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Abstract

The NLI4CT task assesses Natural Language
Inference systems in predicting whether hy-
potheses entail or contradict evidence from
Clinical Trial Reports. In this study, we eval-
uate various Large Language Models (LLMs)
with multiple strategies, including Chain-of-
Thought, In-Context Learning, and Parameter-
Efficient Fine-Tuning (PEFT). We propose a
PEFT method to improve the consistency of
LLMs by merging adapters that were fine-tuned
separately using triplet and language modelling
objectives. We found that merging the two
PEFT adapters improves the F1 score (+0.0346)
and consistency (+0.152) of the LLMs. How-
ever, our novel methods did not produce more
accurate results than GPT-4 in terms of faith-
fulness and consistency. Averaging the three
metrics, GPT-4 ranks joint-first in the compe-
tition with 0.8328. Finally, our contamination
analysis with GPT-4 indicates that there was no
test data leakage.1

1 Introduction

Extracting insights from Clinical Trial Reports
(CTRs) is vital for advancing personalised
medicine, yet manual analysis of these vast datasets
is impractical. The Natural Language Inference for
Clinical Trial Data (NLI4CT) task (Jullien et al.,
2024)2 addresses this challenge by evaluating Nat-
ural Language Inference (NLI) systems’ ability to
understand and reason within this domain.

In this study, we evaluate various LLMs, such
as LLaMA2 (Touvron et al., 2023b), Mistral (Jiang
et al., 2023), MistralLite (Yin Song and Chen
Wu and Eden Duthie, 2023), and GPT-4 (Ope-
nAI, 2023). We employed prompting strategies like
In-context Learning (ICL) and Chain-of-Thought
(CoT) to improve their accuracy. We also proposed

*These authors contributed equally to this work.
1Our code is available at https://github.com/

EdinburghClinicalNLP/semeval_nli4ct.
2https://sites.google.com/view/nli4ct/

a Parameter-Efficient Fine-Tuning (PEFT) method
that merges independently fine-tuned adapters
trained with distinct objectives, namely a triplet
loss and a language modelling (LM) loss, to im-
prove the consistency of the LLMs.

Our findings reveal that our novel PEFT method
improves the F1 and consistency scores of the
LLMs. However, GPT-4 produces more accurate
results than all of the models we considered, co-
leading the competition leaderboard. Although
GPT-4 places fifth in the F1 score, its high faith-
fulness and consistency scores highlight its poten-
tial for a reliable prediction in the clinical domain.
Lastly, we conduct a contamination analysis of
GPT-4 to check whether instances of the NLI4CT
dataset were included in GPT-4’s pre-training data.

2 Background

2.1 Task overview

The NLI4CT task leverages a collection of CTRs
and expert-annotated hypotheses. This iteration
places a heightened emphasis on faithfulness (ro-
bustness to semantic changes) and consistency
(stability against semantic preserving alterations).
Aside from this focus, the composition of the
dataset and the task objective remains identical to
the previous iteration (Jullien et al., 2023a,b). Table
1 contains statistics for each data split, organised
by sample, section, and label types.
Section Types Each CTR consists of four sections:
“Eligibility criteria”, “Intervention”, “Results”, and
“Adverse events”. Hypotheses are sentences claim-
ing information in a CTR section.
Sample Types The task presents two sample types:
“Single” and “Comparison”. “Single” samples pro-
vide all relevant evidence within one CTR, while
“Comparison” samples require cross-referencing
information from two CTRs.
Task Objective The task objective is to classify
the relationship between hypotheses and corre-
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Split Total Sample Type Section Type Label Type

Single Comparison Intervention Eligibility Results Adverse Events Ent. Con.

Train 1,700 1,035 665 396 486 322 496 850 850
Dev 200 140 60 36 56 56 52 100 100
Test 5,500 2,553 2,947 1,542 1,419 1,235 1,304 1,841 3,659

Table 1: Dataset statistics of each split, categorised by sample, section, and label types.

sponding CTR(s) as “entailment” or “contradic-
tion”. “Entailment” implies that the hypothesis is
supported by the CTR(s), while a “contradiction”
classification suggests inconsistency.

2.2 Related work

LLMs demonstrated promising results in the
medical domain. For example, Liévin et al.
(2022) conducted evaluations on LLMs, includ-
ing Codex (Chen et al., 2021) and Instruct-
GPT (Ouyang et al., 2022) using zero-shot, few-
shot, and CoT prompting. These LLMs show com-
prehension of complex medical questions, recall of
domain knowledge, and nontrivial reasoning.

Despite the increasing use of general LLMs, do-
main adaptive fine-tuning remains a prevailing ap-
proach in the medical domain (Lehman et al., 2023).
As LLMs continue to grow in size, PEFT gains
preference over full-parameter fine-tuning due to
its resource efficiency. Gema et al. (2023) proposed
a two-stage PEFT framework, one for domain-
adaptive pre-training and one for downstream fine-
tuning, to adapt LLaMA (Touvron et al., 2023a) to
the clinical outcome prediction tasks. Even though
Gema et al. (2023) introduced the idea of combin-
ing multiple adapters, they did not explicitly merge
the adapter weights. Chronopoulou et al. (2023)
proposed AdapterSoup, which performs averaging
of the weights of PEFT adapters trained on the
same objective function and different domains to
improve the model’s performance.

Extending the adapter merging idea, we intro-
duced a novel method to merge PEFT adapters that
are trained on different training objectives: triplet
loss and LM loss. We compared this method with
strategies without parameter fine-tuning, such as
zero-shot inference, ICL, and CoT.

3 System Overview

We experimented with two strategies. The first
involved no fine-tuning, aiming to comprehend
LLMs’ inherent ability to solve clinical tasks. The
second employed our proposed PEFT method to

improve the consistency of the model. Both sys-
tems ingest CTR-hypothesis pairs, predicting the
correct label one token at a time from left to right.

3.1 Without Parameter Fine-tuning
The system with no fine-tuning utilises the pre-
trained general LLMs for prediction. We experi-
mented with multiple prompting strategies:
Zero-shot Employing the LLMs without any fine-
tuning and examples.
In-Context Learning (ICL) Adapting the LLMs
by providing examples of how to perform a task.
Due to the maximum context length of the LLMs,
we limit experiments to two examples (2-shot).
Chain-of-Thought (CoT) Prompting LLMs with
a phrase (e.g., “Let’s think step by step”) (Kojima
et al., 2022), encouraging a sequential reasoning.
ICL + CoT Adapting the LLMs with ICL exam-
ples that are augmented with reasoning steps.

Figure 1 shows the workflow of the system.
Firstly, we prepare the ICL examples. The normal
ICL strategy requires the CTR section, the hypoth-
esis, and the true label. Meanwhile, the ICL+CoT
strategy requires ICL examples with reasons. We
use ChatGPT (gpt-3.5-turbo-0613) to generate
reasoned ICL examples as it has demonstrated suf-
ficient clinical understanding (Falis et al., 2024).
Similar to He et al. (2023), We prompt ChatGPT
with a phrase "Reason the answer step by step"
along with the CTR section, statement, and true
label from the training dataset. The true labels
and generated explanations using the ICL strategy
are then stored. See Appendix B.1 for ChatGPT’s
hyperparameters used for generating explanations.

Second, we retrieve the ICL examples using ei-
ther a random or BM25 retriever. Random retriever
fetches ICL examples randomly, while the BM25
retriever fetches the most similar training data to
the hypothesis sentence in question. We skip this
step if we do not intend to use ICL.

Third, we choose the prompt template. If CoT
is not used, the ordinary prompt is employed. This
prompt instructs LLMs to answer using only one
word, either “Contradiction” or “Entailment”. If
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 (3) Choose Prompt Template (2) Retrieve In Context Examples

Training Data

CTR Evidence
Hypothesis

Label / CoT Label

Few shot?

Yes

Retriever
Random/BM25 Yes

CoT?

No

No

 (1) Chain of Thoughts ICL Examples

Evidence: {Evidence}
Statement: {Hypothesis 1}
Label: Entailment
Reason the answer step by step

The evidence states that patients in the
primary trial are required to agree not to
consume grapefruit juice while on the
study. ... . The answer is Entailment.

 (4) Inference

Entailment

Contradiction
ORPrompt LLM

Label: Entailment

Hypothesis 1
Certain drinks are banned for patients undertaking the

primary trial.

Clinical Trial Report
Section: Results

 Inclusion Criteria:
Agrees not to consume grapefruit juice while
on the study

CoT Prompt
[ICL example(s)]
Evidence: [Evidence]
Statement: [Hypothesis]
Question: Is the statement a contradiction or an
entailment? Let's think step by step.
Answer: 

Ordinary Prompt
[ICL Example(s)]
Evidence: [Evidence]
Statement: [Hypothesis]
Question: Answer in 1 word. Is the
statement a contradiction or an entailment?
Answer: 

Figure 1: Our inference schema with multiple prompting strategies (without fine-tuning). For Chain-of-Thought
examples, Natural Language Explanation was generated using ChatGPT (He et al., 2023).

CoT is used, the CoT prompt is used to instruct
LLMs to think step by step. Refer to Figure 1.(3)
and Appendix D for both final prompt designs.

Finally, the LLMs ingest the prompted input to
generate an answer. To obtain the prediction, we
checked which label appears last in the generated
answer (either “Entailment” or “Contradiction”).

3.2 With Parameter Fine-tuning
We used LoRA (Hu et al., 2022) to fine-tune the
parameters Φ0 of a pretrained LLM PΦ0(y | x) on
a training dataset Z = {(xi, yi)}i=1,...,N . LoRA
only trains a small number of additional parameters
θ where |θ| ≪ |Φ0|; the parameters θ introduced
by LoRA are used to define a new set of parameters
Φ for the LLM, such that Φ = Φ0 +∆Φ(θ). The
training objective for the additional parameters θ
introduced by LoRA can be defined as:

argmax
θ

∑

(x,y)∈Z
f
(
PΦ0+∆Φ(θ) (y | x)

)
.

In our proposed method, we fine-tune two adapters
using different training objectives, namely a Lan-
guage Modelling objective (used to train the
adapter parameters θLM) and a supervised learning
objective based on the triplet loss (Balntas et al.,
2016) (used to train the adapter θtriplet).

In the supervised learning setting, we train LLMs
using a triplet loss, with CTR serving as an anchor.
Each CTR is associated with a pair of hypotheses,
one contradiction and one entailment. The triplet
loss encourages LLMs to map the entailment hy-

pothesis closer to the CTR and the contradiction
hypothesis to be far from the CTR.

L(a, p, n) = max(0, d(a, p)− d(a, n) + α),

where a, p, and n denote the averaged last hidden
states of the LLM for the anchor (CTR), positive
sample (entailment hypothesis), and negative sam-
ple (contradiction hypothesis), respectively. α is a
margin.

We hypothesise that LM fine-tuning can improve
the accuracy of the model on knowledge-intensive
domain-specific downstream tasks, while super-
vised fine-tuning aids the model in distinguishing
syntactically similar but semantically different data
points and vice versa. Merging both adapters aims
to achieve the best of both fine-tuning methods:

θmerged =
1

2

(
θLM + θtriplet

)
.

This process resulted in one merged LoRA adapter,
which can be re-attached to the original LLM. The
base LLM, equipped with the merged LoRA, pro-
cesses similarly prompted input, generating either
"Entailment" or "Contradiction". Refer to Figure 2
for an illustration of the workflow.

4 Results

The results shown in Table 2 can help us answer
multiple research questions:

RQ 1: Can zero-shot LLMs perform well?
In a zero-shot setting, MistralLite-7B showed zero
performance across all metrics due to it outputting
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LLM

 (2) Triplet Fine-tuning

Embed

  Triplet LoRA🔥

 (1) Language Modelling Fine-tuning

LLM

LM LoRA🔥

❄
Generate

Entailment

Contradiction

OR

❄
✅  Hypo 1

❌  Hypo 2

⚓  Evidence

 (3) Merge LoRA Adapters

 (4) Inference

Generate

Entailment ContradictionOR

LLM

      Merged LoRA

❄

❄

Hypothesis 1 (Entailment)
Only 2 patients in the primary trial did not have

Recurrence-free Survival

Hypothesis 2 (Contradiction)
Adverse events were a common occurrence among

participants in the primary clinical trial

Clinical Trial Report
Section: Results

 Outcome Measurement: 
Recurrence-free Survival

Overall Number of Participants Analyzed: 100
Unit of Measure: percentage of subjects 98 (92.2
to 99.5)

 Results 1:

Figure 2: Our proposed fine-tuning scheme on SemEval 2024-Task 2. We suggested merging Adapters trained
through Language Modelling (LM) Fine-tuning based on language modelling loss (in predicting either “Entailment”
or “Contradiction”) with Adapters trained through Triplet Fine-tuning based on triplet loss.

Model F1 Faith. Con. Avg.

Mistral-7B-Instruct 0.6525 0.1343 0.4154 0.4007
+ 1-shot 0.6639 0.1111 0.4127 0.3959
+ 2-shot 0.6685 0.1343 0.4246 0.4091
+ CoT 0.4708 0.5926 0.5077 0.5237
+ CoT + 1-shot 0.5835 0.5706 0.5493 0.5678
+ CoT + 2-shot 0.5944 0.6065 0.5650 0.5886

MistralLite-7B - - - -
+ 1-shot 0.5389 0.4109 0.4826 0.4775
+ 2-shot 0.4665 0.6597 0.5413 0.5558
+ CoT - - - -
+ CoT + 1-shot 0.5628 0.4664 0.4973 0.5088
+ CoT + 2-shot 0.5801 0.4977 0.5164 0.5314

LLaMA2-7B-Chat 0.6417 0.1192 0.4159 0.3923
+ 1-shot 0.6451 0.1678 0.4376 0.4168
+ 2-shot 0.6308 0.1701 0.4304 0.4104
+ CoT 0.6369 0.3009 0.4775 0.4718
+ CoT + 1-shot 0.6101 0.3924 0.4855 0.4960
+ CoT + 2-shot 0.5607 0.4630 0.4925 0.5054

LLaMA2-13B-Chat 0.6069 0.4502 0.4940 0.5170
+ 1-shot 0.6303 0.3345 0.4882 0.4843
+ 2-shot 0.6169 0.4016 0.5012 0.5066
+ CoT 0.6028 0.5012 0.5116 0.5385
+ CoT + 1-shot 0.6346 0.5312 0.5360 0.5673
+ CoT + 2-shot 0.5919 0.6123 0.5549 0.5864

GPT-4 0.7751 0.9479 0.7754 0.8328

Table 2: Results on the test set across various LLMs
with multiple prompting strategies (no fine-tuning).

an empty string. This suggests that, without any
prompting strategies, it did not understand the
given instruction. Mistral-7B-Instruct, LLaMA2-
7B-Chat, and LLaMA2-13B-Chat show some de-
gree of performance in the F1, faithfulness, and
consistency metrics. Among the three, LLaMA2-
13B-Chat achieved the highest faithfulness and con-
sistency scores. GPT-4 stood out with the high-
est scores in all metrics, suggesting its strong per-
formance even without any prompting strategies

applied. This begs the question of whether any
prompting strategies can be applied to help the rel-
atively smaller LLMs perform better.

RQ 2: Can smaller LLMs perform on par with
GPT-4 with prompting strategies?

In-Context Learning We investigated 1- and 2-
shot settings using BM25. 1-shot setting consis-
tently improved the performance of the LLMs (see
Appendix C comparing random and BM25 ICL
examples). With an ICL example, MistralLite-
7B understood how to answer the prompted in-
put. Mistral-7B-Instruct, LLaMA2-7B-Chat, and
LLaMA2-13B-Chat also showed performance im-
provement compared to the zero-shot setting, albeit
marginal. The 2-shot setting did not improve the
LLMs consistently. Mistral-7B-Instruct showed an
improvement in all metrics with 2-shot settings,
while the other LLMs see F1 score drops, albeit the
faithfulness and consistency may be improved.

Chain-of-Thought We investigated CoT in a
zero-shot setting. Similarly to the zero-shot set-
ting, MistralLite-7B showed zero performance in
all metrics due to outputting an empty string. We
saw drops in F1 scores for Mistral-7B-Instruct,
LLaMA2-7B-Chat, and LLaMA2-13B-Chat, and
improved the faithfulness and consistency scores.
This indicates the efficacy of CoT in ensuring faith-
ful and consistent answers from LLMs, albeit it
may marginally harm the accuracy of the model.

In-Context Learning + Chain-of-Thought
Since ICL improves the LLMs’ F1 score, and
CoT improves the faithfulness and consistency
scores, we investigated the combination of both.
The results show that ICL + CoT improves LLMs
across metrics. Considering the averaged score,
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2-shot ICL and CoT improve all LLMs except for
MistralLite-7B.

Despite employing these strategies, the LLMs
could not outperform GPT-4, particularly in terms
of faithfulness and consistency. This suggests that
while combining ICL and CoT is beneficial, it is
still challenging to achieve parity with GPT-4.

RQ 3: Can fine-tuned smaller LLMs perform
on par with GPT-4?

Model F1 Faith. Con. Avg.

Mistral-7B-Instruct 0.7689 0.7662 0.7140 0.7497
MistralLite-7B 0.7478 0.8727 0.7220 0.7808
LLaMA2-7B-Chat 0.6073 0.7176 0.6146 0.6465
LLaMA2-13B-Chat 0.6766 0.7731 0.6610 0.7036
Meditron-7B 0.1980 0.9560 0.6165 0.5902

Table 3: Results on the test set across various LLMs
with parametric-efficient fine-tuning.

As we may have reached the limit of perfor-
mance using prompting strategies, we investigated
employing fine-tuning the smaller LLMs.

Can LoRA fine-tuning improve the performance
of LLMs? Table 3 presents the performance for
each LLM fine-tuned with LoRA. Notably, fine-
tuning leads to improvements across all metrics for
all LLMs. MistralLite-7B is the best-performing
LLM after fine-tuning with 0.7808 averaged scores,
and it is notably better in terms of faithfulness and
consistency scores compared to the other models.
The fine-tuned Meditron-7B did not show a satis-
factory overall performance. The subsequent ex-
periment in merging LoRA adapters will focus on
using MistralLite-7B as the base model.

Model F1 Faith. Con. Avg

MistralLite-7B
+ θLM 0.7478 0.8727 0.7220 0.7808
+ Avg (θLM, θtriplet) 0.7824 0.8391 0.7372 0.7862

Table 4: Results on the test set with our proposed merg-
ing adapters fine-tuning.

Can merging LoRA adapters improve the per-
formance of LLMs? Table 4 displays results
obtained through fine-tuning MistralLite-7B with
only LM adapter θLM and the average of θLM
and θtriplet adapters. The merged θLM and θtriplet
adapters improve the overall performance of the
LLM (joint-fourth in the competition). It achieves

a better F1 score of 0.7824 (+0.0346), indicating
that merging LoRA adapters may improve the pre-
dictive performance of LLMs. We noticed a lower
faithfulness score (-0.0336) and a higher consis-
tency score (+0.0152). This indicates the model
struggles to understand semantic changes intro-
duced by deliberate alterations but can understand
semantically similar data better.

4.1 Contamination Analysis on GPT-4

Inspired by Carlini et al. (2022), we assessed
whether instances of the NLI4CT dataset were in-
cluded in GPT-4’s pre-training data. We prompted
GPT-4 with: 1) System instruction: "You are a
helpful assistant on the SemEval task. Complete
the given statement.", 2) Truncation of half of the
statement to prompt GPT-4 to infer the remaining.
(refer to Appendices B.7 and D.3 for details)

We define two metrics: extractable match, check-
ing if the predicted half of the statement by GPT-4
is included in the original half, and partial match,
assessing how sequentially each token of the pre-
dicted half of the statement is included in the orig-
inal half. In the test set, GPT-4 recorded an ex-
tractable match score of 0.033 and a partial match
score of 0.322. The low extractable match score
may indicate that GPT-4 has not seen the test data
during its pretraining, whereas the higher partial
match score may indicate GPT-4’s ability to iden-
tify keywords from CTRs.

5 Conclusion

This study assesses the performance of various
LLMs, employing diverse strategies such as CoT,
ICL, and PEFT. We propose a PEFT method, merg-
ing independent adapters fine-tuned separately us-
ing triplet and LM losses. Our proposed PEFT
method improves the F1 and consistency scores
but reduces faithfulness — our best fine-tuned
model, MistralLite-7B + LM LoRA + Triplet
LoRA, achieved an average score of 0.7862. How-
ever, it does not outperform GPT-4 in terms of
faithfulness and consistency: GPT-4 ranks joint-
first in the competition with an average score of
0.8328. A contamination analysis on GPT-4 re-
vealed no NLI4CT test data leakage, indicated by
a low extractable match score (0.033), and show-
cased its ability to identify keywords from CTRs
with a relatively high partial match score (0.322).
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Limitations

Due to the scope of the study and the limited re-
sources, we opted to only experiment with GPT-
4 in a zero-shot setup. However, our proposed
strategies that improved the performance of smaller
LLMs could also be used to enhance GPT-4. Albeit
the promising performance of the LLMs, particu-
larly GPT-4, the predictions may still be inaccurate
and should not be used in a clinical setting without
human supervision.

We conducted a contamination analysis inspired
by Carlini et al. (2022) and concluded that there
may be no test data leakage during the pretraining
of GPT-4. However, we acknowledge that con-
tamination analysis alone may not be sufficient in
proving test data leakage.
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Parameter Value

Model Name gpt-3.5-turbo-0613
API Version 2023-03-15-preview
Temperature 0
Top P 0
Frequency Penalty 0
Presence Penalty 0
Max new token 256
System Prompt You are a helpful clinician’s assistant

designed to identify if a clinical state-
ment is a contradiction or an entail-
ment to the presented evidence.

Prompt Evidence: [Evidence]
Statement: [Statement]
Question: Answer in 1 word. Is the
statement a contradiction or an entail-
ment?
Answer: [Label]
Reason the answer step by step

Table 5: Azure API call hyperparameters.

A Experimental setup

We use HuggingFace’s Transformers (Wolf et al.,
2020) and PEFT (Mangrulkar et al., 2022) libraries
for the experiments. All inferences and fine-tuning
experiments were run on two NVIDIA A100-40GB
GPUs.

For models without parameter fine-tuning
(prompting strategies, subsection 3.1), in-context
examples were retrieved from the Training set (for
both random and BM25 retrievers). Additionally,
the Dev set was used to evaluate and select the
optimal prompt design. Models with parameter
fine-tuning (subsection 3.2) were trained using the
Training set, and the Dev set was utilised to deter-
mine the best checkpoint.

B Hyperparameters

B.1 ChatGPT Hyperparameters for the
generation of Natural Language
Explanation

We prompted GPT-3.5 (model name:
gpt-3.5-turbo-0613) with hyperparame-
ters as shown in Table 5. The generation process
took approximately 2 hours and cost $2.

B.2 GPT-4 generation hyperparameters

We prompted GPT-4 (model name: gpt-4) with
the ordinary prompt as shown in Figure 1. We set
temperature=0 to ensure that the model’s gener-
ation is deterministic. The maximum generation
length is 8. The generation process took approxi-
mately 2 hours and cost $77.

Hyperparameter Value

Epoch 10
Gradient accumulation step 32
Optimiser AdamW
Learning rate 0.001
Weight decay 0.01
Max sequence length 2048

Table 6: Language Modelling training hyperparameters.

Hyperparameter Value

Epoch 10
Gradient accumulation step 32
Optimiser AdamW
Learning rate 0.00001
Weight decay 0.01
Max sequence length 1024
Triplet loss margin 1.0
Triplet loss p 2
Triplet loss ϵ 1e-7

Table 7: Triplet training hyperparameters.

B.3 Non GPT-4 generation hyperparameters

All models (apart from GPT-4) were loaded in
BFloat16 to ensure that they fit into our resources.
We used do_sample=False to ensure that the
model’s generation is deterministic. The maximum
generation length is 8 new tokens for non-CoT ex-
periments and 100 for CoT experiments.

B.4 Language Modelling training
hyperparameters

LM training used the hyperparameters detailed
in Table 6. The LLM’s maximum sequence length
is adjusted to fit on two NVIDIA A100-40GB
GPUs.

B.5 Triplet training hyperparameters

Triplet training used the hyperparameters detailed
in Table 7. The LLM’s maximum sequence length
is adjusted to fit on two NVIDIA A100-40GB
GPUs. Triplet training demands more memory
because we need to generate three hidden repre-
sentations during training (i.e., anchor, positive,
negative), necessitating a reduction in sequence
length.

B.6 PEFT Hyperparameters

All LLMs and training methods (i.e., LM and triplet
training) used the same LoRA hyperparameters as
shown in Table 8.
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Hyperparameter Value

r 16
alpha 32
dropout 0.0
target_modules [“k_proj”, “q_proj”, “v_proj”]

Table 8: LoRA Hyperparameters.

Model ICL F1 Faith. Con. Avg.

Mistral-7b-Instruct Random: 1-shot 0.6694 0.0856 0.4086 0.3879
Mistral-7b-Instruct BM25: 1-shot 0.6639 0.1111 0.4127 0.3959
Mistral-7b-Instruct Random: 2-shot 0.6639 0.1458 0.4294 0.4130
Mistral-7b-Instruct BM25: 2-shot 0.6685 0.1343 0.4246 0.4091

MistralLite-7B Random: 1-shot 0.6622 0.0150 0.3854 0.3542
MistralLite-7B BM25: 1-shot 0.5389 0.4109 0.4826 0.4775
MistralLite-7B Random: 2-shot 0.5097 0.5023 0.5164 0.5095
MistralLite-7B BM25: 2-shot 0.4665 0.6597 0.5413 0.5558

LLaMA2-7B-Chat Random: 1-shot 0.6613 0.0116 0.3864 0.3531
LLaMA2-7B-Chat BM25: 1-shot 0.6451 0.1678 0.4376 0.4168
LLaMA2-7B-Chat Random: 2-shot 0.6387 0.1250 0.4180 0.3939
LLaMA2-7B-Chat BM25: 2-shot 0.6308 0.1701 0.4304 0.4104

LLaMA2-13B-Chat Random: 1-shot 0.6585 0.3113 0.4724 0.4807
LLaMA2-13B-Chat BM25: 1-shot 0.6303 0.3345 0.4882 0.4843
LLaMA2-13B-Chat Random: 2-shot 0.6230 0.4074 0.4935 0.5080
LLaMA2-13B-Chat BM25: 2-shot 0.6169 0.4016 0.5012 0.5066

Table 9: Comparison of In-Context Learning Models
Using Random and BM25 Retrievers on the Test set

B.7 Contamination Analysis on GPT-4

For the Contamination Analysis, we utilised the
same settings as those described in Appendix B.2,
specifically setting the maximum number of gen-
erated tokens to 8. This was done to prevent the
incorrect biases due to excessively lengthy predic-
tions by GPT-4, as our evaluation method focuses
on determining whether the prediction is included
within the ground truth.

C Ablation study on Random vs
Relevance-based In-Context Examples

We also compared the performance of the model
by using random and relevant ICL examples. As
shown in Table 9, we found that relevant ICL exam-
ples helped the LLMs achieve better faithfulness
and consistency scores, while the F1 scores may
be impacted. For that reason, we opted to use
relevance-based ICL examples for the ICL-based
runs.

D Prompt Examples

Here, we provide examples of the prompts used
in our experiments. The black text within the box
represents the prompt input text, the red text rep-
resents the prediction of the models, and the blue
text represents the ground truth.

D.1 Base Prompt for Zero-shot and
In-Context Learning

Base Prompt

You are a helpful assistant.

«In-Context Learning Examples»

Evidence:
Primary trial:
Adverse Events 1:
Total: 0/15 (0.00%)
Adverse Events 2:
Total:

Secondary trial:
Adverse Events 1:
Total: 0/442 (0.00%)
Adverse Events 2:

Statement: the primary trial and the
secondary trial do not have any recorded
adverse events for their participants. crypt
is a pitlike depression or tubular recess.
Question: Answer in 1 word. Is the
statement a contradiction or an entailment?
Answer: Entailment

Ground Truth: Entailment
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D.2 Chain-of-Thought for Zero-shot and
In-Context Learning

Chain-of-Thought

You are a helpful assistant.

«In-Context Learning Examples»

Evidence:
Primary trial:
Adverse Events 1:
Total: 0/15 (0.00%)
Adverse Events 2:
Total:

Secondary trial:
Adverse Events 1:
Total: 0/442 (0.00%)
Adverse Events 2:

Statement: the primary trial and the
secondary trial do not have any recorded
adverse events for their participants. crypt
is a pitlike depression or tubular recess.
Question: Is the statement a contradiction
or an entailment?
Let’s think step by step
Answer: Great, let’s analyze the statement
and the evidence provided to determine
if it’s ... because the evidence shows that
there are no adverse events recorded for the
participants in either trial.
Therefore, the answer is Entailment."

Ground Truth: Entailment

D.3 Contamination Analysis on GPT-4

Extractable Match

You are a helpful assistant on the semeval
task. Complete the given statement.

Evidence:
Primary trial:
Outcome Measurement:
Number of Participants With Reduction in
CTCs Following High-dose Chemotherapy
With Purged Autologous Stem Cell Prod-
ucts
Number of circulating tumor cells (CTCs)
measured at one month post autologous
hematopoietic stem cell transplantation
(AHST), considered both as longitudinal
values and compared to the baseline number
of CTCs.
Time frame: Baseline to 1 month post
AHST
Results 1:
Arm/Group Title: High-dose Chemother-
apy
Arm/Group Description: Carboplatin +
Cyclophosphamide + Thiotepa
Carboplatin : Target AUC of 20, then
divided into 4 doses given by vein (IV) days
-6, -5, -4, -3 prior to stem cell infusion.
Thiotepa : 120mg/m2 by vein days -6, -5,
-4, -3 prior to stem cell infusion.
Stem Cell Transplant : Stem Cell Trans-
plant on Day 0.
Cyclophosphamide : 1.5gm/m2 by vein
days -6, -5, -4, -3 prior to stem cell infusion.
Overall Number of Participants Analyzed:
21
Measure Type: Number
Unit of Measure: participants 9
Statement: less than half of the primary
trial participants had a Reduction in cir-
culating tumor cells Following High-dose
Chemotherapy With Pur

Ground Truth: Following High-dose
Chemotherapy With Purged Autologous
Stem Cell Products
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Partial Match

You are a helpful assistant on the semeval
task. Complete the given statement.

Evidence:
Primary trial:
Adverse Events 1:
Total: 3/12 (25.00%)
Hemoglobin 1/12 (8.33%)
Alkaline phosphatase 1/12 (8.33%)
Dehydration 1/12 (8.33%)
Syncope 2/12 (16.67%)
Dyspnea 1/12 (8.33%)
Hypotension 1/12 (8.33%)

Secondary trial:
Adverse Events 1:
Total: 0/115 (0.00%)
Deep vein thrombosis * [1]0/115 (0.00%)
Adverse Events 2:
Total: 1/119 (0.84%)
Deep vein thrombosis * [1]1/119 (0.84%)
Statement: on both the primary and
secondary clinical trials, syncope was
reported as an adverse event in the

Ground Truth: emerged as the most
common adverse occurrence in the patient
groups

1904


