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Abstract
Large Language Models (LLMs) have show-
cased impressive abilities in generating flu-
ent responses to diverse user queries. How-
ever, concerns regarding the potential misuse of
such texts in journalism, educational, and aca-
demic contexts have surfaced. SemEval 2024
introduces the task of Multigenerator, Multido-
main, and Multilingual Black-Box Machine-
Generated Text Detection, aiming to develop
automated systems for identifying machine-
generated text and detecting potential mis-
use. In this paper, we i) propose a RoBERTa-
BiLSTM based classifier designed to classify
text into two categories: AI-generated or hu-
man ii) conduct a comparative study of our
model with baseline approaches to evaluate its
effectiveness. This paper contributes to the ad-
vancement of automatic text detection systems
in addressing the challenges posed by machine-
generated text misuse. Our architecture ranked
46th on the official leaderboard with an accu-
racy of 80.83 among 125.

1 Introduction

The task of classifying text as either AI-generated
or human-generated holds significant importance
in the field of natural language processing (NLP). It
addresses the growing need to distinguish between
content created by artificial intelligence models and
that generated by human authors, a distinction cru-
cial for various applications such as content moder-
ation, misinformation detection, and safeguarding
against AI-generated malicious content. This task
is outlined in the task overview paper by (Wang
et al., 2024), emphasizing its relevance and scope
in the NLP community.

Our system employs a hybrid approach com-
bining deep learning techniques with feature en-
gineering to tackle the classification task effec-
tively. Specifically, we leverage a BiLSTM (Bidi-
rectional Long Short-Term Memory) (Schuster and

*Equal contribution.

Paliwal, 1997) neural network in conjunction with
RoBERTa (Liu et al., 2019), a pre-trained language
representation model, to capture both sequential
and contextual information from the input sen-
tences. This hybrid architecture enables our system
to effectively capture nuanced linguistic patterns
and semantic cues for accurate classification.

Participating in this task provided valuable in-
sights into the capabilities and limitations of our
system. Quantitatively, our system achieved com-
petitive results, ranking 46 relative to other teams
in terms of accuracy and F1 score. Qualitatively,
we observed that our system struggled with distin-
guishing between sentences generated by AI mod-
els trained on specific domains or datasets with
highly similar linguistic patterns.

We have released the code for our system on
GitHub1, facilitating transparency and reproducibil-
ity in our approach.

2 Related Works

In the field of detecting machine-generated text,
numerous methodologies and models have been ex-
amined. A distinguished methodology is the appli-
cation of the RoBERTa Classifier, which enhances
the RoBERTa language model through fine-tuning
for the specific purpose of identifying machine-
generated text. The proficiency of pre-trained clas-
sifiers like RoBERTa in this domain has been af-
firmed through various studies, including those
conducted by (Solaiman et al., 2019) and addi-
tional research by (Zellers et al., 2019; Ippolito
et al., 2019; Bakhtin et al., 2020; Jang et al., 2020;
Uchendu et al., 2021). Concurrently, the XLM-
R Classifier exploits the multilingual training of
the XLM-RoBERTa model to effectively recognize
machine-generated text in various languages, as
demonstrated by (Conneau et al., 2019).

1https://github.com/Mast-Kalandar/
SemEval2024-task8
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a)

Model/Source chatGPT cohere davinci dolly human
wikihow 3000 3000 3000 3000 15499
wikipedia 2995 2336 3000 2702 14497
reddit 3000 3000 3000 3000 15500
arxiv 3000 3000 2999 3000 15498
peerread 2344 2342 2344 2344 2357

b)

Model/Source bloomz human
wikihow 500 500
wikipedia 500 500
reddit 500 500
arxiv 500 500
peerread 500 500

Table 1: Table a) contains statistics about the train split. Table b) contains statistics about the validation split from
the M4 dataset

Alternatively, the exploration of logistic regres-
sion models that incorporate GLTR (Giant Lan-
guage model Test Room) features has been under-
taken. These models strive to discern subtleties
in text generation methodologies by analyzing to-
ken probabilities and distribution entropy, as in-
vestigated by (Gehrmann et al., 2019). Further-
more, detection efforts have utilized stylometric
and NELA (News Landscape) features, which ac-
count for a broad spectrum of linguistic and struc-
tural characteristics, including syntactic, stylistic,
affective, and moral dimensions, as reported by
(Li et al., 2014) and (Mitchell et al., 2023). Ad-
ditionally, proprietary frameworks like GPTZero,
devised by Princeton University, focus on indica-
tors such as perplexity and burstiness to analyze
texts for machine-generated content identification.
Although the specific technical details are sparingly
disclosed, the reported effectiveness of GPTZero
in identifying outputs from various AI language
models highlights its significance in the ongoing
development of machine-generated text detection
strategies (Ouyang et al., 2022; Brown et al., 2020;
Radford et al., 2019; Touvron et al., 2023).

3 Background

3.1 Dataset

For the machine-generated text, the researchers
used various multilingual language models
like ChatGPT(OpenAI, 2024), textdavinci-
003(OpenAI, 2022), LLaMa(Touvron et al., 2023),
FlanT5(Chung et al., 2022), Cohere(Cohere,
2024), Dolly-v2(databricks, 2022), and
BLOOMz(Muennighoff et al., 2023). These

models were given different tasks like writing
Wikipedia articles, summarizing abstracts from
arXiv, providing peer reviews, answering questions
from Reddit and Baike/Web QA, and creating
news briefs. As evident from Table 1, the
training set lacks any sentences generated by
the Bloomz model, which stands as the sole
model represented in the validation set. This
deliberate choice ensures a robust assessment of
our model’s generalization capabilities across
all machine-generated outputs, regardless of the
specific model generating them. By exposing our
model to diverse machine-generated sentences
during training, including those from unseen
models like Bloomz in the validation set, we aim
to evaluate its ability to effectively generalize to
novel inputs and make reliable predictions across
the spectrum of machine-generated text.

3.2 Task

We focused on Subtask-A of the SemEval Task 8
which involves developing a classifier to differen-
tiate between monolingual sentences generated by
artificial intelligence (AI) systems and those gener-
ated by humans. This classification task is essential
for distinguishing the origin of text and understand-
ing whether it was produced by AI models or by
human authors.

3.2.1 Objective

The primary objective is to build a robust classi-
fier capable of accurately distinguishing between
AI-generated and human-generated sentences. The
classifier should generalize well across various AI
models and domains, ensuring consistent perfor-
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Model Accuracy F1 Precision Recall Params*
Full RoBERTa fine tune 80.68 80.54 81.55 80.68 124M
LoRA with RoBERTa (Freezed) 81.59 81.06 85.64 81.59 0.7M
LoRA with LongFormer 75.34 75.14 76.16 75.34 6M
BiLSTM with RoBERTa (Un-Freezed) 70.77 61.15 91.19 46.00 18M
GRU with RoBERTa (Freezed) 74.65 80.54 81.55 80.68 3M
BiLSTM with RoBERTa (Freezed) 82.52 82.14 83.96 80.40 4M

Table 2: The performance of the models tried on the dev set of the dataset.
*The params only accounts for trainable unfreezed parameters.

mance regardless of the specific model or domain
from which the text originates.

The goal was to design a model that not only per-
forms this task with high accuracy but also adapts
to various AI models and domains. It’s crucial for
the classifier to accurately identify the origin of
sentences, regardless of the technology used to gen-
erate them or their subject matter, ensuring broad
applicability and effectiveness

4 System Overview

Based on our observation (See 7), we discovered
that language modeling task encodes the various
features required for detection of AI written text.
So we used pretrained RoBERTa in most of our ar-
chitectures so exploit this power of language mod-
els.

4.1 Full RoBERTa Finetune

The Full RoBERTa(Liu et al., 2019) Finetune
model, chosen as our baseline, boasted an extensive
architecture and possessed the highest parameter
count among the models under evaluation. Serving
as a comprehensive starting point, this model al-
lowed us to assess the effectiveness of subsequent
enhancements in comparison.

4.2 LoRA with RoBERTa (Frozen)

Incorporating Low Rank Adapters (Hu et al., 2021),
we applied fine-tuning techniques to the RoBERTa
model while strategically freezing all layers. This
approach enabled us to adapt the model to our spe-
cific task domain, leveraging pre-trained represen-
tations effectively.

4.3 LoRA with LongFormer

The limitation of RoBERTa’s context length (max
512 tokens) posed challenges for handling lengthy
sentences in our dataset. To address this, we in-
vestigated LongFormer (Beltagy et al., 2020), a

model designed to efficiently manage longer con-
texts. Despite employing LoRA for fine-tuning, the
model’s performance on the validation set fell short
of expectations, indicating potential difficulties in
generalization.

4.4 RoBERTa (2 Layers unfreezed) +
BiLSTM

Expanding upon RoBERTa’s capabilities, we in-
troduced a hybrid architecture by unfreezing two
layers and integrating a BiLSTM network (Schus-
ter and Paliwal, 1997). RoBERTa served as the
primary encoder for sentence representations, with
the subsequent BiLSTM layer trained to classify
based on the last hidden state.

4.5 RoBERTa (Frozen) + GRU
In our endeavor to augment RoBERTa’s capabili-
ties, we devised a hybrid architecture by integrating
a Gated Recurrent Unit (GRU) (Chung et al., 2014)
network with the frozen RoBERTa model. Within
this framework, RoBERTa served as the encoder
for generating sentence representations, while a
subsequent GRU layer was incorporated for sequen-
tial processing and classification tasks. This amal-
gamation aimed to leverage the strengths of both
RoBERTa’s contextual understanding and GRU’s
recurrent dynamics, contributing to enhanced per-
formance on our target task.

4.6 RoBERTa (Frozen) + BiLSTM
In our pursuit of enhancing RoBERTa’s capabili-
ties, we devised a hybrid architecture by coupling a
Bidirectional Long Short-Term Memory (BiLSTM)
network with the RoBERTa model (Liu et al., 2019).
In this setup, RoBERTa functioned as the encoder
for sentence representations, while a subsequent
BiLSTM layer was employed for classification, uti-
lizing the last hidden state for decision-making. For
a detailed visual representation of the model’s ar-
chitecture, please refer to the accompanying Figure
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Figure 1: Our proposed architecture of BiLSTM with freezed RoBERTa

1.

We explored various methodologies (refer to Ta-
ble 2 for detailed performance metrics) before se-
lecting the optimal approach as our final model.
Subsequently, we assessed the performance of the
chosen model, RoBERTA (Freezed) + BiLSTM, on
the test dataset.

5 Experiments

5.1 Preprocessing

All textual data underwent standard preprocess-
ing steps, including tokenization, lowercasing,
and punctuation marks. Additionally, specific
domain-related preprocessing, such as handling
special characters or domain-specific terms, was
performed as necessary.

5.2 Hyperparameter Tuning

Hyperparameters were tuned using a combination
of grid search and random search techniques. We
explored various hyperparameter combinations to
identify the optimal configuration for each model
variant.
The configuration for LSTM and GRU used
in Table 2 is hidden_size=256, layers=2,
dropout=0.2, with LoRA rank being 20 has been
found as the best configuration for the models. For
RoBERTa+LSTM model’s feedforward had a sin-
gle weight matrix of dimension 512*2.

6 Results

We tested our models on various models on the test
set. The results can be viewed in (Table: 3).
Ranking: Our BiLSTM+RoBERTa model
achieved a ranking of 46 out of 125 participants

in the competition, demonstrating its competitive
performance (as shown in Table 3). These
results highlight the effectiveness of various
models, including BiLSTM+RoBERTa and
GRU+RoBERTa, in addressing the task objectives.
We submitted BiLSTM+RoBERTa based on its
strong performance on the validation set. However,
after testing all models listed in Table 3, we found
that GRU+RoBERTa achieved a significantly better
result, with an accuracy increase of approximately
4%.

7 Conclusion

In conclusion, our BiLSTM+RoBERTa model ef-
fectively tackled the task, achieving competitive
results, thanks to its deep learning and pre-trained
language model. While a similar model with un-
frozen RoBERTa boasted higher precision, its com-
plexity came at the cost of increased parameters.

Impressively, our model ranked 46th out of 125
competition entries (Table 3), showcasing its po-
tential alongside approaches like GRU+RoBERTa.
Interestingly, post-competition analysis revealed
GRU+RoBERTa’s superior accuracy (by about 4%).
This highlights the value of exploring diverse archi-
tectures and hyperparameter tuning for peak per-
formance.

Moving forward, there are several avenues for
future work to explore. Firstly, further experimen-
tation with different model architectures, including
alternative combinations of encoders and classi-
fiers, could potentially yield improvements in per-
formance. Additionally, fine-tuning hyperparame-
ters and exploring advanced techniques for model
optimization may enhance the robustness and gen-
eralization capabilities of our system. Furthermore,
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Model Accuracy F1 Precision Recall Params*
Full RoBERTa fine tune+ 88.47 88.44 93.36 84.02 124M
LoRA with RoBERTa (Freezed) 80.91 80.18 83.88 80.14 0.7M
LoRA with LongFormer 63.39 57.51 72.45 61.67 6M
BiLSTM with RoBERTa (Un-Freezed) 80.80 80.19 83.08 80.12 18M
GRU with RoBERTa (Freezed) 84.71 84.33 86.53 84.13 3M
BiLSTM with RoBERTa (Freezed) 80.83 80.83 74.65 96.16 4M

Table 3: The performance of the models tried on the test set of the dataset.
* The params only accounts for trainable unfreezed parameters.
+ Baseline mentioned in task overview paper

incorporating additional contextual information or
domain-specific knowledge could potentially aug-
ment the model’s understanding and performance
on specific tasks. Overall, our findings contribute
to the ongoing research efforts in natural language
processing and provide valuable insights for future
developments in this domain.
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Appendix A

A. Setup
In this study, we implemented a methodology
aimed at distinguishing human-generated sentences
from machine-generated ones within a training
dataset. To achieve this, we initially segregated
the dataset into two distinct subsets: one contain-
ing human-generated sentences and the other com-
prising machine-generated ones. Subsequently, we
trained separate models utilizing these segregated
datasets. Specifically, we employed two distinct
models for this task : i) Bidirectional Long Short-
Term Memory (BiLSTM) model, ii) RoBERTa
model.

Following the training phase, we proceeded
to evaluate the performance of both models on
a validation dataset. During this evaluation, we
measured the loss incurred by each model when
tasked with discerning between human-generated
and machine-generated sentences. This evaluation
process was crucial for assessing the efficacy and
generalization capabilities of the trained models in
accurately distinguishing between the two types of
sentences.

B. Results
The results are in form of graphs in Figure 2

(a) Model Trained on :
Human Sentences, Losses
Computed on : Human Sen-
tences

(b) Model Trained on :
Human Sentences, Losses
Computed on : Machine
Sentences

(c) Model Trained on :
Machine Sentences, Losses
Computed on : Human Sen-
tences

(d) Model Trained on :
Machine Sentences, Losses
Computed on : Machine
Sentences

Figure 2: Overall Results on Models trained on Human
and Machine Generated Sentences and Losses Calcu-
lated on Human and Machine Generated Sentences

We noted a consistent pattern across both sets

of models – those trained on human-generated sen-
tences and those trained on machine-generated sen-
tences. Specifically, we observed that the losses
incurred by human-generated sentences on the vali-
dation set exhibited a wider distribution with higher
variance, while the losses associated with machine-
generated sentences displayed a narrower distribu-
tion with lesser variance.

This observation leads to a compelling inference
regarding the predictive nature of the model losses
for each type of data. The wider distribution and
higher variance in losses for human-generated sen-
tences suggest a greater level of unpredictability
associated with these sentences. In contrast, the
narrower distribution and lesser variance in losses
for machine-generated sentences indicate a higher
level of predictiveness in the model’s performance
on these sentences.

This finding sheds light on the inherent char-
acteristics of human-generated versus machine-
generated sentences, particularly regarding their
predictability when processed by the trained mod-
els. Such insights are crucial for understanding the
intricacies of model behavior and the challenges
posed by different types of data in natural language
processing tasks.
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