovative metrics, Consistency and
Faithfulness. These metrics allow us to explore spe-
cific research objectives with a causal perspective:

• Consistency: To examine whether NLI mod-
els maintain uniformity in processing seman-
tically equivalent phenomena crucial for infer-
ence within clinical NLI contexts.

• Faithfulness: To assess the capacity of NLI
models to capture and interpret the underlying
semantic features required for reasoning over
clinical trials, and to change their predictions
according to relevant changes of such features.

This paper introduces SemEval-2024 Task 2 –
Safe Biomedical Natural Language Inference for
Clinical Trials – (NLI4CT-P) presenting a detailed
analysis of the performance of the participating
systems. We report the following conclusions:
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Challenges in Clinical NLI: Despite improve-
ments achieved via the application of Large Lan-
guage Models (LLMs), Clinical NLI remains a
significant challenge. With the highest F1 score
achieved in this task being 0.8 (Liu and Thoma,
2024; Guimarães et al., 2024) (FZI-WIM, Lis-
bon Computational Linguists), leveraging Mixtral-
8x7B-Instruct models. This emphasises the neces-
sity for the development of more robust and reliable
systems capable of dealing with the challenges of
real-world clinical application.

Importance of Faithfulness and Consistency
Evaluation: The incorporation of Faithfulness
and Consistency metrics into our evaluation frame-
work underscores the unpredictability of current
systems and the limitations inherent in relying
solely on F1 score for comprehensive analysis.

Superiority of Generative Models: Generative
models have been shown to outperform discrimina-
tive models in terms of F1 score (+0.025), Faithful-
ness (+0.15), and Consistency (+0.037).

Value of Additional Data: Leveraging addi-
tional training data in the form of instruction tuning
or medical NLI datasets has been shown to produce
significant performance gains. When augmented
with extra data, systems exhibit notable enhance-
ments, recording improvements of +0.056 in F1
score, +0.132 in Faithfulness, and +0.062 in Con-
sistency relative to their counterparts.

Impact of Prompting Strategies: The study
highlights that the choice of prompting strategy
plays a crucial role in influencing model perfor-
mance. Specifically, zero-shot prompting has
been shown to provide notable enhancements, with
an average increase of +0.025 in F1 score, and
marginal gains of +0.001 in both Faithfulness and
Consistency, compared to the outcomes achieved
with few-shot prompting techniques.

Efficacy of Mid-Sized Architectures: Mid-
sized architectures, possessing 7B to 70B param-
eters, offer a cost-effective alternative capable of
matching or surpassing larger models in key per-
formance metrics like F1, Faithfulness, and Con-
sistency. Compared to models exceeding 70B pa-
rameters, these mid-sized models report a slight
improvement of +0.01 in F1 score, albeit with mi-
nor reductions of -0.03 in Faithfulness and -0.01 in
Consistency. Against models below 7B parameters,
however, they show notable enhancements, achiev-

ing +0.10 in F1 score, +0.40 in Faithfulness, and
+0.19 in Consistency.

2 Task Description

SemEval-2024 Task 2 is a textual entailment task,
each instance in NLI4CT contains a CTR premise
and a related statement. These premises range from
5 to 500 tokens in length and provide details about
a trial’s results, eligibility criteria, interventions,
or adverse events. Corresponding statements are
concise sentences, containing 10 to 35 tokens, that
make some claim about the premise information
(refer to Table 1 for examples). The task is to clas-
sify the inference relation between a CTR premise,
and a statement as either entailment or contradic-
tion, exemplified in Figure 1 The dataset features
two distinct types of instances: single instances,
where a statement discusses a single CTR, and
comparison instances, which involve statements
that compare and contrast two CTRs.

3 Dataset

The premises used in the NLI4CT dataset (Jul-
lien et al., 2023a) are derived from 1,000 publicly
accessible, English-language breast cancer Clini-
cal Trial Reports (CTRs) published on ClinicalTri-
als.gov a resource managed by the U.S. National
Library of Medicine. This dataset complies with
the Health Insurance Portability and Accountability
Act (HIPAA) Privacy Rule. The original NLI4CT
collection includes 2,400 expert-annotated state-
ments, premises and associated labels. These are
distributed across training, testing, and develop-
ment sets in a 70/20/10 ratio.

We have advanced the methodology of the pre-
vious NLI4CT dataset by incorporating interven-
tions to create a contrast set, enabling a systematic
behavioural and causal analysis of models evalu-
ated in the competition. This enhanced version
is referred to as NLI4CT-P (Perturbed). The con-
struction of the contrast set involves four semi-
automated, controlled interventions applied to the
statements from the NLI4CT test and development
set. It’s important to note that the specifics of these
interventions were kept undisclosed until the com-
pletion of the competition’s testing phase on Jan-
uary 31st 2024.

3.1 Interventions

We delineate and implement the four interventions
in the following manner:
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Paraphrasing and Contradiction Rephrasing
Clinical texts frequently contain acronyms and
aliases, which can hinder the performance of clini-
cal NLI models (Grossman Liu et al., 2021; Jimeno-
Yepes et al., 2011; Pesaranghader et al., 2019; Jin
et al., 2019). Moreover, these models can fall prey
to shortcut learning, where they make inferences
based on syntactic patterns rather than semantic
understanding (Geirhos et al., 2020). To eval-
uate this phenomenon, original statements were
rephrased using different vocabulary and syntax.
Paraphrasing was employed to retain the original
meaning and label (row 1 Table 1), while contradic-
tion rephrasing created new statements that directly
contradict the original statement, and are therefore
always labelled as contradictions (row 2 Table 1).

Numerical Paraphrasing and Contradiction
Large Language Models (LLMs) have shown limi-
tations in consistent numerical and quantitative rea-
soning (Patel et al., 2021; Ravichander et al., 2019;
Galashov et al., 2019), an essential aspect for tasks
like NLI4CT that demand such inferences. To eval-
uate the models’ capabilities in this area, operands
and numerical units within the hypotheses were
altered (rows 4 and 5 Table 1). This modification
either preserved or inverted the initial entailment
label.

Appending Text LLMs are often challenged by
complex reasoning when dealing with extended
premise-hypothesis pairs (Liu et al., 2021). We test
this in a clinical setting by appending biomedical
definitions from the NCI Thesaurus to the original
statements (row 3 Table 1). The added definitions,
ranging from 15 to 20 tokens in length, almost dou-
ble the average statement token length. Despite
the definitions not being independently verifiable
against the premises, these definitions are regarded
as ’ground truth’, they are universally true and re-
main neutral in relation to the premises. Since they
neither assert nor verify any premise-specific in-
formation, within the scope of our task, appending
such neutral text is categorized as a ’preserving’
intervention.

These interventions, other than the text append-
ing, were performed by prompting ChatGPT 3.5
and Whisper APIs (Brockman et al., 2023) with
human-in-the-loop correction to address any errors
(Gilardi et al., 2023). Each statement in the test and
development sets underwent each type of interven-
tion process three times. This did not extend to the
training set, as the aim was to prevent models from

learning the patterns of intervention. Although
attempts were made to apply numerical paraphras-
ing and contradiction interventions, they were not
always feasible. This was due to the absence of nu-
merical data or units in the original statements, and
when the quality of the perturbed statements was
deemed substandard, they were excluded during the
manual review phase. consequently, this resulted in
a markedly reduced count of numerically perturbed
statements within the dataset. The prompts used
to perform the interventions are available in the
appendix.

4 Evaluation

SemEval-2024 Task 2 is devised as a binary classi-
fication challenge, with the Macro F1-score being
utilized to gauge the foundational performance of
the participating systems. This evaluation is con-
ducted on the original NLI4CT test set, serving
as a control metric, rather than on the NLI4CT-
P test set, which contains exclusively perturbed
statements. Although the Macro F1 score is instru-
mental in measuring overall model performance
by highlighting precision and recall across various
classes, it inherently lacks the capability to fully
capture the sophisticated understanding and reason-
ing skills essential for effective Natural Language
Inference (NLI). Specifically, the F1 score does
not assess a model’s capacity to adjust to subtle
semantic shifts or evaluate the resilience of its pre-
dictions when faced with interventions that either
modify or maintain the semantic integrity of state-
ments. This gap highlights the necessity for more
advanced metrics capable of offering deeper in-
sights into a model’s interpretative and reasoning
proficiency. In response to this need and inspired
by recent advancements in causal analysis within
the NLP domain (Stolfo et al., 2022), we introduce
two novel evaluation metrics aimed at examining
the causal effects of interventions on model perfor-
mance.

Faithfulness gauges the degree to which a sys-
tem’s predictions are both accurate and grounded
in the correct rationale. Intuitively, this is estimated
by measuring the ability of a model to correctly ad-
just its predictions when exposed to interventions
that modify the meaning (semantic altering) of the
statement. Specifically, for a set of N statements xi
in the contrast set (C), alongside their correspond-
ing original statements yi and the model predictions
denoted as f(), faithfulness is quantified using the
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Set Original Appended
definition

Paraphrase Contradiction
rephrasing

Numerical
paraphrase

Numerical
Contradiction

Total

Dev 200 600 600 600 64 78 1942

Test 500 1500 1500 1500 224 276 5000

Table 2: Distribution of statement counts across the sets of NLI4CT-P

formula presented in Equation 1.

Faithfulness =
1

N

N∑

1

|f(yi)− f(xi)|

xi ∈ C : Label(xi) ̸= Label(yi), and f(yi) = Label(yi)
(1)

Consistency assesses a system’s capability to
generate identical outcomes for semantically equiv-
alent inputs. This measure evaluates whether a
system can uniformly predict the same label for
both the original and contrast statements under in-
terventions that do not alter the semantic content
(semantic preserving) of the statements. The key as-
pect here is the uniformity in representing semantic
concepts across different statements, irrespective
of the correctness of the final prediction. For N
statements xi in the contrast set (C), alongside their
original counterparts yi, and model predictions f(),
consistency is determined as follows:

Consistency =
1

N

N∑

1

1− |f(yi)− f(xi)|

xi ∈ C : Label(xi) = Label(yi)

(2)

The Macro F1 score provides a foundational
benchmark for basic model performance, serving
as a control metric, the core objective of Task 2
is towards enhancing model quality and depend-
ability through systematic causal analysis. The
pursuit here is not only for high performance in a
traditional sense but for models that demonstrate
a more reliable and robust application of natural
language, reflecting a more nuanced approach to
evaluating system capabilities, and allowing for
developing safer, ethical, and trustworthy clinical
systems.

5 Results and Discussion

106 participants registered to the SemEval-2024
Task 2 competition contributing over 1200 individ-
ual submissions and 25 system overview papers,
presented in Table 3. Please note that our analysis
focuses exclusively on systems that are detailed

Figure 2: Comparative Analysis of F1, Consistency, and
Faithfulness Across Model Types

Figure 3: Comparative Analysis of F1, Consistency, and
Faithfulness Across Model Parameter Numbers

in system overview papers and for which official
leaderboard results have been provided. Generally,
participants tend to submit the highest-scoring re-
sults to the leaderboard, regardless of whether the
system achieving these results represents the pri-
mary contribution of their paper. This approach en-
sures that our report reflects the peak performance
levels achieved, albeit potentially overlooking the
main systems of interest described in the papers.

5.1 Architectures

In the SemEval-2024 Task 2 submissions, a di-
verse range of 12 different architectures was em-
ployed, as detailed in Table 4. The predominant
choice among participants was Mistral-based archi-
tectures, accounting for 7 out of 25 submissions,
closely followed by DeBERTa with 5 out of 25.
The majority of submissions utilised generative
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Work F1 F C Average
Score

Architecture Inference Strategies Fine-
Tuning

Dataset Augmentation

FZI-WIM (Liu and Thoma,
2024)

0.8 0.9 0.73 0.81 Mixtral-8x7B-Instruct CoT Yes GPT-4, bart-large-mnli Instruction Dataset

Lisbon Computational Lin-
guists (Guimarães et al., 2024)

0.8 0.83 0.72 0.78 Mistral-7B-Instruct-
v0.2

Zero-shot Yes Mistral-7B-Instruct-v0.2 dataset expan-
sion

NYCU-NLP (Lee et al., 2024) 0.78 0.92 0.81 0.84 SOLAR (10.7B) Zero-shot Yes OpenChat v3.5, Intervention Reduction

Edinburgh Clinical NLP
(Gema et al., 2024)

0.78 0.95 0.78 0.84 GPT-4 Zero-shot No -

YNU-HPCC (Zhang et al.,
2024)

0.77 0.67 0.73 0.72 DeBERTa-v3-large Discriminative Yes MultiNLI, FeverNLI, ANLI, LingNLI,
WANLI, Back Translation

BD-NLP (Nath and Samin,
2024)

0.77 0.79 0.76 0.77 DeBERTa-lg Discriminative Yes -

CaresAI (Abdel-Salam et al.,
2024)

0.77 0.76 0.75 0.76 Ensemble of DeBERTas Discriminative Yes -

TüDuo (Smilga and Alabiad,
2024)

0.76 0.84 0.75 0.78 Flan-T5 XL Few-shot Yes GPT-3.5-Turbo Instruction Dataset

RGAT (Chakraborty, 2024) 0.76 0.86 0.74 0.79 GPT-4 Zero-shot No -

DFKI-NLP (Verma and
Raithel, 2024)

0.75 0.81 0.68 0.75 Mistral 7B Zero-shot Yes Meta-Inventory dataset expansion,
MedNLI

D-NLP (ALTINOK, 2024) 0.75 0.83 0.74 0.77 Gemini Pro Zero-shot No -

LMU-BioNLP (Sun et al.,
2024)

0.75 0.86 0.69 0.77 Mistral-7b Zero-shot Yes GPT-3.5, GPT4 dataset expansion, and in-
struction tuning dataset

DKE-Research (Wang et al.,
2024)

0.74 0.8 0.75 0.76 DeBERTa-l Discriminative Yes GPT-3.5, TF-IDF dataset expansion

Puer (Dao et al., 2024) 0.72 0.59 0.64 0.65 Biolinkbert-large Discriminative Yes -

UniBuc (Miclut,a-Câmpeanu
et al., 2024)

0.71 0.83 0.72 0.75 SOLAR 10B few-shot No -

iML (Akkasi et al., 2024) 0.7 0.28 0.52 0.50 SciFive Zero-shot Yes -

CRCL (Brutti-Mairesse,
2024)

0.7 0.87 0.7 0.76 Mixtral-8x7B CoT, OPRO optimiza-
tion

No -

IITK (Mandal and Modi,
2024)

0.69 0.9 0.71 0.77 Gemini Pro Zero-shot, ToT and
CoT

No -

0x.Yuan (Lu and Kao, 2024) 0.68 0.51 0.56 0.58 Mixtral-8x7B multi-agent debating
framework

No -

Saama Technologies (Kim
et al., 2024)

0.66 0.59 0.58 0.61 Gemini Pro, mistral-7B-
instruct-v0.2

CoT, Few-Shot Yes -

TLDR (Das et al., 2024) 0.66 0.5 0.58 0.58 SciFive-base,
DeBERTa-v3-base

Zero-shot No -

Concordia University (Marks
et al., 2024)

0.66 0.03 0.39 0.36 BART Discriminative Yes -

T5-Medical (Siino, 2024) 0.63 0.3 0.5 0.48 T5-large-medical Zero-Shot No -

USMBA-NLP (Fahfouh et al.,
2024)

0.62 0.44 0.54 0.53 BERT base Discriminative Yes -

SEME (Aguiar et al., 2024) 0.57 0.64 0.56 0.59 NLI-RoBERTa ensem-
ble

Discriminative Yes -

Table 3: SemEval-2024 Task 2 Results, sorted by F1 (on the unperturbed subset of the test set), with Faithfulness
(F), and Consistency (C)

models, with 17 out of the total, compared to 8
leveraging discriminative models. The F1 score
suggests that GPT-4’s performance is on par with
considerably smaller models such as DeBERTa.
However, a deeper evaluation using our novel met-
rics, especially Faithfulness, reveals a significant
disparity, indicating that smaller models might be
overfitting. This observation underscores the impor-
tance of employing these complementary metrics
for a more comprehensive comparison of model ca-
pabilities. Despite the prevailing notion that larger
models inherently perform better, this trend ap-
pears to be less pronounced than observed in this

task’s previous iteration (Jullien et al., 2023b), as
illustrated in Figure 3. Notably, there seems to be
a point of diminishing returns for model sizes be-
tween 7B and 70B, within the generative model
category, shown in Figure 3. On average, mod-
els with sizes ranging from 7B to 70B parameters
achieve +0.01 in F1 score but show decreases of
-0.03 in Faithfulness and -0.01 in Consistency rel-
ative to models with more than 70B parameters.
When compared to models with fewer than 7B pa-
rameters, these mid-sized models exhibit substan-
tial improvements of +0.10 in F1 score, +0.40 in
Faithfulness, and +0.19 in Consistency.
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Table 4: Participant architectures by popularity, with
average F1, Faithfulness (F) and Consistency (C)

Model F1 F C Count

DeBERTa 0.76 0.76 0.75 5
Mistral 7B 0.75 0.84 0.69 4
Mixtral 8x7B 0.73 0.76 0.66 3
T5 0.66 0.36 0.53 3
Gemini Pro 0.70 0.77 0.68 3
GPT-4 0.77 0.91 0.76 2
SOLAR 10B 0.75 0.88 0.77 2
BERT base 0.62 0.44 0.54 1
Biolinkbert 0.72 0.59 0.64 1
BART 0.66 0.03 0.39 1
RoBERTa 0.57 0.64 0.56 1
Flan-T5 XL 0.76 0.84 0.75 1

Additionally, on average, generative mod-
els outperform discriminative ones across the
board—with improvements observed in F1 scores
(+0.025), Faithfulness (+0.15), and Consistency
(+0.037), as depicted in Figure 2. Intriguingly,
when comparing specific architectures, there is min-
imal correlation between model types and Faithful-
ness, Consistency, and F1, even though the top two
performing systems in terms of F1 score are based
on the Mixtral-8x7B-Instruct model (see Table 3).

5.2 Base F1 Performance

As previously mentioned the focus of this task
extends beyond base performance. Nevertheless,
it’s noteworthy that the highest F1 score achieved
in this iteration was 0.8 (Liu and Thoma, 2024;
Guimarães et al., 2024) (FZI-WIM, Lisbon Com-
putational Linguists) by two systems (Table 3). A
figure that notably falls short of the previous itera-
tion’s top score of 0.856 (Zhou et al., 2023; Jullien
et al., 2023b). This observed decline underscores
a significant gap between the current capabilities
of NLI systems and the performance required for
practical application within clinical environments.

5.3 Faithfulness and Consistency

The overall average Faithfulness recorded at 0.719
significantly outperforms the average Consistency,
which stands at 0.67. This disparity grows more
pronounced within the subset of models within the
top 10 F1 scores, where Average Faithfulness esca-
lates to 0.835 and Average Consistency to 0.751.

Furthermore, a robust overall Spearman’s cor-

relation was identified between Consistency and
F1 scores (0.8) and between Faithfulness and F1
scores (0.62). Intriguingly, this correlation in-
verts within the top 10 systems, where Spearman’s
Correlation between Consistency and F1 drops
to -0.12, and between Faithfulness and F1 rises
slightly to 0.319. Notably, the models with the
highest Faithfulness (0.95) (Gema et al., 2024)(Ed-
inburgh Clinical NLP) and Consistency (0.81) (Lee
et al., 2024)(NYCU-NLP) scores achieve an aver-
age score of 0.84, surpassing systems ranked above
them (with average scores of 0.81 and 0.78) yet
both reporting a lower F1 score by -0.02. also Man-
dal and Modi (2024)(IITK) achieves a very high
faithfulness of 0.9, while only managing an F1 of
0.69. These patterns underscore the limitation of
F1 scores as sole indicators of model performance
at the apex levels, accentuating the importance of
considering Faithfulness and Consistency metrics
in conjunction with F1.

The inversion of correlations among the top 10
models suggests a nuanced landscape of perfor-
mance evaluation. While Consistency contributes
broadly to high F1 scores, the top 10 models dis-
tinctly leverage Faithfulness, indicating that, at
peak performance levels, perhaps accurate predic-
tions rooted in correct premises are paramount over
consistent responses to similar cases.

This phenomenon might also signify a ceiling
effect for Consistency, suggesting that beyond a
certain point, efforts to improve consistency do not
translate into proportional performance gains. Such
a scenario could inadvertently overshadow other
critical model attributes like adaptability and nu-
anced comprehension, aspects more closely associ-
ated with Faithfulness. Alternatively, this situation
could imply that models specifically optimized for
F1 scores might inadvertently neglect Consistency,
and to some degree, Faithfulness, as evidenced by
the observed decline in their correlation with peak
F1 scores.

Our analysis further elucidates the relationship
between Consistency and Faithfulness in submitted
systems, revealing an Overall Spearman Correla-
tion of 0.708. This correlation slightly diminishes
among the top 10 F1 scoring models to 0.39. While
this represents a weaker correlation within the sub-
set of the top 10 models, it importantly suggests the
absence of a strict trade-off between Consistency
and Faithfulness. Such a finding challenges the
notion that improvements in one metric necessarily
come at the expense of the other.
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Figure 4: Comparative Analysis of F1, Consistency, and
Faithfulness Across Prompting strategies

Among the participants, 4 out of 25 achieved
a Faithfulness score of 0.9 or higher (Mandal and
Modi, 2024; Liu and Thoma, 2024; Lee et al., 2024;
Gema et al., 2024)(IITK, FZI-WIM, NYCU-NLP,
Edinburgh Clinical NLP). Remarkably, only 1 out
of 25 participants attained a Consistency score
of 0.8 or higher (Lee et al., 2024)(NYCU-NLP).
These results suggest a continued need for refining
these models to achieve higher degrees of Faithful-
ness and Consistency if they are to be applied in
real-world clinical environments.

5.4 Prompting Strategies

A variety of prompting strategies were used in the
submitted systems. It is essential to acknowledge
that variations in prompts can lead to significant
differences in outcomes, even when employing the
same architecture. For instance, within the Gem-
ini Pro systems, a comparison between submis-
sions by ALTINOK (2024)(D-NLP) and Kim et al.
(2024)(Saama Technologies) from Saama Tech-
nologies reveals substantial disparities in perfor-
mance metrics: F1 scores, Faithfulness, and Con-
sistency differ by 0.09, 0.24, and 0.16, respectively.
Similar patterns of variation were observed among
submissions utilizing Mistral-based and T5-based
approaches, underscoring the impact of prompting
nuances.

Among the generative model submissions, 13
out of 16 employed a zero-shot approach, while
the remaining three opted for few-shot prompt-
ing. Zero-shot prompting involves generating re-
sponses without any example-based guidance, rely-
ing solely on the model’s pre-existing knowledge
and the task description. Few-shot prompting, on
the other hand, provides the model with one or
more examples to guide its responses, traditionally
anticipated to yield superior results.

Contrary to initial expectations, zero-shot
prompting has shown a significant advantage, es-
pecially in achieving higher F1 scores and improv-
ing Faithfulness. Notably, four out of the top five
models with the highest F1 scores utilized zero-
shot techniques, as depicted in Figure 4. On av-
erage, zero-shot prompting yielded improvements
of +0.025 in F1 score, +0.001 in Faithfulness, and
+0.001 in Consistency, when compared to few-shot
prompting methods.

Direct prompting is a straightforward method
of querying a Language Model (LM). It involves
posing a question to the model in a direct manner,
without providing additional context or request-
ing intermediate steps. For example "Given the
CTR: {Premise} does the statement: {Statement}
follow?"

On the other hand, Chain of Thought (CoT)
prompting represents a more elaborate technique
designed to prompt the model to "show its work"
by articulating the intermediate steps or reasoning
that leads to its conclusion (Wei et al., 2022). This
approach enables the model to break down the prob-
lem into smaller, more manageable parts, thereby
facilitating more accurate or explainable predic-
tions. For instance, the prompt could be structured
as follows: "Given the CTR: {Premise} and the
statement: {Statement}, provide a step-by-step rea-
soning process to determine if the statement logi-
cally follows from the report." Such a modification
in the prompting strategy has been shown to pro-
duce significant differences in the model’s outputs
(Wei et al., 2022).

While direct prompting has been the predomi-
nant strategy among generative approaches, sev-
eral teams have experimented with more nuanced
strategies. Specifically, FZI-WIM (Liu and Thoma,
2024), IITK (Mandal and Modi, 2024), and Saama
Technologies (Kim et al., 2024) have employed
Chain of Thought prompting. Furthermore, IITK
(Mandal and Modi, 2024) has also explored Tree
of Thought (ToT) prompting. ToT prompting is an
advanced technique aimed at improving the perfor-
mance and interpretability of LMs, particularly in
complex problem-solving tasks (Yao et al., 2023).
It goes beyond the CoT approach by not merely list-
ing reasoning steps linearly but by organizing these
steps into a tree structure that represents different
branches of reasoning or possible solutions. IITK
(Mandal and Modi, 2024) applies this technique
with the prompt Imagine three different clinical ex-
perts are answering the question given below. All
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experts will write down first step of their thinking,
then share it with the group. Then all experts will
go on to the next step of their thinking. If any ex-
pert realises they’re wrong at any point then they
leave. They will continue till a definite conclusion
is reached.. However, the ability to draw defini-
tive conclusions about the relative efficacy of these
prompting strategies is constrained given the con-
siderable performance variability associated with
each approach and the application of these strate-
gies across diverse models, complicating efforts
to ascertain the sources of performance gains or
losses.

Two particularly intriguing prompting strategies
emerged from the submissions. (Brutti-Mairesse,
2024)(CRCL) utilized an OPRO (Optimal Prompt-
ing for Response Optimization) technique (Yang
et al., 2023), which leverages the model’s ability
to generate effective prompts from a small set of
exemplars and prior instructions. This technique
essentially tasks the model with creating its own
instructions to tackle given problems. Addition-
ally, (Lu and Kao, 2024) introduced a multi-agent
debating framework, incorporating several custom
agents with diverse expertise, including Biostatis-
tics and Medical Linguistics, to enrich the model’s
output.

In summary, the submissions reveal a broad spec-
trum of prompting strategies, from zero-shot to
more complex approaches like Tree of Thought and
multi-agent frameworks. These strategies signifi-
cantly influence model performance, underscoring
the importance of prompt design in the develop-
ment and evaluation of NLI systems. As the field
progresses, further research is warranted to eluci-
date the optimal prompting strategies for enhanc-
ing model accuracy, reliability, and interpretability
across various applications, in a controlled manner.

5.5 Fine-tuning strategies
Within the context of SemEval-2024 Task 2, a di-
verse array of fine-tuning strategies was employed
across the 25 participating systems, revealing sig-
nificant insights into their impact on model per-
formance. Notably, 9 out of 25 systems, all of
which were generative, did not undergo any form
of fine-tuning. In contrast, 8 out of 25 systems were
fine-tuned specifically on the NLI4CT-P training
set, while the remaining 6 systems benefited from
fine-tuning on additional datasets.

Interestingly, systems fine-tuned on the NLI4CT-
P training set exhibited the lowest average perfor-

Figure 5: Comparative Analysis of F1, Consistency, and
Faithfulness Across Training Strategies

mance across all three evaluated metrics, as de-
tailed in Figure 5. Conversely, systems that under-
went fine-tuning on external datasets demonstrated
superior performance on all metrics, indicating a
significant advantage of incorporating diverse train-
ing data.

The range of additional datasets leveraged for
fine-tuning included various medical NLI datasets,
such as MultiNLI, FeverNLI, ANLI, LingNLI, and
WANLI, utilized by Zhang et al. (2024)(YNU-
HPCC), and MedNLI by Verma and Raithel
(2024)(DFKI-NLP). Moreover, some teams, in-
cluding Sun et al. (2024)(LMU-BioNLP), Wang
et al. (2024)(DKE-Research), Guimarães et al.
(2024)(Lisbon Computational Lin- guists), Smilga
and Alabiad (2024)(TüDuo), and Zhang et al.
(2024)(YNU-HPCC), innovatively generated their
data by applying interventions similar to those used
in our task, thereby enriching their training mate-
rial. Systems enhanced with additional data demon-
strate significant improvements, achieving gains of
+0.056 in F1 score, +0.132 in Faithfulness, and
+0.062 in Consistency. These results suggest a sub-
stantial benefit from such tuning, particularly in
terms of Faithfulness. This indicates that incorpo-
rating perturbed data into the training process not
only enhances the model’s inference ability but also
significantly improves its reliability and adherence
to the truthfulness of the clinical data it processes.

Instruction tuning emerged as a prevalent strat-
egy, with datasets specifically crafted for this pur-
pose by teams such as Liu and Thoma (2024)(FZI-
WIM), Guimarães et al. (2024)(Lisbon Computa-
tional Lin- guists), Smilga and Alabiad (2024)(Tü-
Duo), LUM-BIO, Wang et al. (2024)(DKE-
Research), and (Lee et al., 2024)(NYCU-NLP). No-
tably, 3 out of the top 5 systems, as per F1 scores,
employed instruction tuning, underscoring its effec-
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tiveness in enhancing model performance, although
notably producing minimal gains in consistency.

6 Related Work

The landscape of expert-annotated resources for
clinical NLP is rich, with notable examples such
as the TREC 2021 Clinical Track (Soboroff, 2021),
which focuses on information retrieval from CTR
data, highlighting eligibility criteria. Evidence In-
ference 2.0 (DeYoung et al., 2020) introduces a QA
task alongside span selection based on CTR results,
while the MEDNLI dataset (Romanov and Shiv-
ade, 2018) offers an entailment task using patient
medical history notes. These datasets primarily
aim to evaluate biomedical language understand-
ing and reasoning. Despite neural architectures
leading in biomedical NLI performance (Gu et al.,
2021; DeYoung et al., 2020), challenges remain
in quantitative reasoning and numerical operations
within NLI (Ravichander et al., 2019; Galashov
et al., 2019). Prior works experiment with biomed-
ical pre-training strategies (Lee et al., 2020; Shin
et al., 2020; Gu et al., 2021), and while ExaCT (Kir-
itchenko et al., 2010) automates information extrac-
tion from clinical trials, the integration of biomed-
ical and numerical NLI effectively remains unad-
dressed. None of the aforementioned resources
provide avenues for meaningful causal analysis, a
gap NLI4CT-P aims to fill, through the application
of targeted interventions and the introduction of
novel evaluation metrics.

7 Conclusion

This study introduces the NLI4CT-P dataset and
provides a comprehensive analysis of submissions
to SemEval-2024 Task 2, underscoring the persis-
tent challenges in Clinical Natural Language In-
ference (NLI) despite significant advancements in
Large Language Models (LLMs). The incorpora-
tion of Faithfulness and Consistency metrics fur-
ther highlights these challenges, shedding light on
areas requiring additional focus, if these systems
are to meet the requirements for real-world clinical
implementation. Our key findings reveal that gen-
erative models markedly outperform discriminative
models, particularly in terms of Faithfulness and
Consistency. The utility of additional data is un-
derscored, especially due to the limited size of the
NLI4CT-P training set. Furthermore, our analysis
reveals the substantial impact of prompting strate-
gies on model performance, noting an intriguing

preference for zero-shot approaches over few-shot
methods. Additionally, mid-sized architectures,
ranging between 7B and 70B parameters, demon-
strate the potential to match or even exceed the
performance of larger models (>70B) in F1 scores,
Faithfulness, and Consistency, while being more
resource and cost-effective. Conversely, models
with fewer than 7B parameters face difficulties in
achieving comparable results. We plan to perform
a further analysis of the submitted systems’ perfor-
mance at an intervention level, identifying specific
areas of weakness, such as numerical reasoning or
handling longer premises, to refine and enhance
Clinical NLI systems further.

8 Limitations

Despite not disclosing detailed specifics of the in-
terventions, nor providing intervened training data,
several participants generated their own interven-
tions for data augmentation. As a result, some mod-
els were specifically trained on this intervened data.
However, this approach raises concerns regarding
their ability to generalize effectively to entirely new,
unseen perturbations or adversarial datasets. The
tailored training to specific interventions may limit
the models’ broader applicability and robustness
on unseen perturbed or adversarial data.

9 Acknowledgments

This work was partially funded by the Swiss Na-
tional Science Foundation (SNSF) project Neu-
Math (200021_204617), by the EPSRC grant
EP/T026995/1 entitled “EnnCore: End-to-End
Conceptual Guarding of Neural Architectures” un-
der Security for all in an AI enabled society, by the
CRUK National Biomarker Centre, and supported
by the Manchester Experimental Cancer Medicine
Centre.

References
Reem Abdel-Salam, Mary Adetutu Adewunmi, and

Mercy Akinwale. 2024. Caresai at semeval-2024
task 2: Improving natural language inference in clin-
ical trial data using model ensemble and data ex-
planation. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
pages 1916–1922, Mexico City, Mexico. Association
for Computational Linguistics.

Mathilde Aguiar, Pierre Zweigenbaum, and Nona
Naderi. 2024. Seme at semeval-2024 task 2: Com-
paring masked and generative language models on

1956

https://data.snf.ch/grants/grant/204617
https://aclanthology.org/2024.semeval2024-1.264
https://aclanthology.org/2024.semeval2024-1.264
https://aclanthology.org/2024.semeval2024-1.264
https://aclanthology.org/2024.semeval2024-1.264
https://aclanthology.org/2024.semeval2024-1.141
https://aclanthology.org/2024.semeval2024-1.141


natural language inference for clinical trials. In Pro-
ceedings of the 18th International Workshop on Se-
mantic Evaluation (SemEval-2024), pages 975–985,
Mexico City, Mexico. Association for Computational
Linguistics.

Abbas Akkasi, Adnan Khan, Mai A. Shaaban, Ma-
jid Komeili, and Mohammad Yaqub. 2024. iml at
semeval-2024 task 2: Safe biomedical natural lan-
guage inference for clinical trials with llm based
ensemble inferencing. In Proceedings of the 18th
International Workshop on Semantic Evaluation
(SemEval-2024), pages 170–174, Mexico City, Mex-
ico. Association for Computational Linguistics.

Duygu ALTINOK. 2024. D-nlp at semeval-2024 task
2: Evaluating clinical inference capabilities of large
language models. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 600–614, Mexico City, Mexico. Associ-
ation for Computational Linguistics.

Nancy E Avis, Kevin W Smith, Carol L Link, Gabriel N
Hortobagyi, and Edgardo Rivera. 2006. Factors as-
sociated with participation in breast cancer treatment
clinical trials. J Clin Oncol, 24(12):1860–1867.

Hilda Bastian, Paul Glasziou, and Iain Chalmers. 2010.
Seventy-five trials and eleven systematic reviews a
day: how will we ever keep up? PLoS medicine,
7(9):e1000326.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Greg Brockman, Atty Eleti, Elie Georges, Joanne Jang,
Logan Kilpatrick, Rachel Lim, Luke Miller, and
Michelle Pokrass. 2023. ChatGPT and Whisper APIs.
https://openai.com/api/. Accessed: April 3,
2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Clement Brutti-Mairesse. 2024. Crcl at semeval-2024
task 2: Simple prompt optimizations. In Proceedings
of the 18th International Workshop on Semantic Eval-
uation (SemEval-2024), pages 424–429, Mexico City,
Mexico. Association for Computational Linguistics.

Abir Chakraborty. 2024. Rgat at semeval-2024 task 2:
Biomedical natural language inference using graph

attention network. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 116–122, Mexico City, Mexico. Associ-
ation for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Jiaxu Dao, Zhuoying Li, Xiuzhong Tang, Xiaoli Lan,
and Junde Wang. 2024. Puer at semeval-2024 task
2: A biolinkbert approach to biomedical natural lan-
guage inference. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 70–75, Mexico City, Mexico. Associa-
tion for Computational Linguistics.

Spandan Das, Vinay Samuel, and Shahriar Norooz-
izadeh. 2024. Tldr at semeval-2024 task 2: T5-
generated clinical-language summaries for deberta
report analysis. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 507–516, Mexico City, Mexico. Associ-
ation for Computational Linguistics.

Jay DeYoung, Eric P. Lehman, Benjamin E. Nye,
Iain James Marshall, and Byron C. Wallace. 2020.
Evidence inference 2.0: More data, better models.
ArXiv, abs/2005.04177.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

Anass Fahfouh, Abdessamad Benlahbib, Jamal Riffi,
and Hamid Tairi. 2024. Usmba-nlp at semeval-2024
task 2: Safe biomedical natural language inference
for clinical trials using bert. In Proceedings of the
18th International Workshop on Semantic Evalua-
tion (SemEval-2024), pages 419–423, Mexico City,
Mexico. Association for Computational Linguistics.

Alexandre Galashov, Jonathan Schwarz, Hyunjik Kim,
Marta Garnelo, David Saxton, Pushmeet Kohli,
S. M. Ali Eslami, and Yee Whye Teh. 2019. Meta-
learning surrogate models for sequential decision
making. CoRR, abs/1903.11907.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673.

Aryo Gema, Giwon Hong, Pasquale Minervini, Luke
Daines, and Beatrice Alex. 2024. Edinburgh clinical
nlp at semeval-2024 task 2: Fine-tune your model
unless you have access to gpt-4. In Proceedings of
the 18th International Workshop on Semantic Evalua-
tion (SemEval-2024), pages 1905–1915, Mexico City,
Mexico. Association for Computational Linguistics.

1957

https://aclanthology.org/2024.semeval2024-1.141
https://aclanthology.org/2024.semeval2024-1.26
https://aclanthology.org/2024.semeval2024-1.26
https://aclanthology.org/2024.semeval2024-1.26
https://aclanthology.org/2024.semeval2024-1.26
https://aclanthology.org/2024.semeval2024-1.89
https://aclanthology.org/2024.semeval2024-1.89
https://aclanthology.org/2024.semeval2024-1.89
https://openai.com/api/
http://arxiv.org/abs/2005.14165
https://aclanthology.org/2024.semeval2024-1.65
https://aclanthology.org/2024.semeval2024-1.65
https://aclanthology.org/2024.semeval2024-1.19
https://aclanthology.org/2024.semeval2024-1.19
https://aclanthology.org/2024.semeval2024-1.19
https://aclanthology.org/2024.semeval2024-1.12
https://aclanthology.org/2024.semeval2024-1.12
https://aclanthology.org/2024.semeval2024-1.12
https://aclanthology.org/2024.semeval2024-1.77
https://aclanthology.org/2024.semeval2024-1.77
https://aclanthology.org/2024.semeval2024-1.77
https://aclanthology.org/2024.semeval2024-1.64
https://aclanthology.org/2024.semeval2024-1.64
https://aclanthology.org/2024.semeval2024-1.64
http://arxiv.org/abs/1903.11907
http://arxiv.org/abs/1903.11907
http://arxiv.org/abs/1903.11907
https://aclanthology.org/2024.semeval2024-1.263
https://aclanthology.org/2024.semeval2024-1.263
https://aclanthology.org/2024.semeval2024-1.263


Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.
2023. Chatgpt outperforms crowd-workers for text-
annotation tasks. arXiv preprint arXiv:2303.15056.

Lisa Grossman Liu, Raymond H Grossman, Elliot G
Mitchell, Chunhua Weng, Karthik Natarajan, George
Hripcsak, and David K Vawdrey. 2021. A deep
database of medical abbreviations and acronyms for
natural language processing. Scientific Data, 8(1):1–
9.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

Artur Guimarães, Bruno Martins, and João Magalhães.
2024. Lisbon computational linguists at semeval-
2024 task 2: Using a mistral-7b model and data aug-
mentation. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
pages 1270–1277, Mexico City, Mexico. Association
for Computational Linguistics.

Antonio J Jimeno-Yepes, Bridget T McInnes, and
Alan R Aronson. 2011. Exploiting mesh indexing in
medline to generate a data set for word sense disam-
biguation. BMC bioinformatics, 12(1):1–14.

Qiao Jin, Jinling Liu, and Xinghua Lu. 2019. Deep
contextualized biomedical abbreviation expansion.
arXiv preprint arXiv:1906.03360.

Mael Jullien, Marco Valentino, Hannah Frost, Paul
O’Regan, Dónal Landers, and Andre Freitas. 2023a.
NLI4CT: Multi-evidence natural language inference
for clinical trial reports. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 16745–16764, Singapore.
Association for Computational Linguistics.

Maël Jullien, Marco Valentino, Hannah Frost, Paul
O’regan, Donal Landers, and André Freitas. 2023b.
SemEval-2023 task 7: Multi-evidence natural lan-
guage inference for clinical trial data. In Proceedings
of the 17th International Workshop on Semantic Eval-
uation (SemEval-2023), pages 2216–2226, Toronto,
Canada. Association for Computational Linguistics.

Kamal Raj Kanakarajan and Malaikannan Sankara-
subbu. 2023. Saama ai research at semeval-2023
task 7: Exploring the capabilities of flan-t5 for multi-
evidence natural language inference in clinical trial
data. In Proceedings of the 17th International Work-
shop on Semantic Evaluation.

Hwanmun Kim, Kamal raj Kanakarajan, and Malaikan-
nan Sankarasubbu. 2024. Saama technologies at
semeval-2024 task 2: Three-module system for nli4ct
enhanced by llm-generated intermediate labels. In
Proceedings of the 18th International Workshop on
Semantic Evaluation (SemEval-2024), pages 1423–
1445, Mexico City, Mexico. Association for Compu-
tational Linguistics.

Svetlana Kiritchenko, Berry De Bruijn, Simona Carini,
Joel Martin, and Ida Sim. 2010. Exact: automatic
extraction of clinical trial characteristics from journal
publications. BMC medical informatics and decision
making, 10(1):1–17.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Lung-Hao Lee, Chen-Ya Chiou, and Tzu-Mi Lin. 2024.
Nycu-nlp at semeval-2024 task 2: Aggregating large
language models in biomedical natural language in-
ference for clinical trials. In Proceedings of the
18th International Workshop on Semantic Evalua-
tion (SemEval-2024), pages 1465–1472, Mexico City,
Mexico. Association for Computational Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. 2020. Bert-attack: Adver-
sarial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang.
2021. Natural language inference in context-
investigating contextual reasoning over long texts.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13388–13396.

Jin Liu and Steffen Thoma. 2024. Fzi-wim at semeval-
2024 task 2: Self-consistent cot for complex nli in
biomedical domain. In Proceedings of the 18th
International Workshop on Semantic Evaluation
(SemEval-2024), pages 1259–1269, Mexico City,
Mexico. Association for Computational Linguistics.

Yu-An Lu and Hung-Yu Kao. 2024. 0x.yuan at semeval-
2024 task 2: Agents debating can reach consensus
and produce better outcomes in medical nli task. In
Proceedings of the 18th International Workshop on
Semantic Evaluation (SemEval-2024), pages 305–
310, Mexico City, Mexico. Association for Computa-
tional Linguistics.

Shreyasi Mandal and Ashutosh Modi. 2024. Iitk at
semeval-2024 task 2: Exploring the capabilities of
llms for safe biomedical natural language inference
for clinical trials. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 1386–1393, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Jennifer Marks, MohammadReza Davari, and Leila Kos-
seim. 2024. Clac at semeval-2024 task 2: Faith-
ful clinical trial inference. In Proceedings of the
18th International Workshop on Semantic Evalua-
tion (SemEval-2024), pages 1683–1687, Mexico City,
Mexico. Association for Computational Linguistics.

Jordan Meadows, Marco Valentino, Damien Teney, and
Andre Freitas. 2023. A symbolic framework for sys-
tematic evaluation of mathematical reasoning with
transformers. arXiv preprint arXiv:2305.12563.

1958

https://aclanthology.org/2024.semeval2024-1.183
https://aclanthology.org/2024.semeval2024-1.183
https://aclanthology.org/2024.semeval2024-1.183
https://doi.org/10.18653/v1/2023.emnlp-main.1041
https://doi.org/10.18653/v1/2023.emnlp-main.1041
https://doi.org/10.18653/v1/2023.semeval-1.307
https://doi.org/10.18653/v1/2023.semeval-1.307
https://aclanthology.org/2024.semeval2024-1.203
https://aclanthology.org/2024.semeval2024-1.203
https://aclanthology.org/2024.semeval2024-1.203
https://aclanthology.org/2024.semeval2024-1.207
https://aclanthology.org/2024.semeval2024-1.207
https://aclanthology.org/2024.semeval2024-1.207
https://aclanthology.org/2024.semeval2024-1.182
https://aclanthology.org/2024.semeval2024-1.182
https://aclanthology.org/2024.semeval2024-1.182
https://urldefense.com/v3/__https://aclanthology.org/2024.semeval2024-1.47__;!!PDiH4ENfjr2_Jw!AcslH6Y8mlUTkBqN5WLVj3ha313asuYGEm6-OYBHCPYED1ErdJfsmLBq4H0hVDj_ARnjgV_iW7UtohwA29riM8_6BJC-1O3Bqj105rcdX1c$ [aclanthology[.]org]
https://urldefense.com/v3/__https://aclanthology.org/2024.semeval2024-1.47__;!!PDiH4ENfjr2_Jw!AcslH6Y8mlUTkBqN5WLVj3ha313asuYGEm6-OYBHCPYED1ErdJfsmLBq4H0hVDj_ARnjgV_iW7UtohwA29riM8_6BJC-1O3Bqj105rcdX1c$ [aclanthology[.]org]
https://urldefense.com/v3/__https://aclanthology.org/2024.semeval2024-1.47__;!!PDiH4ENfjr2_Jw!AcslH6Y8mlUTkBqN5WLVj3ha313asuYGEm6-OYBHCPYED1ErdJfsmLBq4H0hVDj_ARnjgV_iW7UtohwA29riM8_6BJC-1O3Bqj105rcdX1c$ [aclanthology[.]org]
https://aclanthology.org/2024.semeval2024-1.199
https://aclanthology.org/2024.semeval2024-1.199
https://aclanthology.org/2024.semeval2024-1.199
https://aclanthology.org/2024.semeval2024-1.199
https://aclanthology.org/2024.semeval2024-1.237
https://aclanthology.org/2024.semeval2024-1.237


Marius Miclut,a-Câmpeanu, Claudiu Creanga, Ana-
Maria Bucur, Ana Sabina Uban, and Liviu P. Dinu.
2024. Unibuc at semeval-2024 task 2: Tailored
prompting with solar for clinical nli. In Proceedings
of the 18th International Workshop on Semantic Eval-
uation (SemEval-2024), pages 573–582, Mexico City,
Mexico. Association for Computational Linguistics.

John Miller, Karl Krauth, Benjamin Recht, and Ludwig
Schmidt. 2020. The effect of natural distribution
shift on question answering models. In International
Conference on Machine Learning, pages 6905–6916.
PMLR.

Shantanu Nath and Ahnaf Mozib Samin. 2024. Bd-
nlp at semeval-2024 task 2: Investigating genera-
tive and discriminative models for clinical inference
with knowledge augmentation. In Proceedings of
the 18th International Workshop on Semantic Eval-
uation (SemEval-2024), pages 1291–1297, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? CoRR, abs/2103.07191.

Kayur Patel, James Fogarty, James A Landay, and Bev-
erly Harrison. 2008. Investigating statistical machine
learning as a tool for software development. In Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 667–676.

Ahmad Pesaranghader, Stan Matwin, Marina Sokolova,
and Ali Pesaranghader. 2019. deepbiowsd: effective
deep neural word sense disambiguation of biomedical
text data. Journal of the American Medical Informat-
ics Association, 26(5):438–446.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. arXiv preprint arXiv:1805.01042.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Pen-
stein Rosé, and Eduard H. Hovy. 2019. EQUATE:
A benchmark evaluation framework for quantita-
tive reasoning in natural language inference. CoRR,
abs/1901.03735.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? In International conference
on machine learning, pages 5389–5400. PMLR.

Alexey Romanov and Chaitanya Shivade. 2018.
Lessons from natural language inference in the clini-
cal domain. arXiv preprint arXiv:1808.06752.

Julia Rozanova, Marco Valentino, and Andre Fre-
itas. 2023. Estimating the causal effects of natural
logic features in neural nli models. arXiv preprint
arXiv:2305.08572.

Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina,
Raul Puri, Mostofa Patwary, Mohammad Shoeybi,
and Raghav Mani. 2020. Biomegatron: Larger
biomedical domain language model. arXiv preprint
arXiv:2010.06060.

Marco Siino. 2024. T5-medical at semeval-2024 task
2: Using t5 medical embedding for natural language
inference on clinical trial data. In Proceedings of the
18th International Workshop on Semantic Evaluation
(SemEval-2024), pages 40–46, Mexico City, Mexico.
Association for Computational Linguistics.

Veronika Smilga and Hazem Alabiad. 2024. Tüduo
at semeval-2024 task 2: Flan-t5 and data augmen-
tation for biomedical nli. In Proceedings of the
18th International Workshop on Semantic Evalua-
tion (SemEval-2024), pages 723–730, Mexico City,
Mexico. Association for Computational Linguistics.

Ian Soboroff. 2021. Overview of trec 2021. In 30th Text
REtrieval Conference. Gaithersburg, Maryland.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schölkopf, and Mrinmaya Sachan. 2022. A
causal framework to quantify the robustness of math-
ematical reasoning with language models. arXiv
preprint arXiv:2210.12023.

Zihang Sun, Danqi Yan, Anyi Wang, Tanalp Agustoslu,
Qi Feng, Chengzhi Hu, Longfei Zuo, Shijia Zhou,
Hermine Kleiner, Pingjun Hong, Suteera Seeha, Se-
bastian Loftus, Anna Barwig, Oliver Kraus, Jona
Volohonsky, Yang Sun, Leopold Martin, Lena Al-
tinger, Jing Wang, and Leon Weber. 2024. Lmu-
bionlp at semeval-2024 task 2: Large diverse ensem-
bles for robust clinical nli. In Proceedings of the
18th International Workshop on Semantic Evalua-
tion (SemEval-2024), pages 1587–1593, Mexico City,
Mexico. Association for Computational Linguistics.

Reed T Sutton, David Pincock, Daniel C Baumgart,
Daniel C Sadowski, Richard N Fedorak, and Karen I
Kroeker. 2020. An overview of clinical decision
support systems: benefits, risks, and strategies for
success. NPJ digital medicine, 3(1):1–10.

Masatoshi Tsuchiya. 2018. Performance impact caused
by hidden bias of training data for recognizing textual
entailment. arXiv preprint arXiv:1804.08117.

Bhuvanesh Verma and Lisa Raithel. 2024. Dfki-nlp at
semeval-2024 task 2: Towards robust llms using data
perturbations and minmax training. In Proceedings
of the 18th International Workshop on Semantic Eval-
uation (SemEval-2024), pages 668–682, Mexico City,
Mexico. Association for Computational Linguistics.

Juraj Vladika and Florian Matthes. 2023. Sebis at
semeval-2023 task 7: A joint system for natural lan-
guage inference and evidence retrieval from clinical
trial reports. In Proceedings of the 17th International
Workshop on Semantic Evaluation.

Xuezhi Wang, Haohan Wang, and Diyi Yang. 2021.
Measure and improve robustness in nlp models: A
survey. arXiv preprint arXiv:2112.08313.

1959

https://aclanthology.org/2024.semeval2024-1.86
https://aclanthology.org/2024.semeval2024-1.86
https://aclanthology.org/2024.semeval2024-1.186
https://aclanthology.org/2024.semeval2024-1.186
https://aclanthology.org/2024.semeval2024-1.186
https://aclanthology.org/2024.semeval2024-1.186
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/1901.03735
http://arxiv.org/abs/1901.03735
http://arxiv.org/abs/1901.03735
https://aclanthology.org/2024.semeval2024-1.7
https://aclanthology.org/2024.semeval2024-1.7
https://aclanthology.org/2024.semeval2024-1.7
https://aclanthology.org/2024.semeval2024-1.104
https://aclanthology.org/2024.semeval2024-1.104
https://aclanthology.org/2024.semeval2024-1.104
https://aclanthology.org/2024.semeval2024-1.222
https://aclanthology.org/2024.semeval2024-1.222
https://aclanthology.org/2024.semeval2024-1.222
https://aclanthology.org/2024.semeval2024-1.97
https://aclanthology.org/2024.semeval2024-1.97
https://aclanthology.org/2024.semeval2024-1.97


Yuqi Wang, Zeqiang Wang, Wei Wang, Qi Chen, Kaizhu
Huang, Anh Nguyen, and Suparna De. 2024. Dke-
research at semeval-2024 task 2: Incorporating data
augmentation with generative models and biomedi-
cal knowledge to enhance inference robustness. In
Proceedings of the 18th International Workshop on
Semantic Evaluation (SemEval-2024), pages 88–94,
Mexico City, Mexico. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Xiaoyu Xing, Zhijing Jin, Di Jin, Bingning Wang,
Qi Zhang, and Xuanjing Huang. 2020. Tasty
burgers, soggy fries: Probing aspect robustness in
aspect-based sentiment analysis. arXiv preprint
arXiv:2009.07964.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Sicheng YU, Jing JIANG, Hao ZHANG, Yulei NIU,
Qianru SUN, and Lidong BING. 2022. Interven-
tional training for out-of-distribution natural lan-
guage understanding.

Rengui Zhang, Jin Wang, and Xuejie Zhang. 2024. Ynu-
hpcc at semeval-2024 task 2: Applying deberta-v3-
large to safe biomedical natural language inference
for clinical trials. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 772–778, Mexico City, Mexico. Associ-
ation for Computational Linguistics.

Yuxuan Zhou, Ziyu Jin, Meiwei Li, Miao Li, Xien Liu,
Xinxin You, and Ji Wu. 2023. Thifly research at
semeval-2023 task 7: A multi-granularity system for
ctr-based textual entailment and evidence retrieval.
In Proceedings of the 17th International Workshop
on Semantic Evaluation.

A Intervention Prompts

A.1 Contradictory Rephrasing prompt

Your task is to provide 3 contradictory
statements, given an original statement.

(Instructions) Ensure that the contradic-
tory statements are factually opposed to
the original statement. Do not mention
the original statement in the contradic-
tory statements. Use formal and straight-
forward language when writing the new
statements, and avoid unusual or overly
descriptive language. Make sure to re-
tain the names ’Primary Clinical Trial’
and ’Secondary Clinical Trial’ in the con-
tradictory statements, these names must
be present in every statement. Provide
3 different options in a consistent JSON
format with keys ’Statement_1’, ’State-
ment_2’, and ’Statement_3’ followed by
their respective paraphrased statements.

(Examples) 1. [original statement]:"the
secondary trial requires patients to be
over a certain age, but the primary trial
does not specify an age range for partici-
pation." [ideal output]: "the secondary
trial does not give an age limit for pa-
tients to participate, but patients must be
between the age of 12-34 to be eligible
for the primary trial"

2. [original statement]:"a patient that
has received an organ transplant within
the last month, and is still bedridden
would be excluded from the primary trial
but may be eligible for the secondary
trial" [ideal output]: "a patient that has
received an liver transplant in the last
week, with an ECOG score of 4 would be
eligible for the primary trial but excluded
from the secondary trial"

3.[original statement]: "Women with
Newly diagnosed stage IV breast cancer,
confirmed as ER+ Considering a mastec-
tomy are eligible for the primary trial"
[ideal output]: "Women recently diag-
nosed with stage 4 ER-positive breast
cancer and contemplating a mastectomy
are excluded from the Primary Clinical
Trial"

Input:
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A.2 Paraphrasing prompt
Your task is to provide 3 paraphrased
statements, given an original statement.

(Instructions) Use formal and straigh-
forward language when writing the new
statements, and avoiding unusual or
overly descriptive language. Make sure
to retain the name ’Primary Clinical
Trial’ in the statements, this name must
be present in every statement. Provide
3 different options in a consistent JSON
format with keys ’Statement_1’, ’State-
ment_2’, and ’Statement_3’ followed by
their respective paraphrased statements.

(Examples) 1. [original statement]:"the
primary trial does not specify an age
range for participation." [ideal output]:
"patients aged between 30-60 years old
can be eligible for the primary trial"

2. [original statement]:"a patient that
has received an organ transplant within
the last month, and is still bedridden
would be excluded from the primary
trial" [ideal output]: "a patient that has
received an liver transplant in the last
week, with an ECOG score of 4 would be
excluded from the primary trial"

3.[original statement]: "Women with
Newly diagnosed stage IV breast cancer,
confirmed as ER+ Considering a mastec-
tomy are eligible for the primary trial"
[ideal output]: "Women recently diag-
nosed with stage 4 ER-positive breast
cancer and contemplating a mastectomy
are suitable for the Primary Clinical
Trial"

Input:

A.3 Numerical Paraphrasing prompt
Your task is to modify the numerical val-
ues and units in an original statement
while maintaining its original meaning,
to generate 3 new statements.

(Instructions) Do not paraphrase the
statements, You can only change numer-
ical values or units, if you change the
units you must also convert the mea-
surement values. Provide 3 different op-
tions in a consistent JSON format with
keys ’Statement_1’, ’Statement_2’, and

’Statement_3’ followed by their respec-
tive paraphrased statements.

(Examples) 1. [original statement]:
"Over 6 weeks of TAK-228 Plus Tamox-
ifen treatment patients in the primary
trial experienced a 5% reduction in the
Percentage of cells with Ki67 expression"
[ideal output]: "Over 42 days of TAK-
228 Plus Tamoxifen treatment patients in
the primary trial experienced a 5% re-
duction in the Percentage of cells with
Ki67 expression"

2.[original statement]: "in the primary
trial there were 10 times the number
of Hepatotoxicity cases as there were
cases of hypertension and Pancreatec-
tomy" [ideal output]: "in the primary
trial there were 1000% the number of
Hepatotoxicity cases as there were cases
of hypertension and Pancreatectomy"

3.[original statement]: "2/73 the pri-
mary trial participants, and 0/1674 the
secondary trial participants suffered an
Acute myocardial infarction " [ideal out-
put]: "2.74% the primary trial partici-
pants, and 0% the secondary trial par-
ticipants suffered an Acute myocardial
infarction "

Input:

A.4 Numerical Contradictory Rephrasing
prompt

Your task is to modify the numerical val-
ues and units in an original statement
to contradict the original statement, to
generate 3 new statements.

(Instructions) Do not paraphrase the
statements, You can only change numer-
ical values or units, if you change the
units you must also convert the mea-
surement values. Provide 3 different op-
tions in a consistent JSON format with
keys ’Statement_1’, ’Statement_2’, and

’Statement_3’ followed by their respec-
tive paraphrased statements.

(Examples) 1. [original statement]:
"Over 6 weeks of TAK-228 Plus Tamox-
ifen treatment patients in the primary
trial experienced a 5% reduction in the
Percentage of cells with Ki67 expression"
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[ideal output]: "Over 50 days of TAK-
228 Plus Tamoxifen treatment patients
in the primary trial experienced a 105%
reduction in the Percentage of cells with
Ki67 expression"

2.[original statement]: "in the primary
trial there were 10 times the number
of Hepatotoxicity cases as there were
cases of hypertension and Pancreatec-
tomy" [ideal output]: "in the primary
trial there were 30% the number of Hep-
atotoxicity cases as there were cases of
hypertension and Pancreatectomy"

3.[original statement]: "2/73 the pri-
mary trial participants, and 0/1674 the
secondary trial participants suffered an
Acute myocardial infarction " [ideal out-
put]: "9.74% the primary trial partici-
pants, and 8% the secondary trial par-
ticipants suffered an Acute myocardial
infarction "

Input:
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