?’ 'AIpom at SemEval-2024 Task 8: Detecting AI-produced Outputs in M4

Alexander Shirnin #, Nikita Andreev?
Vladislav Mikhailov*, Ekaterina Artemova®
4 HSE University, #CAIT and Applied Al Institute
*University of Oslo, ®Toloka Al

Correspondence: ashirnin@hse.ru

Abstract

This paper describes Alpom, a system de-
signed to detect a boundary between human-
written and machine-generated text (SemEval-
2024 Task 8, Subtask C: Human-Machine
Mixed Text Detection). We propose a two-
stage pipeline combining predictions from
an instruction-tuned decoder-only model and
encoder-only sequence taggers. Alpom is
ranked second on the leaderboard while achiev-
ing a Mean Absolute Error of 15.94. Ablation
studies confirm the benefits of pipelining en-
coder and decoder models, particularly in terms
of improved performance.

1 Introduction

SemEval-2024 Task 8 (Wang et al., 2024a) focuses
on multigenerator, multidomain, and multilingual
machine-generated text detection based on the M4
corpus (Wang et al., 2024b). The shared task of-
fers three subtasks, which correspond to standard
task formulations in the rapidly developing field
of artificial text detection (Jawahar et al., 2020;
Uchendu, 2023): (A) classifying if a given text in a
particular language is human-written or machine-
generated, (B) attributing the author of a given
text, and (C) detecting a boundary between human-
written and machine-generated text. Developing
generalizable solutions to these problems helps
mitigate the risks of misusing generative language
models (LMs) for malicious purposes (Weidinger
et al., 2022) and improve human performance in
identifying Al-produced content (Gehrmann et al.,
2019).

This paper proposes Alpom!, a novel method for
human-machine mixed text detection (Subtask C).
The boundary detection setup aligns with common
user scenarios for applying generative LMs in prac-
tice, e.g., text continuation, creative writing, and

' ATpom is named after a simian pokémon aipom, and
stands for detecting AI-produced outputs in M4.

story generation. The standard approach to this task
is training a linear classifier or a regression model
over encoder representations (Cutler et al., 2021;
Dugan et al., 2023). In contrast, Alpom leverages
a pipeline of decoder and encoder models to detect
machine-generated text, utilizing them sequentially.
Alpom takes second out of 33 participating teams
on the Subtask C leaderboard by achieving a Mean
Absolute Error (MAE) of 15.94 on the official eval-
uation set. After the official evaluation phase, we
develop a better-performing solution with an MAE
score of 15.21.

Our ablation studies confirm that using decoder
or encoder models individually leads to lower per-
formance. Thus, employing the pipeline of decoder
and encoder models proves to be an effective solu-
tion. Additionally, these studies highlight domain
shift issues, as there is a significant score disparity
between the development and official evaluation
sets. Future efforts should focus on enhancing the
Alpom robustness with respect to the text domain
and text generator. The codebase and models are
publicly released?.

2 Background

The M4 corpus consists of human-written and
machine-generated texts in six languages (English,
Chinese, Russian, Urdu, Indonesian, and Arabic)
across various domains, ranging from Wikipedia
to academic peer reviews. The generative LMs
include the OpenAl models (ChatGPT and text-
davinci-003), LLaMA-1 (Touvron et al., 2023),
FLAN-TS (Chung et al., 2022), Cohere, Dolly—v23,
and BLOOMZ (Muennighoff et al., 2022). The
organizers provide 3649, 505, and 11123 dataset
instances in Subtask C training, development, and
official evaluation sets, respectively.

Zgithub.com/25icecreamflavors/AIpom
*hf.co/databricks/dolly-v2-12b
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Task Formulation Human-machine mixed text
detection requires predicting the index correspond-
ing to the first machine-generated word, as shown
below:

e text: “2We have added a 2+ page
@discussion on the experimental results, high-
lighting the superiority of the ARC-based
models and their impact on the field of deep
learning.”

e label: 6

Performance Metric MAE measures the abso-
lute distance between the predicted word and the
word where the human-machine transition occurs.

3 Alpom

First, we overview the Alpom pipeline. Next, we
detail the fine-tuning procedures for encoder and
decoder models.

Overview The Alpom pipeline (see Figure 1)
consists of multiple consecutive steps of fine-tuning
language models:

(a) The decoder is fine-tuned on the training set to
predict the change point from a human-written
text to a machine-generated text.

(b) The decoder makes predictions and outputs
the source texts with predicted change points.

(c) The first encoder model is fine-tuned on the
texts with predicted change points from step
(b).

(d) The second encoder model is fine-tuned on
the mixture of texts from the training set and
the texts with predicted change points from
step (b).

(e) Two encoders are used to predict the indices
of change points in test texts.

(f) The predicted change points from step (e) are
aggregated by averaging.

Decoder The decoder is fine-tuned as follows:
the input comprises the prompt and the training
text. We experimented with various prompts, in-
cluding instructing the model to output only the
human-written text, the text with an inserted sym-
bol representing the change point, and the machine-
generated text alone. Our preliminary experiments
suggest that instructing the decoder to output only
the machine-generated text yields better results.
Therefore, we use this option in subsequent experi-
ments. Table 1 describes the prompt, and Figure 2

As an output, write only the
machine-generated part of the provided
text. Output must start with “Answer:
”. Separate tokens by “ ”. If the whole
text is human-written, output “None”.
Here is the text: example[“text”]

Table 1: The prompt used for fine-tuning the decoder.

illustrates fine-tuning the decoder. The decoder is
used in the first step of the Alpom pipeline: we
utilize it to generate initial predictions, which are
then further processed by two encoders.

After receiving the predicted text from the de-
coder, we post-process the original training text and
insert a special token <BREAK> directly before the
first machine-generated word predicted by the de-
coder. This allows us to pass the prediction further
to the encoder.

Encoder The encoder is fine-tuned to label in-
put texts on a token-wise way. Each token in
the human-written segment is labeled with a zero,
while each machine-generated token is labeled with
one. In our final prediction, we determine the posi-
tion of the word in which the first “1” label appears,
indicating machine-generated text. See Figure 3
for illustration.

The Alpom pipeline involves fine-tuning two en-
coders. The first encoder is trained on a dataset con-
sisting of texts labeled by the decoder. In contrast,
the second encoder is fine-tuned using a dataset
that includes both the decoder’s predictions and the
original source texts from the training set. we re-
ceive the predicted change point from each encoder,
which we aggregate by averaging.

4 Experiments

Overview We design a series of experiments us-
ing two recent language models, a decoder Mistral-
7B-0penOrca4 (Jiang et al., 2023) and an encoder
DeBERTaV3-Large® (He et al., 2023), selected
based on their performance on standard NLP bench-
marks and computational requirements.

First, we establish a baseline for the decoder
model by zero-shot prompting and then compare it
to Low-Rank Adaptation (LoRA) tuning (Hu et al.,
2021), which yields significantly better results. Sec-
ond, we look into improving the performance of the

*he. co/Open-0rca/Mistral-7B-OpenOrca
>hf.co/microsoft/deberta-v3-large
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Figure 1: The Alpom pipeline involves fine-tuning decoder and encoder models to predict change points between
the human-written and machine-generated text. This process includes fine-tuning the decoder, predicting change
points, fine-tuning two encoders, and aggregating predicted change points. ¥ stands for fine-tuning a language
model, ® — predicting with the language model, & — for aggregating the predictions by averaging.
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Figure 2: We fine-tune the decoder to output only the
machine-written text.
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Figure 3: We fine-tune the encoder for token label-
ing. Human-written tokens are assigned zeros, while
machine-generated tokens are assigned ones.

encoder model. We experiment with hyperparam-
eter selection and feeding the encoder model with
texts labeled by the decoder model. The combina-
tion of the decoder and encoder model outperforms
each pipeline component individually.

We only use the development set to evaluate our
pipeline and choose our final submission based on
the MAE on the development set. In §5, we report
the ablation studies results on both development
and official test sets®.

Decoder fine-tuning and inference To fine-tune
the Mistral model, we employ LoRA layers tuning
with the SFTTrainer class from the transformers

8The shared task organizers have released the gold annota-
tion for the official test set.

library (Wolf et al., 2020). The model is fine-tuned
on to output machine-generated texts, that is the
loss functions are computed only on the model-
generated parts. We experimented with learning
rates in the range [1e-5, 5e-5] with an increment
of 1e-5, and warmup_ratio € {0.01,0.03,0.05}.
Based on the results observed on the develop-
ment set, we select a learning rate of 2e-5,
combined with a warmup_ratio=0.03 and the
CosineLRScheduler. For the Parameter-Efficient
Fine-Tuning (PEFT) configuration, we adhere to
the recommended parameters for Mistral: rank=32,
lora_alpha=64, and lora_dropout=0.05. The
batch size is set to 4 and the model is fine-tuned for
4 epochs.

We fine-tune the model to start its response with
the "Answer: " template. This helps improve
performance at the inference stage by providing
easier-to-clean-up predictions, ensuring they al-
ways start the same way. We use the vLLM frame-
work’ (Kwon et al., 2023) for text generation, with
default hyperparameters, the sampling temperature
of 1, and top_p of 1.

Data labeling with decoder To prepare the train-
ing set for the encoder, we split the training set
into two folds and perform LoRA tuning on two
Mistral models with the same hyperparameters on
each fold. Then, each fold is labeled using the de-
coder fine-tuned on the other fold. This helps us
track the decoder’s performance and reduce overfit-
ting. During testing, we fine-tune another Mistral
model on the entire training set and assess its per-

Tgithub.com/vllm-project/vllm
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Setup  Model Fine-tuning setup <BREAK> in the input Dev MAE  Test MAE
1. LoRA Mistral Training set 241 17.00
2. DeBERTa Pred. from Mistral v 1.74 17.15
3. DeBERTa Training set + pred. from Mistral v 1.74 15.21
4. Alpom 2.+3. v 1.68 15.94
Ablation experiments
5. zero-shot Mistral ~ Training set 56.51 80.81
6. DeBERTa Training set 2.15 19.97
7. DeBERTa Training set + pred. from Mistral 1.91 16.49

Table 2: MAE scores on the development and official test sets for different setups and ablation experiments. Setup
details include the model used, fine-tuning setup, and presence of <BREAK> in the input data at the inference stage.
The top table shows each language model’s performance in the Alpom pipeline. The bottom part shows ablation

experiments.

formance on the development set. It is worth noting
that we apply the post-processing step described in
§3, specifically in the ”"Decoder* paragraph, to the
predicted text before passing it to the encoder.

Encoder fine-tuning We build upon the baseline
code provided by the task organizers®, enhancing
it to effectively fine-tuning the DeBERTa model.
We explore a range of learning rates [1e-5, 5e-5]
with an increment of 1e-5 to identify the opti-
mal value for fine-tuning our model. Our final
fine-tuning strategy utilizes the Adam optimizer
(Kingma and Ba, 2015), with a learning rate of
3e-5 and the default CosineLRScheduler. To en-
sure consistency across all experiments, we use
a maximum sequence length of 1024 for text to-
kenization, maintain a constant batch size of 64,
and limit the maximum number of epochs to 6. To
reduce overfitting, we freeze a certain number of
bottom DeBERTa layers. Specifically, we experi-
ment with fine-tuning only the top N € {6, 12,18}
layers out of the total 24. Through experiments, we
determine that fine-tuning only the top 12 layers
produces the best results.

Hardware specification We run experiments on
a single GPU TESLA A100 80 GB. Model fine-
tuning is conducted using the transformers li-
brary. The fine-tuning for DeBERTa requires ap-
proximately 3.5 hours to complete, while the infer-
ence on the official test set runs within 15 minutes.
The LoRA tuning for Mistral lasts approximately
12 hours, with the inference on the official test set
taking a few hours. To speed up the prediction
phase, we employ the vLLM framework, designed
specifically for optimizing the inference. This im-
plementation significantly reduces inference time,

8github.com/mbzuai-nlp/SemEval2024-tasks

with the official test set predictions generated in
just 30 minutes.

5 Results

Table 2 provides a detailed comparison of the per-
formance metrics across different models and ex-
perimental setups. The key results are:

* Fine-tuning Mistral with LoRA tuning (setup
1) on the training set outperforms zero-shot
prompting (setup 5) by a wide margin.

* Fine-tuning DeBERTa using the Mistral pre-
dictions (setup 2) leads to higher results
than fine-tuning DeBERTa on the training set
(setup 6).

* Adding a <BREAK> token to the input at the
inference stage improves the performance of
the DeBERTa model (setup 3 vs. setup 7).

* Averaging predictions of two DeBERTa mod-
els (setup 4) leads to the best results on the
development set.

The overall best results on the official test set are
achieved with setup 3, where the DeBERTa model
is fine-tuned on a dataset consisting of both the
training set and predictions from the Mistral model,
and the <BREAK> token is added to the input at the
inference stage.’

Decoder vs. encoder Fine-tuned encoder models
exhibit inferior performance compared to LoRA-
tuned decoder. Specifically, the decoder struggles
to comprehend the task in a zero-shot setting, ev-
idenced by a high MAE of 80.81 on the official
test set. However, with LoRA tuning, the decoder
achieves a significantly lower MAE of 17.00, out-
performing the single encoder model’s MAE of

These results are achieved after the shared task submis-

sion deadline and hence not submitted for the official evalua-
tion stage.
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19.97. The encoder models are adaptable and inte-
grate diverse inputs, including prompts and predic-
tions from additional decoder models.

Benefits of pipelining We hypothesize that en-
coder models benefit from integrating inputs from
a decoder. Our pipeline yields the final MAE of
15.94 while fine-tuning only the single encoder
model results in a higher MAE score of 19.97.

Robustness While averaging predictions helps
improve the overall performance, we find that the
AlIPom’s robustness has room for improvement. In
particular, we observe the performance decrease
when comparing the results on the development and
official test sets. Setup 3, with an MAE of 1.74 on
the development set, performs better than an MAE
of 15.21 on the official test set. At the same time,
Setup 4 (our final submission) achieves a slightly
better development MAE but a worse MAE on the
official test set. Setup 3 involves finetuning on a
mixture of data, showing how using more data can
boost the performance and improve the robustness,
especially when the dataset is small. We leave
improving the out-of-domain robustness for future
work.

6 Conclusion

This paper presents the Alpom system submitted to
SemEval-2024 Task 8. Our solution achieves 2nd
place out of 33 participating teams in Subtask C.
We introduce a novel method that utilizes a pipeline
of decoder and encoder models. The advantage of
this approach is that the models are exposed to both
the original data and the predictions from previous
steps. We believe this approach holds significant
potential, as it allows for creating pipelines com-
prising various models, mimicking the transfer of
learned knowledge. We plan to further improve
our system by exploring different combinations
of models and longer pipelines. Additionally, we
aim to enhance the system’s robustness to handle
domain-shift scenarios.
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