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Abstract

This paper presents our system developed for
the SemEval-2024 Task 1: Semantic Textual
Relatedness (STR), on Track C: Cross-lingual.
The task aims to detect semantic relatedness of
two sentences in a given target language with-
out access to direct supervision (i.e. zero-shot
cross-lingual transfer). To this end, we focus
on different source language selection strate-
gies on two different pre-trained languages
models: XLM-R and FURINA. We experi-
ment with 1) single-source transfer and select
source languages based on typological similar-
ity, 2) augmenting English training data with
the two nearest-neighbor source languages, and
3) multi-source transfer where we compare se-
lecting on all training languages against lan-
guages from the same family. We further study
machine translation-based data augmentation
and the impact of script differences. Our sub-
mission achieved the first place in the C8 (Kin-
yarwanda) test set.

1 Introduction

The task of semantic textual relatedness (STR) has
a long-standing tradition in NLP (e.g., Mohammad,
2008). It consists of predicting a score that reflects
the closeness in semantic meaning between two
given sentences. For example, consider the fol-
lowing examples extracted from the actual shared
task data (Abdalla et al., 2023) shown in Figure 1.
For English, the annotators scored the first pair
higher than the second sentence pair. Similarly, for
Afrikaans the annotators scored the first example
higher than the second one. As further described
in Abdalla et al. (2023), all sentence pairs were
annotated manually in a pairwise fashion to obtain
semantic textual relatedness (STR) scores between
0 (completely unrelated) and 1 (maximally related).

While previous work has largely focused on En-
glish, the SemEval-2024 shared task 1 (Ousidhoum

* Both authors contributed equally.

Pair STR Sentence Pair

eng-25 0.88 “It is better known as a walk.”
“It is also known as a walk .”

eng-31 0.30 “But, of course, it’s not that simple”
“However, this is not for me.”

afr-87 0.72 “ols totdat dit n bal vorm.”
“Dit moet n stywe bal deeg vorm.”

afr-78 0.09

“Stel jou voor jou kind skryf elke week n
opstel.”
“Washington is ook n fietsryer-vriendelike
stad.”

Figure 1: Examples from the dev sets for Semantic Tex-
tual Relatedness (STR). eng: English, afr: Afrikaans.

et al., 2024b) aims to extend the language coverage.
It proposes datasets to evaluate the relatedness of
sentence pairs for a total of 14 languages, including
low-resource tail languages such as Kinyarwanda
(kin) or Marathi (mar) (Abdalla et al., 2023) (see
§2.1). The shared task includes three subtracks,
each with a focus on supervised, unsupervised and
cross-lingual STR, respectively. In this paper, we
focus on Track C, cross-lingual STR. In this track,
the goal is to develop a system to predict STR
scores without access to any labeled data for the
target language (importantly, also no target devel-
opment data). That is, Track C requires the develop-
ment of a regression model for 12 target languages,
without relying on any labeled datasets in the target
language (or pre-trained language model fine-tuned
on other STR tasks). Instead the cross-lingual task
allows to utilize training datasets from at least one
other language from the other tracks (which in-
cludes training data of up to 9 languages). Return-
ing to our running example in Figure 1, the task is
to develop a system for example for Afrikaans as
target by transferring knowledge from one or more
source languages (which may include English).

Previous work on multilingual NLP has illus-
trated the curse of multilinguality (Conneau et al.,
2020), that is, diminishing returns for training a
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single system on many languages due to language
interference. This shared task has a focus on low-
resource languages and languages typologically
distant to English, a setup in where cross-lingual
transfer has shown to be particularly challenging
(Lauscher et al., 2020). Motivated by these two
aspects, we set out to study the use of fewer but
more relevant source languages for a given target
language. More specifically, we aim to find good
“donor language(s)” (Malkin et al., 2022) and com-
pare those to baselines that either only use English,
or a multi-source model trained on all source lan-
guages (except the target). We aim to answer the
following research questions: RQ1 To what extent
does knowledge transfer from source languages im-
prove STR models? RQ2 Do multilingual STR
models exhibit language interference (Wang et al.,
2020), i.e., performance drops when training data
from heterogeneous languages are combined? RQ3
To what extent do script differences play a role in
STR (“script gap”), and can we narrow the script
gap by using a foundation model specialized to
align transliterated data and data written in differ-
ent scripts? RQ4 Can we further improve the trans-
fer performance by relying on machine translation
to augment existing training data?

To study RQ1, we make use of typological in-
formation available in language vectors. For RQ2,
we opt for a multi-source approach, that combines
the training data for all languages (except the tar-
get). To study the impact of scripts (RQ3), we
make use of transliteration, and further compare a
BERT-based model to FURINA (Liu et al., 2024), a
recently proposed language model that aims to bet-
ter align languages across scripts. Finally for RQ4,
we investigate the use of machine translation (MT)
for data augmentation. We apply ours methods to
12 target languages in Track C. The specific details
about languages are presented in §2.1.

2 Background

2.1 STR Task Setup and Datasets

The STR task (Ousidhoum et al., 2024b) aims to
measure the extent to which two linguistic ele-
ments share semantic proximity (Ousidhoum et al.,
2024a). These elements may be associated through
various means, such as conveying similar ideas,
originating from the same historical period, com-
plementing each other’s meaning, and so forth. It
offers 3 tracks to follow: supervised (Track A),
unsupervised (Track B), cross-lingual (Track C).

In Track C, participants must provide systems de-
veloped without relying on any labeled datasets
specifically tailored for semantic similarity or re-
latedness in the target language. Instead, they are
required to employ labeled dataset(s) from at least
one other language.

The STR task involves 14 monolingual datasets
for Afrikaans (afr), Amharic (amh), Modern Stan-
dard Arabic (arb), Algerian Arabic (arq), Moroc-
can Arabic (ary), English (eng), Spanish (esp),
Hausa (hau), Hindi (hin), Indonesian (ind), Kin-
yarwanda (kin), Marathi (mar), Punjabi (pan), and
Telugu (tel). Among these, Track A and Track C
comprise 9 and 12 languages respectively (see Ta-
ble 1). In the training datasets, each instance con-
sists of a sentence pair and is assigned a golden
STR score as judged by native speakers. The score
ranges between 0 and 1, with higher values indi-
cating greater relatedness between the sentence
pairs. For details on the data collection, we refer
the reader to the shared task overview paper (Ousid-
houm et al., 2024a).

As per requirement, we designate the 9 lan-
guages in Track A as source languages and those
in Track C as the 12 target languages. An overview
of the resulting train/dev/test data statistics for the
14 languages is provided in Table 1.

2.2 Evaluation Metric
The evaluation metric used in this shared task is
Spearman’s rank correlation coefficient. It evalu-
ates the strength and direction of the monotonic
relationship between two variables with a range
from -1 to 1. In the context of our task, as pre-
viously mentioned, the scoring has been adjusted
to range between 0 and 1. We use the evaluation
script provided by the organizers (Ousidhoum et al.,
2024b).

2.3 Baselines
The organizers fine-tuned LaBSE (Feng et al.,
2022) on the English training set to get baselines
for all target languages except English (cf. §3.1).
For English, they fine-tuned LaBSE on Spanish as
a baseline. Since the test dataset for Spanish has
not been made publicly available, all models aimed
at Spanish evaluation are conducted solely on their
respective validation datasets. In order to ensure a
more equitable comparison with other findings, we
reproduce the baseline LaBSE model utilizing the
methodology provided by the organizers. It yields
a baseline score of 0.687 on the Spanish validation
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eng esp afr hin pan amh arb arq ary hau ind kin mar tel total

Train 5,500 1,562 - - - 992 - 1,261 924 1,736 - 778 1,200 1,170 15,123
Dev 249 139 375 288 242 95 32 97 70 212 144 222 293 130 2,588
Test 2,600 140 375 968 634 171 595 583 425 594 360 222 - - 7,667

Table 1: STR Dataset statistics. Indo-European lanuguages including esp, afr, hin, ind, pan and mar: 10,424 train
instances; 1,811 dev instances; 5,357 test instances. Afro-Asiatic languages including hau, amh, arb, ary and arq:
3,921 train instances; 411 dev instances; 2,197 test instances. Out of 14 languages, 5 languages including amh, hin,
arb, arq, ary are in non-latin script, all the rest of languages are in latin script.

dataset.

3 Methods

We opt for two RoBERTa-based (Liu et al., 2019)
models for the regression task trained with a
mean-squared error (MSE) loss. More specifi-
cally, we use the XLM-RoBERTa base model,
and FURINA (Liu et al., 2024), which is a XLM-
R derivative based on Glot-500 (ImaniGooghari
et al., 2023), further detailed below. We adopt
a multi-source approach that involves individu-
ally fine-tuning a model for each target language
in Track C. This fine-tuning process utilizes the
training datasets from all languages available in
Track A, explicitly excluding the dataset of the
test language itself. For baseline comparisons, we
use XLM-RoBERTa (Conneau et al., 2020) and
FURINA (Liu et al., 2024) models fine-tuned solely
on English datasets.

3.1 Model Selection

XLM-RoBERTa. The multilingual masked lan-
guage model XLM-RoBERTa (XLM-R) (Con-
neau et al., 2020) pre-trained on 2.5TB of filtered
CommonCrawl data containing 100 languages has
shown superior performance compared to Multilin-
gual BERT (mBERT) (Devlin et al., 2019) across
a range of cross-lingual benchmarks. In the ex-
periment, we utilize the base version of XLM-R.1

XLM-R has seen all SemRelEval languages except
for Algerian Arabic (arq), Moroccan Arabic (ary),
Kinyarwanda (kin) at pre-training time.

FURINA. FURINA (Liu et al., 2024) covers 511
low-resource languages. It was fine-tuned on
Glot500-m (ImaniGooghari et al., 2023). The train-
ing data consists of 5% of Glot500-m’s pretraining
sentences in original script as well as their cor-
responding Latin transliterations. At pre-training

1https://huggingface.co/FacebookAI/
xlm-roberta-base

time FURINA has been exposed to all SemRelEval
languages except for Algerian Arabic (arq).

LaBSE. The organizers provide cross-lingual
baselines for each target language by fine-tuning
Language-agnostic BERT Sentence Embeddings
(LaBSE) (Feng et al., 2022), which supports 109 lan-
guages. LaBSE was pre-trained using Translation
language modeling (TLM) (Conneau and Lample,
2019), which included bilingual translation sen-
tence pairs for training. The bilingual corpus is
constructed from web pages using a bitext mining
system, filtered by a pre-trained contrastive data-
selection scoring model, and manually curated to
create a high-quality collection of 6 billion transla-
tion pairs. Out of those, LaBSE has been exposed
to different amounts of parallel data (eng-xxx)
from SemRelEval languages. The largest amount
of parallel text involves Spanish with over 375M
sentence pairs (eng-esp), followed by Indonesian
with over 250M sentence pairs (eng-ind), followed
by Hindi and Arabic (eng-{hin, arb}) with over
125M language pairs. All other languages (afr,
pan, amh, haus, tel, kin, mar) appear in the TLM
training corpus with less than 125M sentence pairs.

3.2 Source Language Selection

Single-Source Transfer. In our first approach,
we follow the standard single-source zero-shot
cross-lingual transfer setup and fine-tune pre-
trained language models on English data (XLM-Reng,
Furinaeng). This is a common evaluation approach
adopted in standard natural language understand-
ing and generation benchmarks (Liang et al., 2020;
Ruder et al., 2023). However, English has been
shown to not always be the best source language
(Turc et al., 2021). To investigate if this also true
for SemRelEval, we further experiment with se-
lecting for each test language its closest (i.e., most
similar) source language. Here, we measure lan-
guage similarity according to typological features
from the lang2vec library (Littell et al., 2017).
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K-nearest-neighbor languages. In this approach
we augment the English training dataset with the
datasets of k languages that are closest to the tar-
get language, dubbed kNN. To determine suitable
source languages for each target language, we
assess language similarity by calculating the co-
sine similarity between language vectors learned
by a multilingual neural MT model provided by
Malaviya et al. (2017). We specifically use the
cell_state language vectors, which are computed
by encoding all sentences in a given language and
then computing the average hidden cell state of
the encoder LSTM.2 These vectors can be seen
as language embeddings encoding latent typology
features (Östling and Tiedemann, 2017; Yu et al.,
2021). With our kNN-models we aim for a good bal-
ance between large amounts of training instances
(English) and positive transfer from similar lan-
guages.

Multi-Source Transfer. The STR dataset con-
tains languages from different language families.
To investigate whether training a single model on
a disverse set of languages leads to negative inter-
ference (Wang et al., 2020) we compare two multi-
source models. In the first model, dubbed MS-All,
we fine-tune XLM-R and Furina on the concatena-
tion of all training sets from Track A (excluding
the target language). Inspired by previous work
on combining multiple related source languages
(Snæbjarnarson et al., 2023; Lim et al., 2024), we
further evaluate multi-source models trained on lan-
guages from the same language family (MS-Fam).

3.3 Other Approaches
Machine Translation. For the purpose of data
augmentation and balance of languages, we trans-
late selected languages into each other using NLLB
(Costa-jussà et al., 2022), ensuring that each lan-
guage contributes equally to the training dataset.
Taking Kinyarwanda as an example, we select
Hausa and Spanish as the two languages closest
to it, based on dense language vector similarity
as outlined above (kNN), along with English, as
training dataset. We translate among these three
languages mutually, thus tripling the size of the
training dataset while ensuring a balanced repre-
sentation of all languages.

Transliteration. Additionally, we attempt to fur-
ther facilitate multilingual transfer learning by stan-

2https://github.com/chaitanyamalaviya/
lang-reps/

dardizing script across languages. Utilizing the
tool Uroman3 (Hermjakob et al., 2018), which
was also used by FURINA (Liu et al., 2024), we
transliterate the train and test datasets of languages
written in non-Latin scripts, including both the
original datasets and the translated datasets, into
Latin script. We evaluate the models fine-tuned
on Romanized training data on the Romanized test
dataset. This attempt only involves non-Latin script
languages (amh, arb, ary, arq, hin).

4 Experimental Setup

The detailed setting are listed in Appendix A. As
baseline, we exclusively train a model on the En-
glish dataset (XLM-Reng, Furinaeng) and assess its
performance across all target languages. Subse-
quently, for each target language, we fine-tune
a multi-source model: if the target language is
not within the 9 training datasets, we train on
the union of all n = 9 training languages. Oth-
erwise we train a multi-source model on n −
1 = 8 source languages, excluding the target
(XLM-RMS-All, FurinaMS-All). Following this, we
explore whether it is helpful to prune certain lan-
guages, retaining only English and the two closest
to the target languages according to lang2vec (Lit-
tell et al., 2017)4 as source languages (XLM-RL2V,
FurinaL2V). Due to the reduction in the training set,
which significantly decreased the size of the data,
we attempted to expand the dataset through cross-
translation (XLM-RL2V-Aug, FurinaL2V-Aug; cf. §3.2).

5 Results and Discussion

Our main results are presented in Table 2 and are
discussed in the following section.

Single-source versus multi-source transfer. We
first compare the performance of a zero-shot STR
model trained on English (XLM-Reng, Furinaeng)
against a multi-source model trained on the con-
catenation of all available languages from Track A
(XLM-RMS-All, FurinaMS-All). Our results reveal
that knowledge transfer from multiple source lan-
guages (RQ1) improves STR models, affirming the
potential of multi-source training to enhance cross-
lingual capabilities. On average, both MS-All mod-
els outperform their single-source counterparts by
0.02 and 0.09 respectively. This is expected since

3https://github.com/isi-nlp/uroman
4We compare the similarity of languages based on three

criteria: lang_cell_states, lang_vecs and language typological
vectors

1845

https://github.com/chaitanyamalaviya/lang-reps/
https://github.com/chaitanyamalaviya/lang-reps/
https://github.com/isi-nlp/uroman


Indo-European Afro-Asiatic Other

eng esp afr hin pan amh arb arq ary hau ind kin avg

LaBSE (baseline) 0.80 0.69 0.79 0.76 -0.05 0.84 0.61 0.46 0.40 0.62 0.47 0.57 0.67
Furinaeng+esp+hau - - 0.74 0.70 0.09 0.73 0.40 0.27 0.57 - 0.32 0.68 -

Models based on XLM-R (Conneau et al., 2020)

XLM-Reng - 0.67 0.81 0.80 -0.02 0.81 0.60 0.50 0.60 0.64 0.42 0.46 0.71
XLM-RMS-All 0.84 0.63 0.80 0.82 -0.01 0.80 0.56 0.59 0.82 0.66 0.42 0.69 0.73
XLM-RMS-Fam 0.82 0.71 0.81 0.82 0.00 0.69 0.44 0.37 0.83 0.66 - - 0.68
XLM-RkNN - 0.59 0.81 0.78 - 0.75 0.57 - 0.50 0.62 0.45 0.41 0.69
XLM-RkNN+MT - 0.64 0.80 0.78 - 0.77 0.54 - 0.55 0.62 0.36 0.55 0.70
XLM-RkNN+TL - - - 0.66 - 0.37 0.45 - 0.52 - - - -

Models based on Furina (Liu et al., 2024)

Furinaeng - 0.54 0.79 0.70 -0.14 0.74 0.37 0.45 0.59 0.63 0.44 0.53 0.62
FurinaMS-All 0.83 0.59 0.79 0.76 -0.02 0.81 0.49 0.61 0.83 0.65 0.35 0.78 0.71
FurinaMS-Fam 0.83 0.72 0.79 0.77 0.02 0.66 0.42 0.55 0.82 0.68 - - 0.71
FurinakNN - 0.59 0.80 0.72 - 0.74 0.43 - 0.57 0.63 0.46 0.68 0.67
FurinakNN+MT - 0.56 0.78 0.75 - 0.74 0.44 - 0.57 0.59 0.37 0.64 0.67
FurinakNN+TL - - - 0.67 - 0.72 0.44 - 0.56 - - - -

Table 2: Spearman’s rank correlation of zero-shot transfer experiments on SemRelEval 9 test languages. The
organizers decided to keep the test set for Spanish private, we therefore report the performance on the validation set.
We exclude English from the average result (avg). bold: Best result for each language. Languages not covered by
all L2V features are excluded from the average (eng, pan, arq, ind, kin). For our kNN-variants we opt for k = 2.

the multi-source training dataset is with 15,123 in-
stances almost three times larger than the English
dataset with 5,500 instances (cf. Table 1). When
trained solely on English data, FURINA performs
substantially worse than XLM-R. However, this
performance gap narrows when transitioning from
single-source to multi-source training.

Transfer from language families. After show-
ing that models trained on all languages outperform
the single-source baseline, we now investigate the
effect of training on languages from the same fam-
ily as source languages. Here we experiment with
two multi-source models specialized only on Indo-
European and Afro-Asiatic languages respectively
(MS-Fam). Importantly, for each target language we
train a multi-source model on all other languages in
the same language family.5 On Indo-European lan-
guages, we find that XLM-RMS-Fam and FurinaMS-Fam
yield similar results with much less training data
(i.e., 4,913 fewer instances belonging to other lan-
guage families). For Spanish, our models show per-
formance gains of +0.8 and +0.13 for XLM-R and
FURINA respectively, when compared to models
trained on all languages. This underscores the pres-
ence of language interference (Wang et al., 2020)
in multilingual STR models when the training data

5Indonesian and Kinyarwanda are the only SemRel lan-
guages in their family, we therefore cannot evaluate multi-
source for those languages.

from dissimilar languages are combined (RQ2).
On Afro-Asiatic languages, we observe average
performance drops of -0.09 and -0.06 for XLM-R
and FURINA when moving from MS-All to MS-Fam.
We hypothesize that this can be attributed to the
amount of training data available. In fact, there are
28% fewer training instances for all Afro-Asiatic
languages than for English (5,500).

Transfer from nearest language neighbors. We
now investigate the transfer performance when
training STR models on their two closest languages
according to cosine similarity of language cell
state vectors, i.e. learned language vectors pre-
sented in (Malaviya et al., 2017). As mentioned
earlier, we add English due to its large scale as
a third training language. Our submitted system,
Furinaeng+esp+hau, is trained on the two closest
training languages of Kinyarwanda (kin) and has
been ranked first place on the shared task leader-
board. Applying the same approach for each test
language (XLM-RkNN, FurinakNN) shows mixed re-
sults. This indicates that the strong performance
on kin can be attributed to the fact that, contrary
to XLM-R, kin has been seen by Furina during
pretraining.

Transliteration and cross-translation. The
STR dataset contains six test languages in non-
Latin scripts: Hindi (hin), Punjabi (pan), Amharic
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Indo-European Afro-Asiatic Other

XLM-R eng esp afr hin pan amh arb arq ary hau ind kin avg

MIN 0.78 0.57 0.74 0.71 -0.14 0.73 0.47 0.39 0.40 0.40 0.31 0.41 0.58

XLM-Reng - 0.67 0.81 0.80 -0.02 0.81 0.60 0.50 0.60 0.64 0.42 0.46 0.71
XLM-RkNN - 0.68 0.74 0.72 - 0.75 0.57 - 0.40 0.63 0.49 0.43 0.64
L2V-Pho 0.78 0.67 0.80 0.80 -0.03 0.78 0.51 0.58 0.55 0.58 0.39 0.47 0.67
L2V-Syn 0.78 0.67 0.83 0.80 -0.03 0.74 0.51 0.58 0.55 0.61 0.39 0.43 0.67
L2V-Inv 0.82 0.63 0.80 0.80 -0.03 0.79 0.51 0.58 0.55 0.58 0.33 0.45 0.67
L2V-Fam 0.82 0.67 0.83 0.80 -0.03 0.79 0.51 0.58 0.55 0.595 - - 0.68
L2V-Geo 0.78 0.57 0.80 0.80 -0.03 0.75 0.47 0.56 0.55 0.63 0.31 0.45 0.66
L2V-LRN - 0.68 0.74 0.72 - 0.79 0.57 - 0.54 0.40 0.49 0.43 0.63

MAX 0.82 0.69 0.83 0.80 0.04 0.79 0.61 0.63 0.74 0.66 0.49 0.65 0.73

Table 3: Single-source transfer results in terms of spearman correlation. The language selection is based on the
cosine similarity of different typological features obtained from lang2vec (L2V). We additionally report the lower
(MIN) and upper bound (MAX) obtained from selecting the best and worst source language. Languages not covered
by all L2V features are excluded from the average: eng, pan, arq, ind, kin. For L2V-Phon, both tel and mar are
closest to hin. For L2V-Fam amh and arq are the closest languages, we report their average score (0.595). In
single-source transfer with XLM-RkNN we use k = 1 and do not combine the selected language with eng training data.

(amh), Standard Arabic (arb), Algerian Arabic
(arq), and Moroccan Arabic (ary). Zero-shot
cross-lingual transfer of models fine-tuned on En-
glish performs worse for Arabic scripts than for
amh and hin. Punjabi shows the lowest results by
a large margin. When fine-tuned on on multiple
source languages (MS-All), XLM-R improves the
performance on four out of six languages while
Furina yields improvements on all five languages.
We find that (1) there is no clear winner between
XLM-R and FURINA when applied on text written
in different scripts, and (2) romanizing all train-
ing and test languages did not improve zero-shot
cross-lingual transfer for STR (RQ3).

Next, we investigate the impact of augmenting
the training data with translated data. The varied
outcomes of augmenting data indicate that while
machine translation can enhance transfer perfor-
mance for certain languages. Performance drops
in others may stem from shifts in label seman-
tics and the degree of relatedness between original
and translated sentence pairs (RQ4). Appendix C
(Table 14) shows an example where MT fails to
capture nuanced differences between closely, but
not perfectly related sentences, leading to near-
identical translations and inconsistent labels.

Single-source transfer results. We now select
the most similar source languages based on differ-
ent typological features obtained from the lang2vec
(L2V) library. We obtain L2V vectors for Phonol-
ogy (Pho), Syntax (Syn), Inventory (Inv), Family
(Fam), Geography (Geo) and learned (LRN) features.

Table 3 shows our results for XLM-R.6 Overall,
a careful selection of a single-source language is
crucial for zero-shot cross-lingual transfer. There is
a substantial gap between the worst possible result
(0.58) and the best possible result (0.73). On aver-
age, English is the most effective source language
with a correlation of 0.71. A closer analysis reveals
that English is the best language only for half of
the target languages, despite being the language
with the largest training dataset (cf. Table 13 in
Appendix). Interestingly, the best possible single-
source language selection (MAX) results into the
same performance as XLM-RMS-All (cf. Table 2).

6 Conclusion

In this paper, we investigate source language se-
lection for cross-lingual transfer for Semantic Tex-
tual Relatedness (STR). We evaluate three different
language selection strategies: single-source, multi-
source transfer and transfer from English and two
nearest language neighbors. We find that the trans-
fer performance crucially depends on the size of
the training dataset and the linguistic proximity to
the test language. We further show that script differ-
ences cause high variance transfer performance and
MT-based data augmentation can lead to shifts in
label semantics. Fine-tuning FURINA on eng, esp,
and hau, we achieve first place in the SemEval-
2024 Task 1, Track C8 (kin).

6FURINA results can be found in Appendix Table 12.
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A Hyperparameters

We employed identical hyperparameters across all
variants of XLM-R and FURINA. We train our mod-
els for at most 30 epochs with a batch size of 32 and
a learning rate of 2e-5 and use AdamW (Loshchilov
and Hutter, 2017) with a weight decay of 1e-3. We
evaluate the dev set performance every 200 steps
and stop early based on the spearman correlation
on the validation set (patience counter: 8, patience
threshold: 1e-4).

B Language Similarities

Table 4 shows for each test language its two closest
source languages (kNN) according to cell state vec-
tors from (Malaviya et al., 2017) and learned vec-
tors from lang2vec (L2V-LRN) (Littell et al., 2017).
We find both language vectors lead to similar re-
sults. Here, we further show the selected languages
for our multi-source model (MS-Fam), which out-
performs both L2V-LRN and kNN.

In Table 5-11 we show cosine similarities be-
tween all train and test languages according to dif-
ferent typological features extracted from L2V and
learned vectors from (Malaviya et al., 2017). We
use the similarities to select source languages for
our kNN and single-source model variants.
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Model Variant Source languages Target language # Train Instances FURINA XLM-R

Based on cell state vectors (kNN) (Malaviya et al., 2017)

1 esp, kin afr 7840 0.80 0.81
hau 0.63 0.62

2 esp, hau ind 8798 0.46 0.45
kin 0.68 0.41

3 kin, hau amh 8014 0.74 0.75
esp 0.59 0.59

4 amh, hau ary 8228 0.57 0.50
5 kin, amh arb 7270 0.44 0.57
6 amh, esp hin 8054 0.72 0.78
avg - - - 0.58 0.58

Based on learned lang2vec vectors (L2V-LRN) (Littell et al., 2017)

1 esp, kin

afr

7840

0.80 0.81
arb 0.46 0.60
hau 0.63 0.62
ind 0.44 0.39

2 esp, hau kin 8798 0.68 0.41

3 kin, hau amh 8014 0.74 0.75
esp 0.59 0.59

4 amh, hau hin 8228 0.74 0.79
5 kin, amh ary 7270 0.52 0.55
avg - - - 0.59 0.60

Based on language familis features (MS-Fam)

1 esp, mar, tel eng 3932 0.83 0.82
2 eng, mar, tel esp 7370 0.72 0.71

3 eng, esp, mar, tel
afr

9432
0.79 0.81

hin 0.77 0.82
pan 0.02 -0.00

4 arq, ary, hau amh 3921 0.66 0.69
5 amh, arq, ary, hau arb 4913 0.42 0.44
6 amh, ary, hau arq 3652 0.55 0.37
7 amh, arq, hau ary 3989 0.82 0.83
8 amh, arq, ary hau 3117 0.68 0.66

Table 4: Model variants based on language vectors, language cell state vectors and language families. All variants
include eng for training.

amh ary esp hau kin

afr 0.75 0.57 0.83 0.79 0.82
amh - 0.62 0.66 0.69 0.71
ary 0.62 - 0.54 0.61 0.49
arb 0.76 0.73 0.73 0.73 0.79
esp 0.66 0.54 - 0.76 0.82
hau 0.69 0.61 0.76 - 0.84
hin 0.80 0.73 0.74 0.72 0.71
ind 0.71 0.65 0.83 0.76 0.76
kin 0.71 0.49 0.82 0.84 -

Table 5: Cosine similarities between source languages (columns) and target languages (rows). Language vectors are
obtained from lang2vec: kNN (cell_state vectors) (Malaviya et al., 2017). We exclude four languages for which we
cannot obtain feature vectors: arq, mar, tel, eng.
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amh ary esp hau kin

afr 0.07 -0.05 0.23 0.07 0.22
amh - -0.01 0.00 0.07 0.05
ary -0.01 - -0.06 -0.03 0.06
arb 0.07 -0.05 0.13 -0.03 0.11
esp 0.00 -0.06 - 0.22 0.23
hau 0.07 -0.03 0.22 - 0.19
hin 0.13 -0.01 0.06 0.07 0.06
ind 0.00 0.05 0.11 0.06 0.09
kin 0.05 0.06 0.23 0.19 -

Table 6: Cosine similarities between source languages (columns) and target languages (rows). Language vectors
are obtained from lang2vec: L2V-LRN (Littell et al., 2017). We exclude four languages for which we cannot obtain
L2V-LRN features: arq, mar, tel, eng.

amh ary esp hau kin arq mar tel eng

afr 0.86 0.70 0.76 0.87 0.85 0.73 0.80 0.80 0.82
amh - 0.73 0.80 0.82 0.78 0.76 0.95 0.84 0.76
ary 0.73 - 0.73 0.67 0.73 0.97 0.77 0.69 0.70
arb 0.85 0.90 0.76 0.77 0.76 0.93 0.80 0.71 0.73
esp 0.80 0.73 - 0.73 0.78 0.76 0.84 0.74 0.86
hau 0.82 0.67 0.73 - 0.82 0.69 0.77 0.77 0.78
hin 0.82 0.75 0.82 0.75 0.82 0.77 0.87 0.87 0.78
ind 0.76 0.70 0.76 0.78 0.85 0.73 0.80 0.80 0.91
kin 0.78 0.73 0.78 0.82 - 0.76 0.82 0.82 0.85
arq 0.76 0.97 0.76 0.69 0.76 - 0.80 0.71 0.73
eng 0.76 0.70 0.86 0.78 0.85 0.73 0.80 0.80 -
pan 0.95 0.77 0.84 0.77 0.82 0.80 1.00 0.89 0.80

Table 7: Cosine similarities between source languages (columns) and target languages (rows). Language vectors are
obtained from lang2vec: L2V-Phon (Littell et al., 2017).

amh ary esp hau kin arq mar tel eng

afr 0.62 0.66 0.73 0.71 0.55 0.67 0.62 0.56 0.85
amh - 0.59 0.63 0.57 0.51 0.60 0.72 0.77 0.59
ary 0.59 - 0.81 0.72 0.63 0.93 0.50 0.48 0.73
arb 0.61 0.87 0.75 0.64 0.64 0.85 0.49 0.50 0.64
esp 0.63 0.81 - 0.74 0.59 0.81 0.56 0.52 0.82
hau 0.57 0.72 0.74 - 0.65 0.78 0.52 0.34 0.75
hin 0.74 0.67 0.68 0.57 0.46 0.65 0.83 0.78 0.62
ind 0.45 0.73 0.66 0.67 0.52 0.74 0.36 0.32 0.73
kin 0.51 0.63 0.59 0.65 - 0.64 0.39 0.38 0.49
arq 0.60 0.93 0.81 0.78 0.64 - 0.49 0.47 0.74
eng 0.59 0.73 0.82 0.75 0.49 0.74 0.56 0.52 -
pan 0.71 0.68 0.70 0.59 0.49 0.67 0.79 0.75 0.61

Table 8: Cosine similarities between source languages (columns) and target languages (rows). Language vectors are
obtained from lang2vec: L2V-Syn (Littell et al., 2017).
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amh ary esp hau kin arq mar tel eng

afr 0.65 0.56 0.62 0.61 0.69 0.61 0.67 0.68 0.69
amh - 0.76 0.74 0.83 0.80 0.73 0.73 0.64 0.70
ary 0.76 - 0.62 0.70 0.70 0.85 0.63 0.57 0.65
arb 0.72 0.83 0.65 0.70 0.71 0.98 0.64 0.60 0.73
esp 0.74 0.62 - 0.67 0.68 0.64 0.66 0.66 0.64
hau 0.83 0.70 0.67 - 0.76 0.72 0.64 0.59 0.62
hin 0.66 0.69 0.57 0.62 0.69 0.77 0.72 0.77 0.71
ind 0.88 0.75 0.76 0.79 0.82 0.77 0.74 0.68 0.76
kin 0.80 0.70 0.68 0.76 - 0.72 0.65 0.63 0.69
arq 0.73 0.85 0.64 0.72 0.72 - 0.65 0.62 0.71
eng 0.70 0.65 0.64 0.62 0.69 0.71 0.76 0.67 -
pan 0.71 0.60 0.69 0.65 0.71 0.66 0.82 0.78 0.77

Table 9: Cosine similarities between source languages (columns) and target languages (rows). Language vectors are
obtained from lang2vec: L2V-Inv (Littell et al., 2017).

amh ary esp hau kin arq mar tel eng

afr 0.00 0.00 0.11 0.00 0.00 0.00 0.15 0.00 0.50
amh - 0.40 0.00 0.17 0.00 0.43 0.00 0.00 0.00
ary 0.40 - 0.00 0.16 0.00 0.94 0.00 0.00 0.00
arb 0.46 0.87 0.00 0.18 0.00 0.93 0.00 0.00 0.00
esp 0.00 0.00 - 0.00 0.00 0.00 0.12 0.00 0.10
hau 0.17 0.16 0.00 - 0.00 0.17 0.00 0.00 0.00
hin 0.00 0.00 0.11 0.00 0.00 0.00 0.46 0.00 0.13
ind 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
kin 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00
arq 0.43 0.94 0.00 0.17 0.00 - 0.00 0.00 0.00
eng 0.00 0.00 0.10 0.00 0.00 0.00 0.14 0.00 -
pan 0.00 0.00 0.12 0.00 0.00 0.00 0.50 0.00 0.14

Table 10: Cosine similarities between source languages (columns) and target languages (rows). Language vectors
are obtained from lang2vec: L2V-Fam (Littell et al., 2017).

amh ary esp hau kin arq mar tel eng

afr 0.97 0.91 0.90 0.96 0.99 0.91 0.92 0.92 0.87
amh - 0.95 0.95 0.98 0.99 0.96 0.97 0.96 0.94
ary 0.95 - 1.00 0.98 0.94 1.00 0.88 0.87 0.99
arb 0.99 0.95 0.96 0.97 0.97 0.97 0.98 0.97 0.96
esp 0.95 1.00 - 0.98 0.94 1.00 0.90 0.89 1.00
hau 0.98 0.98 0.98 - 0.99 0.98 0.90 0.90 0.96
hin 0.97 0.89 0.91 0.90 0.94 0.91 1.00 1.00 0.91
ind 0.89 0.77 0.79 0.81 0.87 0.79 0.96 0.96 0.79
kin 0.99 0.94 0.94 0.99 - 0.95 0.94 0.94 0.92
arq 0.96 1.00 1.00 0.98 0.95 - 0.90 0.90 0.99
eng 0.94 0.99 1.00 0.96 0.92 0.99 0.90 0.89 -
pan 0.96 0.90 0.91 0.91 0.93 0.92 1.00 1.00 0.92

Table 11: Cosine similarities between source languages (columns) and target languages (rows). Language vectors
are obtained from lang2vec: L2V-Geo (Littell et al., 2017).

1852



Indo-European Afro-Asiatic Other

FURINA eng esp afr hin pan amh arb arq ary hau ind kin avg

MIN 0.34 0.38 0.48 0.35 -0.19 0.68 0.04 0.00 0.28 0.33 0.22 0.23 0.36

Furinaeng - 0.54 0.79 0.70 -0.14 0.74 0.37 0.45 0.59 0.63 0.44 0.53 0.62
FurinaL2V-kNN - 0.62 0.71 0.35 - 0.73 0.42 - 0.28 0.64 0.42 0.68 0.53
L2V-Pho 0.76 0.56 0.79 0.77 0.03 0.76 0.46 0.48 0.63 0.43 0.43 0.68 0.63
L2V-Syn 0.76 0.56 0.80 0.78 0.03 0.74 0.39 0.48 0.63 0.54 0.34 0.68 0.63
L2V-Inv 0.78 0.38 0.79 0.76 0.03 0.76 0.46 0.48 0.63 0.43 0.22 0.23 0.60
L2V-Fam 0.78 0.64 0.80 0.78 0.03 0.76 0.46 0.48 0.63 0.485 - - 0.65
L2V-Geo 0.76 0.47 0.79 0.78 0.03 0.73 0.04 0.53 0.63 0.64 0.30 0.23 0.58
L2V-LRN - 0.62 0.71 0.35 - 0.76 0.42 - 0.59 0.33 0.42 0.54 0.54

MAX 0.79 0.64 0.81 0.78 0.06 0.76 0.53 0.55 0.77 0.66 0.45 0.78 0.71

Table 12: Single-source transfer results in terms of spearman correlation. The language selection is based on the
cosine similarity of different typological features obtained from lang2vec (L2V). We additionally report the lower
and upper bound (MIN, MAX) when choosing the worst and best possible donor language for each test language.
Languages that are not covered by all L2V features are excluded from the average (eng, pan, arq, ind, kin).

afr amh ary arb esp hau hin ind kin arq eng pan

MIN (XLM-R) esp esp amh amh ary esp esp tel arq amh esp ary
MIN (Furina) amh esp amh amh amh esp amh amh amh amh amh ary

kNN esp kin amh kin kin kin amh esp hau - - -
L2V-Pho hau mar arq arq eng amh mar+tel eng eng ary esp mar
L2V-Syn eng tel arq ary eng arq mar arq hau ary esp mar
L2V-Inv kin hau arq arq amh amh tel amh amh ary mar mar
L2V-Fam eng arq arq arq mar amh+arq mar - - ary mar mar
L2V-Geo kin kin arq amh arq kin mar tel amh esp esp mar
L2V-LRN esp hau kin kin kin esp amh esp esp - - -

MAX (XLM-R) eng eng eng mar hau eng eng esp mar eng mar amh
MAX (Furina) mar arq eng eng mar mar mar ary mar mar hau kin

Table 13: Each cell shows a given test language and lang2vec (L2V) feature the closest source language used for
single source transfer in Table 3 and Table 12. We further show the closest languages according to cell-state vectors
obtained from a multilingual MT system (kNN) (Malaviya et al., 2017), see §3.2 for details. MIN and MAX show
the source language for which best transfer and worst transfer performance is achieved.

Pair Sentence Pair

esp-182 “Un hombre está saltando a una pared baja.”
“Un hombre está saltando a un muro bajo.”

translated “A man is jumping into a low wall.”
“A man is jumping into a low wall”

Table 14: An example from Spanish training dataset
with its English translation, the label is 0.80.

C Translation quality.

We reviewed some machine-translated examples
and noticed that subtle differences in the original
language can be lost during translation. As shown
in Table 14, the two translated sentences, apart
from punctuation, share no differences while the
label assigned is 0.8. This undoubtedly has the
potential to interfere with the model’s learning pro-
cess for the STR task.
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