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Abstract

This paper presents our approach for the
SemEval-2024 Task 10: Emotion Discovery
and Reasoning its Flip in Conversations. For
the Emotion Recognition in Conversations
(ERC) task, we utilize a masked-memory net-
work along with speaker participation. We
propose a transformer-based speaker-centric
model for the Emotion Flip Reasoning (EFR)
task. We also introduce Probable Trigger Zone,
a region of the conversation that is more likely
to contain the utterances causing the emotion
to flip. For sub-task 3, the proposed approach
achieves a 5.9 (F1 score) improvement over the
task baseline. The ablation study results high-
light the significance of various design choices
in the proposed method.

1 Introduction

Conversations between participants carry infor-
mation that evokes emotions. Emotions include
personality, character, temper, and inspiration as
the primary psychological parameters that drive
them (P S and G S, 2017). Analyzing emotions
through language helps uncover the interpersonal
sentiments in a conversation at a finer level. This
can help build better affective generative models
(Goswamy et al., 2020), like chatbots that under-
stand emotion and respond according to a person’s
behaviors and personality (Kumar et al., 2021;
Colombo et al., 2019).

The SemEval-2024 Task 10 (Kumar et al., 2024)
aims at Emotion Recognition (ERC), sub-task 1,
and Emotion Flip Reasoning (EFR), sub-tasks 2
and 3, in conversations for two languages, namely
English and Hindi-English Code-Mixed. ERC
refers to identifying the emotion of different ut-
terances. EFR is about identifying those utterances
in the dialogue that caused the emotion of a speaker
to change.

* Equal Contributions

We build upon the models presented in Kumar
et al. (2021) for ERC and EFR. A speaker’s per-
sonality is likely to influence the emotions devel-
oped in other participants (Hazarika et al., 2018a).
This inspired us to include information regarding
speaker participation to improve the analysis of the
emotion of an utterance in conversations. Addi-
tionally, for Emotion Flip Reasoning, we propose
the Probable Trigger Zone (PTZ), a region of the
conversation more likely to consist of the utter-
ance that caused an emotional change in the target
participant. This helps us filter out significant non-
trigger utterances, reducing the skew in the data.
We utilize pre-trained models for computing text
embeddings to obtain better representations of ut-
terances.

In sub-task 1, we achieved a weighted F1 score
of 45 and 9th rank. For sub-tasks 2 and 3, we
secured 5th and 10th position with F1 scores of
56 and 60, respectively. The top scores for each
sub-task were 78, 79, and 79, respectively. For
sub-task 3, our model improves 5.9 F1 over the
baseline model presented in Kumar et al. (2021).
The proposed changes have assisted in improving
the performance of the system. A limitation of
our model is knowing speakers. It might not be
possible in all circumstances that this information
is available. Also, despite trying to reduce the
skew in the data, our model’s performance was
still impacted. Our models and code can be found
here.!

2 Related Work
2.1 ERC

The task of emotion prediction has been of active
interest in recent years (Witon et al., 2018; Ku-
mar et al., 2020; Keswani et al., 2020; Singh et al.,
2021b, 2023, 2021a), including the development of

1https://github.com/Exploration—Lab/
IITK-SemEval-2024-Task-10-Emotion-Flip
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models like ICON (Hazarika et al., 2018a), COG-
MEN (Joshi et al., 2022), Instruct-ERC (Lei et al.,
2023) and the models by Kumar et al. (2021). Also,
there has been active research in affective text gen-
eration (Goswamy et al., 2020). Several datasets
exist (Bedi et al., 2023; Poria et al., 2019; Busso
et al., 2008) that use one or more additional emo-
tions along with Ekman’s scheme (Ekman, 1992)
of emotion representation via six emotion classes,
namely, fear, anger, joy, sad, disgust, and surprise.

Hazarika et al. (2018a) and Li et al. (2020) high-
light the importance of inter and intra-speaker inter-
actions in a conversation. Li et al. (2020) achieves
this by using three separate transformer-encoder
blocks: (1) Conventional masking: masked multi-
head self-attention, (2) Intra-speaker masking: all
utterances from other speakers are masked, and (3)
Inter-speaker masking: all utterances from the cur-
rent speaker are masked. While this captures rela-
tionships, it does not capture the speaker’s personal-
ity or presence. Hazarika et al. (2018a) also consid-
ers speakers, but it was modeled on the IEMOCAP
dataset (Busso et al., 2008) that contains only two
participants.

Shapes of Emotion (Bansal et al., 2022), ICON
(Hazarika et al., 2018a) and its derived model
ERC_MMN (Kumar et al., 2021) proposed the con-
cept of speaker-level outputs, which means that
during conversational flow, there is a speaker-level
GRU to encode the currently spoken utterance.
They achieve this by storing vectors representing
each speaker and updating them using the speaker-
level GRUs’ hidden outputs, which are initialized
to O during the start of a dialogue.

COGMEN (Joshi et al., 2022) introduces the
concept of graphs to conversation flow for emotion
recognition. They represent a graph in which each
utterance is a node and is related to past or future
utterances of the same or different speaker within
a time window. CORECT (Nguyen et al., 2023)
leverages on COGMEN and introduces speaker
embeddings from MMGCN (Wei et al., 2019) to
encode each speaker in the conversation for graph-
based interaction and pairwise cross-modal feature
interaction.

2.2 EFR

Kumar et al. (2021) introduces the relatively new
Emotion-Flip Reasoning (EFR) task, which aims to
identify past utterances in a conversation that have
triggered one’s emotional state to flip at a certain
time. The task of Emotion-Cause Pair Extraction

(ECPE) (Xia and Ding, 2019) and Emotion Cause
Extraction (ECE) (Gui et al., 2016) are similar to
EFR, but they aim to extract the causes of emotions
from a given text instead of conversations. Kumar
et al. (2021) present a transformer-based model for
EFR and also measure the performance of baseline
models CMN (Hazarika et al., 2018b), ICON (Haz-
arika et al., 2018a), DGCN (Ghosal et al., 2019),
AGHMN (Jiao et al., 2019), and Pointer Network
(Vinyals et al., 2017).

2.3 Embeddings

The performance of models on tasks is influenced
by the quality of text representation it uses (Asu-
dani et al., 2023). Nayak and Joshi (2022) re-
lease HingBERT, a BERT model that has been
fine-tuned on Hindi-English Code-Mixed corpus.
Muennighoff et al. (2023) introduce the Massive
Text Embedding Benchmark (MTEB), which eval-
uates the performance of text embeddings through
different tasks across several datasets. One of the
top performers, the voyage-embeddings?, utilize
neural-net models to encode the text into text em-
beddings.

3 Task

SemEval-2024 Task 10: “Emotion Discovery and
its Reasoning it Flip in Conversations” (Kumar
et al., 2024), EDiReF, consisted of three sub-tasks:

1. ERC in Hindi-English Code-Mixed.
2. EFR in Hindi-English Code-Mixed.
3. EFR in English.

Emotion Recognition in Conversations (ERC) is
classifying the utterances in a dialogue into one of
the given emotion categories. An emotion flip is
said to have occurred when a speaker’s utterance
differs from his/her previous utterance’s emotion.
Emotion Flip Reasoning (EFR) refers to identifying
the utterances (triggers) that caused an emotional
flip. These utterances could have been spoken ei-
ther by the speaker himself or someone else. For
the task of ERC, given the utterances in the conver-
sation and corresponding speaker names, the emo-
tion label for each utterance has to be predicted.
For the task of EFR, the emotion labels of utter-
ances have also been provided, and the triggers for
a given emotion flip have to be predicted.

Zhttps://docs.voyageai . com/embeddings/
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Sub-task 1 2 3

Emotions 8 8 7
Episodes 343 452 833
Utterances 8506 11260 8747
Triggers - 6542 5575

Table 1: Statistics of the Training Dataset.

Sub-Tasks 1 and 2 tailor the Hindi-English Code-
Mixed dataset - MaSaC (Bedi et al., 2023). The
training dataset consists of utterances in Roman
script (e.g., “yah plastic ke stickers tumne kahan
se khariden?’). Sub-Task 3 uses the MELD-FR
dataset presented in Kumar et al. (2021) built upon
the MELD dataset (Poria et al., 2019). Table 1 high-
lights the overall statistics regarding the training
set for each sub-task. Figure 1a and Figure 1b show
the distribution of the triggers as a function of the
distance from the target utterance for the sub-task
2 and sub-task 3 training datasets, respectively.

4 System overview

Inspired by the use of memory networks by Haz-
arika et al. (2018a) and Kumar et al. (2021) for
emotion recognition, in 4.2 we present our model
for the task of ERC, sub-task 1. Inspired by a
transformer-based (Vaswani et al., 2017) approach
for emotion flip reasoning presented by Kumar et al.
(2021), in 4.3 we present our models for sub-tasks
2 and 3.

4.1 Utterance Embeddings

We utilize pre-trained models to compute repre-
sentations of the utterances in the conversation.
Sub-tasks 1 and 2 required the computation of ut-
terance embeddings for code-mixed Hindi-English
sentences. We utilized HingBERT to compute the
utterance embedding as an average of all the token
embeddings in an utterance. Sub-Task 3 consists
of utterances in English. We referred to the Mas-
sive Text Embedding Benchmark to determine an
efficient method to compute utterance embeddings.
We experimented with the embeddings presented
in Li and Li (2023) and voyage-embeddings, out
of which the latter performed better. Hence, we
used the voyage-lite-02-instruct model with
query_type as a document.

4.2 ERC

We take inspiration from the Masked Memory Net-
work architecture presented by Kumar et al. (2021)
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Figure 1: Distribution of the distance between the target
utterance and the causal utterance for emotion flip.

and speaker-specific GRUs proposed by Kumar
et al. (2021) and Hazarika et al. (2018a). We used
HingBERT to encode each utterance and then pass
them through a dialog-level GRU and a speaker-
level GRU. The vectors from the global-level GRUs
are passed through a memory network through mul-
tiple hops (a cycle of reading from memory and
writing back to memory is called a hop. The out-
put is taken from the final memory read operation.)
Then, attention is computed between the memory
and speaker-level outputs while masking future ut-
terances and concatenating with speaker-level out-
puts to compute conversation-level outputs. Finally,
the obtained features are passed through a trainable
linear layer for predicting emotion class. Figure 2
shows the model architecture.

Notations: u; denotes the embedded utterance
at time ¢ in a dialogue, while sgk) denotes
the k' speaker embedding for utterance u;.
attention(q, k,v) is the attention operator applied
on query g, key k and value v. r is the number of
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Figure 2: Masked Memory Network with Speaker-
Embeddings concatenated with utterance embed-
dings. Speaker-embeddings are one-hot vectors of 6-
dimensions which store 1 at the index of the top-6 speak-
ers, otherwise 0.

hops in the memory layer, inspired from Hazarika
et al. (2018a).

Dialogue-level GRU dG RU: This recurrent unit
gives a dialogue-level representation of the u; and
gives output as do;.

doy = dGRU (u; @ skt)

Global-level GRU gGRU: This recurrent unit
gives a global-level representation of the utterances
U1 till time step ¢, as o(q.y).

or = gGRU (do; @ so4—1)

Attention Module: Attention is computed between
doy as query and value and o(1;_1) as keys to ob-
tain attention-based context for speaker-level GRU
layer.

attention(doy, 0(1:4—1), doy)

Speaker-level GRU sGRU': This gives a speaker-
level recurrent unit that takes inputs attention and
speaker hidden state s(*) (taken from a dictionary
of size k) and gives outputs so;. The hidden output

replaces the dictionary entry for s(*). At the start of
a dialogue, the dictionary is empty, and the default
hidden state for a new speaker is a zero vector.

so; = sGRU (attention(doy, 0(1:4—1), doy) +doy)

Masked-Memory Attention: A memory vector,
which represents the previous dialogues and ut-
terances, is obtained by passing o(1.;) through a
memory GRU (mGRU). This then goes through
masked attention with the so; while masking fu-
ture utterances and a softmax activation « to give
attention weights to each utterance in o(1.;_1). This
is then used to update the memory vectors via the
mGRU and is concatenated with so; as an input
to cGRU.

temp = mGRU (0(1.1))
mem” = masked_attention(temp, so;)

temp = mGRU (mem"™ 1)

Conversation-level GRU ¢G RU: This layer rep-
resents the conversation flow of the dialogue and
takes inputs as the concatenation of so; and masked
attention output, to give conversation-level fea-
tures.

coy = cGRU (mem"” + soy)

Finally, the outputs of the cGRU are used to
compute the emotion class.

et = W.cop + b

4.3 EFR

4.3.1 Baseline

In Kumar et al. (2021), the authors propose a
transformer-based model for the task of EFR,
whose architecture is as follows. Utterance embed-
dings for each utterance are computed using BERT
(Devlin et al., 2019). The utterance embeddings of
a conversation are passed through a transformer to
compute a contextualized utterance embedding for
each utterance. The emotion classes for each utter-
ance are encoded as a one-hot vector and passed
through a GRU to compute the emotion-history
vector. For each utterance, its contextualized em-
bedding, the contextualized embedding of the tar-
get utterance, and the emotion-history vector are
passed through a linear layer to make a prediction.
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4.3.2 Speaker-Aware Embeddings

As highlighted by Li et al. (2020) and Hazarika
et al. (2018a), speaker interaction also drives the
emotion of an utterance. Unlike their approach for
modeling intra and inter-speaker interaction, we
believe that the participation of certain speakers
in the conversation drives the flip in the emotion
of an utterance. Providing information regarding
the speaker will help the model learn the nature
of the specific speakers. To incorporate this, we
utilize that the speakers in the test and the train set
overlap.

An aspect of the conversation that has not been
captured by the baseline model regarding the speak-
ers of an utterance. In the baseline model, each
utterance is treated as an independent text, and its
embedding has been computed. This has failed
to incorporate the information regarding who the
speaker of a given utterance was. To incorporate
this aspect, we concatenate the utterance embed-
dings with a one-hot vector denoting the speaker
to create speaker-aware embeddings. This equips
the model with the ability to capture the behavioral
trends of specific speakers.

4.3.3 Probable Trigger Zone (PTZ)

We propose a hypothesis regarding the possible lo-
cation of triggers. We divide the conversation into
two parts. The first part consists of the utterances
before the target speaker’s previous utterance. The
second part consists of utterances from the target
speaker’s previous utterance to his target utterance.
We call the second part the Probable Trigger Zone
(PTZ).

We hypothesize that no triggers lie in the first
part of the conversation. Since the target speaker’s
emotion has flipped during the second part of the
conversation, it is more likely that the causes for
the emotion flip lie in the second part. Suppose the
trigger causing the target emotion had been in the
first part. In that case, it is more likely that it would
have already caused the emotion of the previous
utterance of the target speaker to flip. Then, the
same emotion would have been carried to the target
utterance, wrongly implying that no emotion flip
occurred at the target utterance. To incorporate
the hypothesis, we mask any predictions made by
the model outside the Probable Trigger Zone. In
section 5, we discuss how PTZ helps to reduce
skew in the dataset.

For example, consider the conversation in Figure
3. Here, the target speaker is Ross with the target

Ross Paul Elizabeth

This is my
father, Paul
Stevens.

h Dad, this is
i| Ross Geller.

It-it's great
to meet
you Paul.

uy Neutral

notin PTZ

I usually prefer |:
Elizabeth's
boyfriends to :
address me as |}
Mr. Stevens.

- Joy-- U2

Of course, of
course, Mr.
Stevens.

U3 @---Neutral--

So Ross,
what's your
problem?

Emotion-flip Neutral@i4

target 7 l

Figure 3: Probable Trigger Zone.

U5 @
1r|gger0 ‘Anger-

e Surprise- U6
\4

utterance ug and his previous utterance u4. The
probable trigger zone consists of utterances from
u4 to ug. Due to the “surprise-causing” statement
us in PTZ, Ross’s emotion flips from Neutral to
Surprise. If this “surprise-causing” statement had
been present outside the PTZ, i.e., before the pre-
vious utterance w4, then the emotion of u4 would
likely have been Surprise.

4.3.4 Emotion-Aware Embeddings

Using an Emotion-GRU, the baseline model com-
putes an emotion-history vector from the emotion
labels. It uses this emotion-history vector in the
final linear layer to predict the utterance label. A
possible shortcoming of the above is that the linear
layer has access only to the emotion history rather
than to the emotion labels of the individual utter-
ances. Also, the transformer layer cannot access
the emotion labels while computing the contextual-
ized utterance embeddings. Providing those to the
transformer will also allow the embeddings to be
emotion-aware. We concatenate our speaker-aware
utterance embeddings and one-hot emotion labels
to incorporate the above.

4.3.5 Model Functioning

Figure 4 presents the model architecture used for
the task of EFR. The target utterance is denoted by
the subscript 7. Each utterance u; of a dialogue d
is concatenated with its true emotion label e; and
one-hot speaker embedding s;. This is then passed
through the transformer to take into account the
context. The Emotion-GRU computes the emotion-
history vector. For each utterance, its and the target
utterance’s contextualized representation and the
emotion-history vector are passed through a linear
layer to make the prediction.
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Figure 4: Architecture of the model proposed for the
task of Emotion Flip Recognition.

S Experimental setup

5.1 Training Details

For sub-task 1, we chose a sequence length
seq_len of 15, i.e., we break a long conversation
into disjoint smaller conversations with utterances
less than equal to seq_len. For sub-tasks 2 and 3,
we use a window size w of 5. We consider only the
last w utterances in a conversation to predict the
trigger, i.e., Up—w+1, Un—w+2...Up—1, Uy,. Table
2 contains details of the hyperparameters we used
to train the models. To limit the size of the vector
denoting the speaker, keep retained information re-
garding the top k = 6 speakers. We chose the top
6 speakers since this covered nearly 80 — 85% of
utterances in the corpus. We used Adam optimizer
(Kingma and Ba, 2017) for all the sub-tasks, with a
weight decay of 1e-5. Training of models has been
done using Kaggle? P100 GPUs.

5.2 Effect of Hypothesis and Sequence Length

In Table 3 and Table 4, we highlight the impact
of the hypothesis and selection of sequence length
on the datasets. On reducing the window size w
to 5, a significant number of negative labels have
been eliminated, while there has not been much

Shttps://www.kaggle.com/

Sub-Task 1 2 3

Embedding Size 768 768 1024
Batch Size 64 2000 1000
Learning Rate le-04  5e-07 5e-07
Weights Inv Sqrt  Inv Inv
Epochs 100 1000 1000
Best Epoch 80 299 549
Training Time 10 hr 3 hr 3 hr

Table 2: Hyperparameters for each of the sub-tasks.
Weights refers to the weights in the cross entropy loss. Inv:
Inverse of the supports. Inv Sqrt: Inverse of the square root of
the supports.

Dataset 0 1 Ratio
Original 92233 6544 14.1
Setting 1 17539 6425 2.7

Setting 2 11535 5839 2.0

Table 3: Effect of PTZ on Dataset, Sub-Task 2.
Setting I and Setting 2 as defined in Section 5.2.

impact on the number of positive labels. Applying
the hypothesis has helped mitigate the skew in the
data, although there has been a slight impact on
the number of positive labels. Setting I refers to
considering only the utterances within the window
size w = b. Setting 2 refers to considering utter-
ances that are both within the window and in the
probable trigger zone.

Dataset 0 1 Ratio
Original 29416 5575 53
Setting 1 13483 5177 2.6
Setting 2 7834 4542 1.7

Table 4: Effect of PTZ on Dataset, Sub-Task 3.
Setting I and Setting 2 as defined in Section 5.2.

6 Results

For Sub-Task 1, the dataset consisted of a non-
uniform distribution of labels, with neutral be-
ing the most frequent. A model that predicts the
emotion category of each utterance to be neutral
achieves a weighted F1 of 24.36. We consider this
as a simple neutral baseline for sub-task 1. For Sub-
Task 2, we have kept the baseline as a rule-based
model that predicts the previous utterance to be a
trigger and the rest of all utterances non-triggers.
The data for the second sub-task is highly skewed
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as can be seen in Figure 1a. Due to this baseline
performs exceptionally well, as can be observed in
Table 5. For Sub-Task 3, we use ERCT¢ EFR-TX
from Kumar et al. (2021) as the baseline.

Sub-Task Model Metric Value
2 Rule-Based F1 79.15
3 ERC™™e EFR-TX  Fl 53.9

Table 5: Baselines for various Sub-Tasks.
Rule-Based: A rule-based model that predicts the previous
utterance as a trigger and the rest as non-triggers.

6.1 Model Performance

We have highlighted the performance of our models
on the test data in Table 6. For sub-task 2, we
get precision and recall scores of 0.73 and 0.83,
respectively. For sub-task 3, we get precision and
recall scores of 0.74 and 0.80, respectively.

6.2 Error Analysis

For sub-task 1 and sub-task 3, our model performed
better than the baselines, but not for sub-task 2. For
sub-task 1, the dataset consisted of a non-uniform
distribution of labels in the training dataset. Due to
this skew in the data, the model has shown different
performances for different labels. The predictions
for sub-task 1 have been highlighted in Figure 5.
For EFR, the usage of a window size w = 5 ut-
terances has helped to eliminate a large number of
non-triggers. Due to this, the model’s predictions
have many true negatives, as can be seen in Table 7
and Table 8. But despite this, there was still skew in
the data, which impacted the model’s performance
in predicting the minority class of triggers. The
data for sub-task 2 is highly skewed, as can be seen
in Figure 1a. We suspect this is why our model has
performed poorer than the baseline.

Figure 6 is an example of an erroneous emotion
labeling of the model on the test set of sub-task 1
(ERC). Here, the utterance marked in red has the
true label as ‘Fear,” but the model predicts ‘Neutral.’
This is due to the sharp change in conversation con-
text at us. Also, ‘hahhaha’ directly corresponds to
laughing, but in this case, the speaker at ug utters
‘hahhaha’ as he is worried that the inspector is look-
ing for ‘Sharman’. The speaker, Indravardhan, who
continuously interacted with the inspector, showed
neutral emotion. This led to storing vectors corre-
sponding to neutral for Indravardhan in the memory
network, leading to misclassification of emotion at

Sub-Task Metric Our Best Rank
1 Weighted F1  44.80 78 9
F1 56.35 79 5
3 F1 59.78 79 10

Table 6: Results on the Test Set.

23 12 15 22 1

400

£-67 13 37 6 8 7 2 2
300
e® 66 22 8 43 7 5 4 0
3
[
é f-74 11 11 4 10 4 8 0 200
8-39 16 4 5 2 14 0 2
5 - 100
a- 28 6 1 0 2 2 18 0
O- 6 2 5 0 0 2 1 1
' ' ' ' ' ' ' ' -0
Ne Jo An Sa Fe Co Su Di
Predicted Label
Figure 5: Confusion Matrix for Sub-Task 1.
Ue.

6.3 Ablation Study

The application of the hypothesis has assisted in
removing a few of the wrongly guessed triggers.
This has improved the model’s performance, as
seen in Table 9. We also experimented with another
approach of making predictions only inside the
PTZ instead of masking the outside labels. This
was done by training in the model and making
predictions only using the utterances within the
probable target zone. In this case, the model’s
performance was poorer. We suspect this is because
the context the model gets in the latter is more
restricted than in the first case. Due to this, the
model is not able to make predictions effectively.

7 Conclusion

In this paper, we discussed approaches to improve
the masked memory network architecture for emo-
tion recognition (ERC) and transformer-based ar-
chitecture for emotion flip reasoning (EFR) by in-
corporating speaker information into the embed-
dings and making better use of the emotion labels.
We also employed an approach of focusing the
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Predicted

0 1
06943 331
True 41 123 203

Table 7: Confusion Matrix Sub-Task 2.

Predicted

0o 1

06735 738

True | 356 813

Table 8: Confusion Matrix Sub-Task 3.

model’s prediction on more likely regions to iden-
tify triggers by defining the Probable Trigger Zone
in conversations. This, along with considering a
window of last-few utterances, assisted in reducing
the bias in the data.

Limitations: Our model assumes that the train-
ing and testing data consist of the same speak-
ers. While this would be true for many benchmark
datasets of emotion analysis in conversations, it
might not be true in all real-world circumstances.
Another limitation of the proposed approach is the
training time.

Future Work: In the future, we can include
speaker information across dialogues for ERC to
capture better speaker semantics by using learnable
embeddings for each speaker updated by the hid-
den outputs of the speaker-level GRU. However,
to apply the above, we need to know the number
of speakers in the datasets, training, and testing.
Additionally, the model becomes dependent on the
number of speakers.

A possible approach to help mitigate the assump-
tion of having common speakers and knowing the
number of speakers in the training and test time
could be exploring further modeling inter and intra-
speaker dependencies, as shown in Li et al. (2020)
and Hazarika et al. (2018a). They propose mod-
els that capture speaker relationships but are not
dependent on the number of speakers.

Mitigating the issues of skewed data can be fur-
ther explored to enhance the system’s performance.
Also, addressing other aspects of conversations,
such as whom the statement is being told to and
treating names of speakers in utterances differently
from simple pronouns, can be explored.

Inspector Indravadhan
how dare you
push me main
woh budiya per
jakar gira
oh my god is

she ok

Anger ...... Iul
are sawal U ®-Neutral L

poochh uthkar
mera sar kha

gayi woh ab woh
....... Anger-—@Us3 badhiya hai
hi aisi
h kaun hai 7 —
yah kaun hai U4 -Neutral

;""Surprise"' Us

hahhaha
uﬁ ....... Fear ........

Figure 6: Example of an erroneous emotion labeling
from the model. The true label is ‘Fear,” but the model
predicted ‘Neutral.’

Sub-Task Masks F1 Before F1 After Change
2 1 56.29 56.35 +0.06
3 78 58.68 59.78 +1.10

Table 9: Improvements by PTZ.

Masks: The number of trigger predictions made by the
model outside the Probable Trigger Zone, which had
been masked to 0.
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