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Abstract

The advent of large language models (LLMs)
has revolutionized Natural Language Genera-
tion (NLG), offering unmatched text genera-
tion capabilities. However, this progress intro-
duces significant challenges, notably hallucina-
tions—semantically incorrect yet fluent outputs.
This phenomenon undermines content reliabil-
ity, as traditional detection systems focus more
on fluency than accuracy, posing a risk of mis-
information spread.

Our study addresses these issues by proposing
a unified strategy for detecting hallucinations
in neural model-generated text, focusing on the
SHROOM task in SemEval 2024. We employ
diverse methodologies to identify output diver-
gence from the source content. We utilized
Sentence Transformers to measure cosine sim-
ilarity between source-hypothesis and source-
target embeddings, experimented with omitting
source content in the cosine similarity com-
putations, and Leveragied LLMs’ In-Context
Learning with detailed task prompts as our
methodologies. The varying performance of
our different approaches across the subtasks un-
derscores the complexity of Natural Language
Understanding tasks, highlighting the impor-
tance of addressing the nuances of semantic
correctness in the era of advanced language
models.

1 Introduction

The SHROOM task (Mickus et al., 2024) aims to
address the challenge of detecting grammatically
sound outputs containing incorrect semantic infor-
mation in NLG systems. This task is crucial due
to the prevalent issue of neural models producing
fluent but inaccurate outputs, referred to as "hallu-
cinations" (Maynez et al., 2020). Given the criti-
cal importance of correctness in NLG applications,
SHROOM aims to foster interest in automating the
detection of these hallucinations. Participants were
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tasked with the binary identification of such hal-
lucinations across different NLG tasks, including
Definition Modeling (DM), Machine Translation
(MT), and Paraphrase Generation (PG).

Our system leveraged three distinct approaches
to tackle the SHROOM task: A baseline co-
sine similarity, MultiNLI classification (Williams
et al., 2018), and Large Language Models (LLMs),
specifically Mixtral-8x7B-Instruct (Jiang et al.,
2024). Each approach was tailored to identify hallu-
cinations in NLG outputs by comparing them with
the source input and detecting inconsistencies in
semantic information. Through various combina-
tions of these approaches, we aimed to accurately
identify grammatically sound but incorrect outputs
generated by neural models.

2 Background and Related Work

Previous research efforts have attempted to de-
tect and control (Filippova, 2020) hallucinations.
Dziri et al. (2022) worked on the origins of hallu-
cinations, concluding that > 60% of the standard
benchmarks consist hallucinated responses. Xiao
and Wang (2021) proposed a simple extension to
beam search to reduce hallucination. Obaid ul Is-
lam et al. (2023) proposed a natural language infer-
ence (NLI) based method to preprocess the training
data to reduce hallucinations.

The most similar to our work, Guerreiro
et al. (2023) studied hallucinations in Neural
Machine Translation. They analyzed multiple
methods to detect hallucinations and developed
DeHallucinator which overwrites the translation
detected as a hallucination with a better one.

3 Dataset

In this section, we provide a detailed overview of
the SHROOM dataset, highlighting its composition,
structure, and associated challenges.
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3.1 Composition

The SHROOM dataset consists of two main tracks:
model-aware and model-agnostic, encompassing
three subtasks: paraphrase generation, machine
translation, and definition modeling. The test
dataset comprises 3000 objects, with 1500 belong-
ing to each of the model-aware and model-agnostic
tracks. Additionally, the development data consists
of 500 objects for each track, while the trial data
comprises 80 objects. The unlabeled training data
comprises 5000 objects for both the model-aware
and model-agnostic tracks.

3.2 JSON Object Structure

Each dataset object contains the following compo-
nents:

Task Description: Indicates the subtask to which
the object belongs. Source (src): Input passed to
be processed by the NLP model. Target (tgt): In-
tended correct processed "gold" text. Hypothesis
(hyp): Actual output produced by the NLP model.
Reference (ref): Specifies whether the reference
includes the source, target, both, or neither. Labels:
Each object is labeled by five human annotators
as hallucination or not hallucination. Probability
of Hallucination (p(hallucination)): Represents the
probability of the hypothesis being a hallucination,
ranging from 0.0 to 1.0. This probability is deter-
mined based on the consensus of the annotators.
Label: Indicates the majority vote among the an-
notators, labeling the object as hallucination or not
hallucination.

3.3 Issues with the Dataset

Several challenges were encountered while work-
ing with the SHROOM dataset:

Unlabeled Training Data: The unlabeled na-
ture of the training data posed challenges, limiting
the applicability of certain approaches and requir-
ing alternative strategies for model training. For-
mat Discrepancy in Definition Modeling Task:
The test data for the definition modeling task de-
viated from the format of the development data,
missing the <define> tag and presenting the defi-
nition as a question at the end. This inconsistency
caused issues in several approaches and led to hal-
lucinations in the Large Language Model (LLM)
approach. Imbalance in Language Representa-
tion: The machine translation subtask lacked a
balanced representation of multiple languages, po-
tentially skewing the evaluation results and posing

challenges for system development.

4 System Overview

In this section, we provide an overview of the three
approaches employed in our system to address the
SHROOM task.

4.1 Baseline Approach - Cosine Similarity

Our baseline approach utilizes cosine similar-
ity to compare embeddings derived from source-
hypothesis and source-target pairs. We employ
Sentence Transformers (Reimers and Gurevych,
2019) to compute the cosine similarity, facilitating
the comparison between the generated hypothesis
and the target output. This approach serves as the
foundation upon which subsequent refinements are
built.

4.2 Approach 2 - MNLI Classification

In this approach, we leveraged the MultiNLI
(MNLI) dataset for classification and similarity
comparison between hypothesis and target outputs.
We utilized the bart-large-mnli model, which is
pre-trained on MNLI, to predict the entailment re-
lationship between the hypothesis and target, sub-
sequently examining similarity, and predict halluci-
nation.

4.3 Approach 3 - Large Language Models

Leveraging LLMs, we prompt-engineered instruc-
tions for each subtask, utilizing the In-Context
Learning power of these models, specifically
Mixtral-8x7B-Instruct model, to detect hallucina-
tions. We use the model for inference and exper-
iment with temperature adjustments to optimize
performance. This approach capitalizes on the con-
textual understanding and generative capabilities
of LLMs to accurately identify hallucinations in
NLG outputs.

5 Experimental Setup

In this section, we outline the experimental setup
used for evaluating our system’s performance on
the SHROOM task.

5.1 Data Splits

We utilized the provided development set exten-
sively for experimentation, as the training set was
unlabeled. This allowed us to iteratively refine our
approaches before selecting the final submissions
for the test set evaluation.
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Task Hypothesis Reference Source Target Model Labels Label P(H)

DM (linguistics)
The study of
the relation-
ships between
words and
their mean-
ings.

Target The <define>
metaontology
</define> de-
bate has now
migrated from
discussions of
composition.

The ontology
of ontology.

- H/N/N/N N 0.4

PG When did you
see him?

Either When did you
last see him?

When was the
last time you
saw him?

tuner007/
pega-
sus_paraphrase

N/N/N N 0.0

MT It uses a giant
rocket over
100 feet high
to launch a
satellite or
telescope into
space.

- Ngini ma-
makai roket
raksasa mal-
abihi 100
kaki tingginya
gasan maandak
satelit atawa
teleskop ka
luar angkasa.

It takes a giant
rocket over
a 100 feet
high to put
a satellite or
telescope in
space.

- N/N/N/H/N N 0.4

Table 1: Examples from the dataset. The dataset includes three subtasks: Definition Modeling (DM), Paraphrase
Generation (PG), and Machine Translation (MT). The dataset is labeled by crowdworkers as Hallucination (H) and
Not Hallucination (N). P(Hallucination) indicates the probability of the hallucination based on the labels.

5.2 Preprocessing and Model Selection

Minimal preprocessing was applied to the data. Fur-
thermore, we did not create separate distinctions
for the model-aware and model-agnostic subtasks.
Our decision was driven by the belief that a unified,
model-agnostic solution would be the most optimal
approach for addressing the task. For cosine simi-
larity, we employed Sentence Transformers. MNLI
classification utilized the Facebook bart-large-mnli
model. In the case of LLMs, we initially employed
Mixtral-8x7B-Instruct model and conducted an ad-
ditional run post-evaluation with some changes to
model settings like output token size and tempera-
ture, processing queries in batches.

5.3 Evaluation Measures

The evaluation measures used in the task primar-
ily revolved around accuracy percentages. We
assessed the accuracy of our models in correctly
identifying grammatically sound outputs contain-
ing incorrect or unsupported semantic information,
inconsistent with the source input. This metric
served as the primary indicator of our system’s
performance on the SHROOM task.

This Experimental Setup section provides essen-
tial details about our methodology and the specifics
of our experimental setup, enabling reproducibil-
ity and facilitating a clear understanding of our
system’s performance on the SHROOM task.

6 Results

In this section, we present the quantitative analy-
sis of our system’s performance on the SHROOM
task. We evaluated the performance of our system
approaches on the test data for each of the three sub-
tasks: Paraphrase Generation (PG), Machine Trans-
lation (MT), and Definition Modeling (DM). Our
system comprises three distinct approaches: co-
sine similarity, MNLI classification, and Large Lan-
guage Models (LLMs), specifically Mixtral. We
note that Mixtral is the only system submitted
to the task, and other results are post-evaluation
experiments.

6.1 Model-Agnostic Setting

Table 2 provides the accuracy of model-agnostic
setting. We observe that our cosine similarity ap-
proach achieved the highest accuracy, with 70.3%
overall accuracy. Specifically, it performed well in
PG (77.9%) and MT (75.8%) subtasks. However,
the Mixtral approach yielded lower accuracy at
50.5%, with varying performance across subtasks:
DM (48.4%), PG (50.1%), and MT (52.9%). After
changing the settings (temperature) the accuracy
improved to 60.2% (Mixtral*).

6.2 Model-Aware Setting

Table 3 provides the accuracy of model-aware set-
ting. In the model-aware setting, the MNLI classi-
fication approach achieved the highest accuracy at
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Cosine MNLI Mixtral Mixtral∗

Accuracy 62.1 65.13 49.8 56.1
DM 60.4 48.3 53.5
PG 57.6 48.2 56.1
MT 66.7 52.3 58.7

Table 2: Results on model-agnostic setting. We report
accuracy for all the instances and accuracy on each
subtask.

Cosine Mixtral Mixtral∗

Accuracy 70.3 50.5 60.2
DM 59.8 48.4 56.8
PG 77.9 50.1 61.9
MT 75.8 52.9 62.2

Table 3: Results on model-aware setting. We report
accuracy for all the instances and accuracy on each
subtask.

65.13%, followed by the cosine similarity approach
at 62.1%. The MNLI approach showed consis-
tent performance across subtasks, while the cosine
similarity approach performed particularly well in
MT (66.7%). The Mixtral approach had the low-
est accuracy at 49.8%, with varying performance
across subtasks: DM (53.5%), PG (56.1%), and
MT (58.7%). After changing the settings— (tem-
perature) the accuracy improved to 56.1% (Mix-
tral*).

7 Conclusion

In conclusion, our system for addressing the
SHROOM task employed three distinct approaches:
baseline cosine similarity, MNLI classification, and
Mixtral. Each approach was carefully designed to
tackle the challenge of identifying hallucinations
in natural language generation outputs.

Our experimental results demonstrated varying
degrees of success across the different subtasks.
While cosine similarity and MNLI classification
showed promising performance, leveraging LLMs
proved to be particularly effective in accurately
identifying hallucinations.

Looking forward, our system’s performance sug-
gests several avenues for future work. Firstly, fur-
ther exploration and refinement of each approach
tailored to the specific subtleties of each subtask
could potentially yield improved performance. Ad-
ditionally, investigating ensemble methods or hy-
brid approaches that combine the strengths of dif-
ferent techniques may enhance overall system ro-
bustness.

Despite the challenges encountered, our system’s
competitive performance in the SHROOM task
underscores the importance of automated, multi-
expert, mechanisms for detecting and mitigating
hallucinations in NLG systems. As the field contin-
ues to evolve, addressing these challenges will be
crucial for advancing the reliability and accuracy
of NLG applications.

In summary, our system represents a significant
step towards addressing the complexities of hal-
lucination detection in NLG outputs, and we are
optimistic about the potential for future advance-
ments in this area.
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