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Abstract

We describe our systems for SemEval-2024
Task 1: Semantic Textual Relatedness. We
investigate the correlation between semantic
relatedness and semantic similarity. Specifi-
cally, we test two hypotheses: (1) similarity is
a special case of relatedness, and (2) semantic
relatedness is preserved under translation. We
experiment with a variety of approaches which
are based on explicit semantics, downstream
applications, contextual embeddings, large lan-
guage models (LLMs), as well as ensembles of
methods. We find empirical support for our the-
oretical insights. In addition, our best ensemble
system yields highly competitive results in a
number of diverse categories. Our code and
data are available on GitHub.

1 Introduction

In this paper, we describe our submission for
SemEval-2024 Task 1: Semantic Textual Relat-
edness (STR) (Ousidhoum et al., 2024b), which
is based on the SemRel2024 dataset (Ousidhoum
et al., 2024a). Each instance consists of a pair of
sentences in the same language, annotated with
a score that quantifies their semantic relatedness.
SemRel2024 was annotated by native speakers of
the dataset’s 14 languages, which span five lan-
guage families. An example English instance con-
sists of the sentence pair “the story is gripping
and interesting” and “it’s a brilliant, compelling,
and heartfelt story”, which is annotated with a
relatedness score of 0.64. We participated in all
three tracks (supervised, unsupervised, and cross-
lingual) on all 14 languages.

Semantic relatedness is distinct from semantic
similarity. Sentences that express opposite proposi-
tions, such as “it is raining” and “it is not raining”,
exhibit low similarity but high relatedness. The im-
pact of relations such as antonymy and meronymy
(Budanitsky and Hirst, 2001) make semantic sim-
ilarity a more specific task: similarity implies re-

latedness, but not vice versa. Nevertheless, many
traditional algorithms make no attempt to distin-
guish between the two tasks (Jurafsky and Martin,
2009). For example, the word overlap baseline in
this shared task could also be applied to measure
semantic similarity. The extent to which seman-
tic similarity and relatedness correlate in practice
remains an important open question.

In this paper, we test the hypothesis that similar-
ity is a special case of relatedness (Pedersen et al.,
2007) through implementing an array of methods
that are designed to measure similarity, and ap-
plying them to the task of measuring relatedness.
We experiment with several different approaches:
(1) methods that create and compare semantic rep-
resentations of each input sentence; (2) methods
that use the output of systems designed for other
semantic tasks, such as paraphrase identification
and entailment detection; (3) methods based on
prompting large language models using in-context
learning; and (4) methods that combine multiple
individual methods. We further posit that semantic
relatedness is preserved under translation. We in-
vestigate both hypotheses via supplementary exper-
iments on datasets from the Semantic Textual Sim-
ilarity (STS) task at SemEval 2017, as well as new
cross-lingual datasets that we construct ourselves
by translating parts of the SemRel2024 dataset.

Our experimental results provide support for our
theoretical insights. The experiments on the sup-
plementary datasets demonstrate a high correlation
between the STR and STS tasks. Out of 51 com-
peting teams, we rank among the top three entries
in 16 of the language/track settings. In particular,
our best-performing supervised ensemble system
achieves the highest score in the English Track
A among the teams that submitted a system de-
scription paper (Ousidhoum et al., 2024b). Taken
together, these results support the idea of using sim-
ilarity as a proxy for relatedness, as predicted by
our hypotheses.
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2 Methods

We investigate ten different methods, divided into
four types. Each method takes as input a pair of
sentences, and produces a scalar value, which, pos-
sibly after some normalization to place it within
the range specified for this shared task, is used as a
measure of STR. Thus, each individual method is
a complete, functional STR method; our principal
innovation is the ensembling of these methods into
a single STR system.

2.1 Explicit Semantic Methods

Concept overlap We hypothesize that the num-
ber of shared lexical concepts correlates with the
relatedness between two sentences. On the basis
of this hypothesis, we tag the words in each sen-
tence with WordNet senses (Miller, 1995) using
the offline AMuSE-WSD large model Docker im-
age (Orlando et al., 2021). Each such sense corre-
sponds to a unique lexical concept. The concept
overlap score is calculated by dividing the number
of shared concepts, with a WordNet synset path
similarity greater than 0.8, by the total number of
unique concepts in both sentences.

AMR similarity We approximate the relatedness
of two sentences by measuring the similarity of
their abstract meaning representations (AMRs).
The AMR of a sentence is a structured labeled
graph that represents its meaning (Banarescu et al.,
2013). After converting each input sentence into an
AMR using the SapienzaNLP API1, the similarity
between the two AMRs is computed as the Smatch
F1-score (Cai and Knight, 2013), a metric devised
explicitly for analyzing the overlap between graph-
based representations. This score is then used as a
measure of the relatedness of the sentences.

2.2 Extrinsic Methods

Paraphrase identification (PI) We reduce STR
to paraphrase identification, a binary classification
task to determine the approximate semantic align-
ment between two sentences (Bhagat and Hovy,
2013). By utilizing a dedicated PI model, we first
compute the probability that one sentence is a para-
phrase of the other. The intuition is that a higher
probability of a positive classification indicates
greater semantic relatedness. While paraphrasing
is, in theory, a symmetric relation on sentences, in
practice, the order in which sentences are provided

1nlp.uniroma1.it/spring/api/text-to-amr

to the model impacts its output. We compute the
paraphrase identification probability for both order-
ings of the two sentences, and use their average as
the score for STR.

Taking RoBERTa (Liu et al., 2019) as the back-
bone, we fine-tune a paraphrase classifier on a com-
bined dataset, including six datasets: PIT (Xu et al.,
2015), QQP (Iyer et al., 2017), MRPC (Dolan and
Brockett, 2005), PAWS QQP (Zhang et al., 2019),
PAWS Wiki (Zhang et al., 2019), and PARADE
(He et al., 2020). We follow dataset splits and train-
ing configurations as established in prior research
(He et al., 2020; Peng et al., 2022).

Textual entailment Similar to PI, we use textual
entailment as an indicator of sentence relatedness.
In particular, we aim to reduce STR to recogniz-
ing textual entailment (RTE) or natural language
inference (NLI). Both tasks evaluate whether the
meaning of one sentence (the hypothesis) can be
inferred from another (the premise). RTE frames
this as a binary task and NLI expands it into ternary
classification with the addition of a neutral label
(Dagan and Glickman, 2004). Recognizing that
entailment in either direction signifies potential re-
latedness, we use an off-the-shelf RoBERTa NLI
classifier (Nie et al., 2020) to estimate the probabil-
ity of entailment in both directions. The final STR
score is the average of these two probabilities.

2.3 Distributional Methods

Embeddings In this method, we use an LLM to
produce dense semantic embeddings representing
the meaning of each input sentence. We then com-
pute the cosine similarity between their respective
embeddings, and use this as a measure of relat-
edness. This simple embedding-based approach
allows a language model to be used “as-is”, with
no need for additional fine-tuning.

We experiment with two variants based on BERT
(Embed-B) (Devlin et al., 2019) and RoBERTa
(Embed-R), respectively. For each sentence, hidden
states are obtained from the LLM, and an atten-
tion mask is applied to ensure the model focuses
on meaningful tokens and excludes the other spe-
cial ones such as the padding token. The resultant
hidden states are aggregated into a single vector
through average pooling.

2.4 Large Language Models

Prompting We utilize a few-shot prompting strat-
egy to estimate STR between sentence pairs. We
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use in-context learning (Brown et al., 2020), provid-
ing first a small set of examples from the training
data, consisting of two sentences and an STR value
(i.e., the correct output from the data). For each pair
of sentences, To facilitate few-shot prompting, we
sample example sentence pairs from the training
dataset and query ChatGPT through its API.2

Fusion This approach makes use of contextual-
ized embeddings from a variety of open-source
LLMs. For each sentence, we extract its sentence
embeddings from each LLM, and concatenate them.
The result is a “fusion” vector embedding of sen-
tences whose dimensionality is the sum of the di-
mensionality of the embeddings produced by each
LLM. We apply a trainable point-wise linear op-
eration with bias to the fusion embeddings. We
train this layer to minimize the distance between
the cosine similarity of the fusion embeddings of
each sentence pair in the training data and their
gold-standard STR scores. In other words, we train
this layer to produce the cosine similarity as the
STR scores given pairs of fusion embeddings.

We integrate embeddings derived from a range
of sentence transformer models (Reimers and
Gurevych, 2019). While several of them are multi-
lingual, our training process is exclusively focused
on the English dataset. It aims to minimize the
mean squared error (MSE) loss between the cosine
similarity of the fusion embeddings for sentence
pairs and their corresponding gold-standard STR
scores. We adopt early stopping to mitigate the risk
of overfitting.

Fine-tuning We add a linear regression head to
a pre-trained language model, and fine-tune it for
STR using the training data. The resulting regres-
sion model is therefore optimized for predicting the
relatedness score given a pair of sentences. This
provides another approach for leveraging the se-
mantic capabilities of modern language models.

We investigate three distinct regression models,
with one variant. Each regression model takes an
LLM as the backbone with a randomly initialized
regression head. We proceed to fine-tune the en-
tire model, both the backbone and the regression
head, The AdamW optimizer (Loshchilov and Hut-
ter, 2019) is configured with an initial learning
rate of 2e-5 and a batch size of 24. For the back-
bone, we experiment with T5 (FT-T5) (Raffel et al.,

2GPT-3.5-turbo-1106. Our experiments with LLaMA-2
(Touvron et al., 2023) were unsuccessful.

2020), GPT-2 (FT-GPT2) (Brown et al., 2020), and
RoBERTa (FT-R). The variant FT-MPNet uses MP-
Net (Song et al., 2020), aligning more with the
training process of SBERT. While most models are
trained to minimize the MSE loss, MPNet uniquely
targets minimizing the cosine similarity loss. This
positions the MPNet one as a form of continued
pre-training. We categorize this as a variant within
our fine-tuning method for better presentation.

2.5 Ensemble Modules
To combine the advantages of the methods above,
we assess two ensembling strategies: unsupervised
linear combination and supervised regression.

Linear combination Our first approach is to
compute the average of the STR scores produced
by the individual methods. We first normalize the
scores, based on the observation that some methods
tend to produce higher or lower scores (i.e., scores
with very different distributions). For instance, one
method might typically produce scores between
0.7 and 0.9, while another might tend to produce
scores in the range of 0.2 to 0.6. Our normalization
is intended to give each method a similar distribu-
tion, with the lowest scores being normalized to 0
and the highest scores being normalized to 1. Once
normalization is complete, for a given pair of sen-
tences, the final ensemble STR score is obtained by
computing the average score across all methods.

Our official submission for Track B is a linear en-
semble system Linear-2Ms applied to synthesize
the results of Embed-B and Embed-R. It operates
entirely unsupervised, meaning it does not require
exposure to any samples from the training set.

Regression One limitation of the linear combina-
tion is that it makes no distinction between meth-
ods; each method contributes equally to the aver-
age, regardless of how reliable it is in practice. Our
second method combines the scores from the indi-
vidual methods by treating each score as a feature
in a linear regressor. Once trained, the method is ap-
plied by first computing the outputs of each method
in the ensemble, and then applying the regression
model to obtain the final score.

Our official submission for non-English lan-
guages in Track C, as well as English in Track
A, is a regression ensemble system XGB-4Ms de-
signed to synthesize the outputs from fine-tuning
T5, GPT2, RoBERTa, and MPNet. At the heart
of this ensemble system, we deploy an XGBoost
regressor (Chen and Guestrin, 2016) as the central
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Method afr amh arb arq ary eng esp hau hin ind kin mar tel Avg.

Overlap 71.0 63.0 32.0 40.0 63.0 67.0 67.0 31.0 53.0 55.0 33.0 62.0 70.0 54.4
LaBSE-Cross 79.0 84.0 61.0 46.0 40.0 80.0 62.0 62.0 76.0 47.0 57.0 84.0 82.0 66.2
LaBSE-Sup - 85.0 - 60.0 77.0 83.0 70.0 69.0 - - 72.0 88.0 82.0 -
WordOvlap 73.2 64.3 31.4 40.2 57.7 73.9 63.5 38.7 57.1 53.2 31.5 68.9 64.3 55.2
EngWordOvlap 74.5 65.9 34.8 42.4 40.9 73.9 61.3 39.6 59.3 49.6 27.5 69.3 71.7 54.7
ConceptOvlap 69.7 60.4 42.6 38.2 40.7 68.8 61.1 34.9 59.0 38.5 30.7 64.7 70.3 52.3
AMR 70.1 62.7 30.7 35.9 33.7 71.4 60.6 36.0 59.5 45.7 33.2 67.8 66.4 51.8
PI 48.2 66.7 32.6 30.6 32.0 73.6 42.6 49.4 63.3 32.4 46.1 71.0 74.3 51.0
NLI 25.9 33.2 21.5 1.5 8.5 64.5 24.4 39.6 57.5 18.3 41.6 64.4 67.3 36.0
Embed-B 77.9 71.3 44.1 36.5 6.0 77.4 67.7 41.9 69.1 46.1 36.4 77.9 71.5 55.7
Embed-R 79.3 71.5 45.9 35.0 11.4 75.2 67.7 32.0 67.0 49.3 38.9 75.5 65.7 55.0
Prompt 80.4 78.2 64.0 40.2 38.1 82.0 62.2 57.6 80.3 47.1 53.0 85.5 82.9 65.5
Fusion 82.5 80.6 70.2 42.9 30.8 84.6 64.1 64.7 80.0 48.8 56.0 84.7 84.1 67.2
FT-T5 78.8 80.5 58.9 35.0 56.1 82.3 53.8 63.3 78.8 39.9 62.2 82.0 84.8 65.9
FT-GPT2 79.4 78.4 54.8 44.4 51.1 82.9 58.7 60.4 75.5 46.0 57.8 80.7 82.3 65.6
FT-R 81.1 80.8 65.7 43.2 54.4 83.6 55.8 67.7 82.3 39.4 64.1 86.6 84.1 68.4
FT-MPNet 81.7 80.3 67.9 44.7 25.3 84.9 64.0 61.4 80.2 52.2 53.5 84.7 82.4 66.4
Linear-2Ms 78.9 72.3 46.7 36.8 8.1 77.5 68.0 38.0 69.1 48.4 37.8 78.0 69.3 56.1
XGB-3Ms 80.6 81.5 67.3 45.1 60.4 84.6 57.0 67.4 82.2 45.6 63.7 85.5 85.2 69.7
XGB-4Ms 81.8 82.1 70.2 47.0 48.0 85.6 60.4 67.4 82.8 49.4 62.1 86.5 86.1 70.0
Target-XGB - 85.4 - 57.5 80.6 85.6 70.5 73.5 - - 77.4 89.0 85.7 -

Table 1: The results on the test sets of SemRel2024 in terms of the Spearman correlation (%).

model, tasked with integrating the results of the
four individual systems as input features to predict
the STR score. The XGBoost regressor is config-
ured with a squared error regression objective and
tailored configurations to optimize performance: a
column sample by tree of 0.1, a learning rate of
0.1, a maximum depth of 8, an alpha value of 0.1,
and 128 estimators. Training will stop if there is no
improvement during validation for 32 consecutive
rounds. This set of hyper-parameters is optimized
on the English development set and remains con-
stant throughout experiments.

Our official submission for non-English lan-
guages in Track A is Target-XGB, a tailored vari-
ant of the XGB-4Ms system, which is specifically
engineered to navigate the linguistic distribution
shifts inherent across languages. Underpinning this
approach is the assumption that STR between sen-
tence pairs remains consistent across languages. To
this end, we fine-tune each individual system and
the XGB regressor on English translations within
the target language. Recognizing the potential in-
troduction of noise from imperfect machine trans-
lation systems, we implement a data augmentation
technique. To be specific, we merge the English
training and development sets with the translated
training set of the target language. The translated
development set of the target language is kept as it
is out of the training. By that, we intend to treat the
English dataset as a stabilizing anchor, mitigating
translation noise and ensuring that our system still

remains sensitive to the target language.

3 Semantic Textual Relatedness

Our principal evaluation is on Tracks A, B, and C of
the shared task datasets. The evaluation results are
reported in Table 1, excluding Punjabi (pan), where
most results are negative without any observable
pattern. Our results may differ from those submit-
ted due to adjustments in methods. We report the
Spearman correlation (%) between the prediction
and the golden STR scores.

We employ several baseline methods. Overlap,
LaBSE-Cross and LaBSE-Sup are the official base-
lines reported by Ousidhoum et al. (2024a); the
key distinction between the last two lies in whether
the backbone LaBSE (Feng et al., 2022) is fine-
tuned or not. WordOvlap is our re-implementation
of Overlap; EngWordOvlap is its variant which re-
quires translating sentences into English first. Most
of our systems are English-specific; we translate
sentences in other languages into English via the
Google Translate API.

Explicit methods ConceptOvlap performs com-
parably to WordOvlap, indicating a similar level of
efficacy in capturing semantic relatedness. How-
ever, AMR lags behind, suggesting that representing
sentences as semantic graphs may introduce infor-
mation that does not contribute to determining se-
mantic relatedness, or that the quality of the AMR
representations is insufficient.
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Extrinsic methods Reducing the STR task to ei-
ther PI or NLI yields markedly distinct outcomes.
While PI approaches the performance level of the
WordOvlap baseline, NLI generally underperforms.
This discrepancy may be attributed to the inherent
unidirectional nature of entailment. Our implemen-
tation takes the average of two entailment proba-
bilities, and thus imposes strict constraints on the
relatedness of sentences.

Distributional methods We can see that both
Embed-B and Embed-R secures commendable re-
sults, matching the overall performance of the
WordOvlap baseline. The observed superiority of
BERT over RoBERTa could stem from differences
in their score distributions. The predictions of
Embed-R tend to be more clustered (e.g., rang-
ing from 0.84 to 0.99 on eng). We found that
simply rounding its results to two decimal places
could reduce its performance from 75.2 to 72.4 on
eng. In contrast, the predicted score distribution of
Embed-B is relatively more dispersed.

LLM methods Prompt is competitive with
LaBSE-Cross, but well below other LLM methods,
such as Fusion and FT. This shows that, despite
its strong performance on many other tasks, Chat-
GPT’s STR capabilities are still limited. Further-
more, training on the provided dataset is observed
to be pivotal in enhancing performance. Overall,
our findings underline that there remains consider-
able scope for exploring and enhancing the appli-
cation of LLMs in this field.

Ensemble modules Target-XGB obtains the best
results across most languages. It surpasses
LaBSE-Sup and consistently exceeds XGB-4Ms
across all evaluated languages by a significant mar-
gin. These results show the importance of addi-
tional fine-tuning using the translations of the target
language. Furthermore, incorporating the English
dataset alongside the translated dataset proves to
be advantageous. Notably, our ensemble systems,
using either linear or regression modules, demon-
strate superior performance over the individual sys-
tems they comprise, supporting the efficacy of our
proposed ensemble approach.

4 Cross-Lingual Textual Relatedness

In this section, we discuss our experiments on new
cross-lingual datasets which we created from the
shared task data. The purpose of these experiments
is to test our hypothesis that semantic relatedness is

Method eng esp* eng-esp eng-esp*

WordOvlap 62.7 57.8 33.1 62.5
ConceptOvlap 63.4 62.1 51.5 64.1
AMR 66.1 61.4 - 64.2
PI 71.6 40.3 - 71.5
NLI 62.0 38.2 - 61.6
Embed-B 72.4 71.0 - 70.9
Embed-R 72.1 72.0 - 67.0
Prompt 79.0 67.5 77.1 78.7
Fusion 82.5 68.2 80.4 81.7
XGB-4Ms 85.6 68.4 - 84.9

Table 2: Results of primary methods evaluated using
Spearman correlation (%) in our cross-lingual setting.
Translating inputs into English is denoted by “*”.

preserved under translation. Our bilingual dataset
contains pairs of sentences from English and Span-
ish, respectively. The Spanish sentences are ob-
tained by alternately translating one of the two
English sentences from each instance of the Sem-
Rel2024 development set. The task is to determine
the cross-lingual STR score, which is assumed to
be the same as that for the original monolingual
English sentence pair.

Table 2 shows the experimental results on our
cross-lingual STR dataset. The eng-esp column
shows the results of those methods that can be di-
rectly applied to languages other than English. The
eng-esp* column shows the results of a larger sub-
set of methods obtained after translating the Span-
ish sentence in each instance back into English. For
reference, we also include the results on the offi-
cial English (eng) and Spanish (esp*) development
sets, of which the latter is translated into English.

The WordOvlap baseline performs poorly when
applied to the eng-esp dataset because ortho-
graphic forms rarely match across languages even
if they have the same meaning. In contrast,
ConceptOvlap performs much better, as it is en-
tirely multi-lingual and independent of orthography
and script. However, both methods obtain simi-
lar results on eng-esp*, where the Spanish text is
translated into English. Our AMR, NLI, and XGB-4Ms
systems cannot be applied to cross-lingual pairs,
but when Spanish is translated into English, their
performance on eng-esp* is comparable to what
is observed on the English test set.

The most interesting findings emerge from the
results of Prompt and Fusion. Both are applicable
directly to cross-lingual data, without translating
the Spanish sentences into English. Surprisingly,
for both methods, we observe only small differ-
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Method eng-eng eng-esp eng-esp*

ECNU 85.2 81.3 -
WordOvlap 72.8 13.5 64.4
ConceptOvlap 74.8 50.3 69.0
AMR 71.5 - 59.2
PI 76.9 - 72.2
NLI 68.4 - 69.7
Embed-B 73.5 - 63.4
Embed-R 71.5 - 59.2
Prompt 89.2 87.9 88.4
Fusion 90.3 84.4 87.8
XGB-4Ms 91.0 - 87.6

Table 3: Evaluation results of our primary methods
using Spearman correlation (%) for the STS task. Trans-
lating inputs into English is denoted by “*”. ECNU (Tian
et al., 2017) ranked first in the SemEval 2017 Task 1.

ences between the relatively high numbers in the
three columns. This finding supports our hypoth-
esis that translation does not affect the degree of
relatedness between a pair of sentences.

5 Semantic Textual Similarity

Another hypothesis that we investigate is that sim-
ilarity is a special case of relatedness. Therefore,
we expect a strong correlation between the two
concepts: sentences that are highly similar should
also be considered highly related. In this section,
we test this hypothesis by applying our methods to
STS datasets (i.e., track 5 and 4a) from SemEval
2017 Task 1 (Cer et al., 2017).

Since both STR and STS tasks output numeri-
cal scores on pairs of sentences, our methods can
be directly applied to STS without modification.
For supervised methods, we apply the models to
STS in the same way as to STR, without any ad-
ditional training or fine-tuning. This approach can
be viewed as transfer learning: models trained on
STR datasets are tested on the STS task. For cross-
lingual datasets, we again experiment with both
direct application to different languages (eng-esp)
and pre-translation into English (eng-esp*).

Table 3 shows the results of our STS experi-
ments. While these STS results are not directly
comparable to any STR results, we observe that
the best three methods are the same for both mono-
lingual and bilingual STS and STR. As shown in
Figure 1, the progressive improvement from left to
right across methods indicates a strong correlation
between STR and STS. Furthermore, the overall
alignment between the blue and green lines, as well
as between the red and yellow lines, support our
hypothesis that both STR and STS are preserved
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Figure 1: Summary of evaluation results for our primary
methods in both STR and STS, Methods are ordered by
their performance on STR eng-eng.

under translation.
A more detailed analysis of the individual meth-

ods reveals several additional insights. Among
the explicit methods, WordOvlap and AMR are both
outperformed by ConceptOvlap on STS, which
is likely due to their lack of robustness in cross-
lingual settings. Among the extrinsic methods, PI
works better than NLI, exhibiting remarkable sta-
bility across tasks, likely due to the training of our
PI model on diverse benchmark datasets, including
adversarial examples from PAWS QQP and PAWS
Wiki. Among the distributional methods, while
Embed-B consistently outperforms Embed-R, both
experience a decline in cross-lingual performance,
revealing sensitivity of sentence embeddings to
translation noise. Among LLMs-based methods,
Prompt excels on cross-lingual STS benchmarks,
possibly because of data leakage in training Chat-
GPT, as well as its multilingual design. Our en-
semble system XGB-4Ms generally delivers the best
results.

6 Conclusion

We have investigated a wide array of methods
on two of sentence-level semantic tasks in both
mono-lingual and cross-lingual settings. In the pro-
cess, we assembled a comprehensive benchmark
of datasets for future explorations in this domain.
The experiments furnish evidence for two hypothe-
ses: (1) semantic similarity is a special case of
semantic relatedness, and (2) both similarity and
relatedness are preserved under translation. In prac-
tical terms, the evaluation results indicate that en-
sembling LLMs with diverse architectural designs
yields the most robust and effective performance
across languages and tasks. Notably, our strongest
system is at the top of the ranked teams in English
Track A, the setting with the highest number of
participants.
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