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Abstract

The advancement of large language models
(LLMs), their ability to produce eloquent and
fluent content, and their vast knowledge have
resulted in their usage in various tasks and ap-
plications. Despite generating fluent content,
this content can contain fabricated or false in-
formation. This problem is known as halluci-
nation and has reduced the confidence in the
output of LLMs. In this work, we have used
Natural Language Inference to train classifiers
for hallucination detection to tackle SemEval-
2024 Task 6-SHROOM (Mickus et al., 2024)
which is defined in three sub-tasks: Paraphrase
Generation, Machine Translation, and Defini-
tion Modeling. We have also conducted ex-
periments on LLMs to evaluate their ability to
detect hallucinated outputs. We have achieved
75.93% and 78.33% accuracy for the model-
aware and model-agnostic tracks, respectively.
The shared links of our models and the codes
are available on GitHub1.

1 Introduction

Large language models are compelling in content
generation. The ability of these models has led to
their widespread use in various applications. Some
of the use cases of these models are in sensitive
fields, such as consulting in medicine and law. The
eloquence of LLMs makes their content appear
very acceptable, and these models respond with
high confidence. An important shortcoming of
these models is hallucination. Hallucination is the
production of fabricated or false content (Gehman
et al., 2020; Weidinger et al., 2021). Hallucination
detection and mitigation are necessary to avoid the
dangers of spreading false and harmful informa-
tion. According to Zhang et al. (2023), halluci-
nations can be divided into input hallucinations,
context hallucinations, and factual hallucinations.

1https://github.com/z-rahimi-r/
HalluSafe-at-SemEval-Task-6-SHROOM

In input hallucination, the output content of the
model has data that contradicts the input content.
In context hallucination, the model’s output content
contradicts the content the model itself produced
earlier. In the last case, factual hallucination, the
output content of the model has information that
contradicts the existing world knowledge. In the
dataset provided for the Shroom task, each data
sample has a reference to be checked with. Given
that reference-based hallucination detection entails
identifying contradictions between model output
and the reference (either input or target), a natural
language inference (NLI) approach presents an in-
tuitive solution to detect such contradictions and
consequently identify instances of hallucination,
therefore we adopt an NLI approach as the founda-
tion of our methodology.

Through this task, we have gained knowledge
about hallucinations, their causes, and the various
approaches to deal with them. Language model
responses can be so fluent that it becomes diffi-
cult even for a human agent to detect hallucina-
tions. Therefore, it is essential to train these mod-
els to recognize the limits of their knowledge. If
they lack sufficient understanding of a subject, they
should search for reliable sources and inform the
human user if they are unsure of their answer. Our
team ranked 19th and 30th in the model-aware
and model-agnostic tracks, respectively, with a dif-
ference of 2.93% and 8.4% compared to the top-
ranked team. We found that the decision boundary
for detecting hallucinations can be very narrow in
some cases. While our system has shown relatively
good performance, there is still room for improve-
ment.

2 Background

As mentioned earlier, there are three types of hallu-
cinations. The types of hallucinations considered
in this task are “factual” and “input”. The “factual”
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type occurs in the definition modeling task, where
the definition of a word or phrase must be provided,
and the “input” type appears in the paraphrase gen-
eration and machine translation tasks. The halluci-
nation detection track has two sub-tracks: model-
aware and model-agnostic. In the model-aware sub-
track, the model that generated the data is specified,
and participants can use model parameters for diag-
nosis or analysis. However, our approach assumes
the models are black-box and can be used for situa-
tions where we do not have access to the internal
states and parameters of the model. It is important
to note that overgeneration is another issue in LLM
outputs. Samples with this issue should also be
labeled as One, indicating the presence of hallu-
cinations. Hallucination is not specific to LLMs,
and before the emergence of these models, it has
been investigated in NLP tasks such as summariza-
tion and machine translation (Azaria and Mitchell,
2023).

To deal with the hallucination problem in LLMs,
it is essential to find the causes of the problem
first. Two probable causes of hallucination, stated
in Azaria and Mitchell (2023), are the model focus-
ing on producing one token each time and random
sampling to increase diversity in text production.
Some believe overfitting to training data may lead
to hallucination (McKenna et al., 2023). In con-
trast to this point of view, in Yao et al. (2023), they
have shown that prompts consisting of only random
meaningless tokens can also elicit hallucinations in
LLMs. They believe that hallucinations are beyond
training data and consider them as adversarial fea-
tures. They have observed in their experiments that
a slight change in the original prompt can produce
a completely different claim by the LLM, which
indicates that LLMs are very non-robust. In Rawte
et al. (2023), they measure the relationship between
linguistic factors such as readability, formality, and
concreteness of prompts and hallucinations. Their
results show that more concrete and formal prompts
lead to fewer hallucinations, but no definite con-
clusion can be drawn regarding the effect of read-
ability on hallucinations. According to this article,
prompt engineering can be effective in reducing the
problem of hallucinations. Lengthy prompts can
hurt the understanding of the LLM. In some experi-
ments, it has been observed that the LLM performs
better when the critical information is placed at the
beginning or end of the prompt. The performance
quality decreases when the model needs to access
the middle parts of the prompt for information.

Hallucination can be mitigated in different stages
of an LLM’s life cycle. As we know, the life cycle
of an LLM consists of Pre-training, SFT (Super-
vised Fine-Tuning), RLHF (Reinforcement Learn-
ing with Human Feedback), and Inference (Zhang
et al., 2023). The datasets with which LLMs are
pre-trained are collected without human supervi-
sion. These data can include false or outdated in-
formation, which may cause hallucinations. The
training in the SFT phase should also consider the
knowledge of the model, and the model should not
be fine-tuned for an application that has not ac-
quired sufficient knowledge during the pre-training.
One way to reduce hallucinations in both the SFT
and RLHF phases is to teach the model to be hon-
est. The language model should be trained to avoid
commenting on a subject if it does not have enough
information (Zhang et al., 2023). The methods
investigated in this work are related to detecting
and mitigating hallucination in the inference phase.
The related previous works can be categorized as
white box, gray box, and black box depending on
the level of access to internal parameters of the
LLM. The methods that use the internal state of
the language model for diagnosis are white-box
approaches. Gray box approaches are methods that
access the output distribution of the model, such
as detecting hallucinations at the token level. Fi-
nally, Blackbox approaches only have access to the
textual output of the model.

2.1 White-Box Approaches

In Azaria and Mitchell (2023), the SAPLMA ap-
proach (Statement Accuracy Prediction, based on
Language Model Activations) has been introduced.
Their approach uses the internal state of the LLM to
measure the truthfulness of the statements. This ap-
plies to both the statements provided to the model
and the statements produced by the model itself.
They use a relatively shallow feedforward network
as a classifier, which measures the truthfulness
probability of a statement based on the values of
the hidden layer activators.

2.2 Gray-Box Approaches

These approaches use the uncertainty of models to
detect hallucinations. The idea of these approaches
is that when the model is sure of the correctness of
a sentence, the distribution probability of tokens of
the sequence is sharp. Still, in uncertain conditions,
this distribution will probably be flat. Kadavath
et al. (2022) suggests that a model’s confidence in
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answering a specific question correlates with the
certainty of its response. They propose repeatedly
sampling the answer at T = 1, yielding an answer
distribution characterized by low entropy when the
model is confident. Conversely, when the model
is uncertain, it tends to produce "hallucinated" re-
sponses, resulting in an answer distribution with
high entropy. Nevertheless, experimental results
indicate that utilizing entropy as a metric for de-
termining whether a model knows the answer to a
question is not consistently reliable, particularly as
models scale in size. Another work in this group
of methods is Yuan et al. (2021), in which a score
named BART-Score evaluates the text’s quality gen-
erated by the model from different aspects such
as informativeness, fluency, and factuality. Using
token-level probabilities, BART-Score calculates
the probability of an output sequence given a spe-
cific input sequence.

2.3 Black-Box Approaches
The methods presented in Martino et al. (2023) and
Manakul et al. (2023) are black box methods. In
Martino et al. (2023), where a large language model
is used for the” Review Response” task, the knowl-
edge injection method adds related information to
the prompt. The relevant knowledge is extracted
from a knowledge graph specific to that particular
business. It includes information such as addresses,
phone numbers, etc., which are naturally not avail-
able in the training data of an LLM. The target
hallucination in this task is factual. Fact-based ver-
ification methods require an external database, and
their inference is computationally expensive. The
introduced method in Manakul et al. (2023) uses no
external knowledge source. Their approach, self-
checkGPT, is based on the idea that if an LLM
knows a subject, sampled responses do not contra-
dict each other. The proposed approach has five
variants: BERTScore, question-answering, n-gram,
NLI, and LLM prompting. The best-performing
variant is LLM prompting, in which they ask an
LLM if a sentence is supported by a context or not.
This variant has a high computational cost. The
second best is the NLI variant, which uses natural
language inference to detect inconsistency between
sampled responses.

In Mündler et al. (2023), a prompting-based
framework is introduced to efficiently identify and
address instances of self-contradiction, meaning
context hallucinations. Their investigation delved
into open-domain text generation utilizing a dual-

LM setup: one LM for text generation and another
as an analyzer. For each sentence generated by the
initial LM, a corresponding sentence is produced
based on the associated context, and both are sub-
sequently subjected to analysis by the second LM.
In cases where the analyzer LM identifies a contra-
diction between the two sentences, it is prompted
to revise the given sentences and remove the con-
tradiction so that the output is informative and co-
herent with the corresponding context. ChainPoll
(Friel and Sanyal, 2023) represents another recent
advancement in addressing hallucinatory phenom-
ena within LLMs. The approach adopted for hal-
lucination detection is straightforward: employing
a carefully crafted prompt, the authors prompt the
GPT-3.5-turbo model to assess whether the com-
pletion contains hallucinations driven by a chain of
thought (CoT) explanation. Iterating this process
several times and aggregating the "yes" responses
yields a probability score ranging from Zero to One,
indicating the likelihood of hallucination.

In Guerreiro et al. (2023), hallucinations in trans-
lation models are studied concerning two differ-
ent sources: perturbations and natural hallucina-
tions. Hallucinations induced by perturbations oc-
cur when the model memorizes the training data
and outputs a faulty translation triggered by a slight
change in the input sequence. In contrast, natural
hallucinations occur due to poor quality of training
data. Natural hallucinations are divided into two
categories (Raunak et al., 2021): detached and os-
cillatory. In the detached type, the output is fluent
but inadequate. In the oscillatory type, the output
has repeated n-grams. In this article, a black box
method (Top N-Gram (Raunak et al., 2021)) and a
white box method (ALTI+ (Ferrando et al., 2022))
have been used to detect natural hallucinations. It
has been observed that hallucinations in transla-
tions occur more often for low-resource languages.
Another work concerning detecting machine trans-
lation hallucinations is COMET (Rei et al., 2020),
a reference-based neural framework with superior
performance compared to conventional approaches
(Guerreiro et al., 2022). It has two architectures,
one of which is an estimator model, which tries
to directly regress on human judgment scores for
quality assessment. In contrast, the other one, a
ranking model, minimizes the distance between a
"better" hypothesis and its corresponding reference
and original source translations.
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Figure 1: Formulating hallucination detection problem as an NLI task

DM PG MT Total

Train 20000 20000 20000 60000

Dev 375 250 375 1000

Trial 36 9 35 80

Test 1125 750 1125 3000

Table 1: Dataset Statistics

3 System Overview

In this section, we introduce our proposed system.
The general system sketch is presented in Figure
1. Additionally, detailed statistics regarding the
dataset are outlined in Table 1. Since the train-
ing data provided for this task was unlabeled, we
labeled 3000 samples of the training data. Since
LLMs have hallucination problems themselves, the
labeling was done by a human agent. We have
trained separate models for each task (MT, PG,
and DM) to detect hallucinations. The model is
DeBERTa-v3 large (He et al., 2023) and was first
trained on the NLI task and then fine-tuned on
the labeled data of each task. Finally, the model
with the highest accuracy on validation data was
saved. For training a binary classification model
on the NLI task, only the data samples with labels
of contradiction and entailment of the NLI dataset
of Stanford University (Bowman et al., 2015) were
used.

Examples of data samples for PG, MT, and DM
tasks are presented in Table 2. Each sample has a
source, target, and hypothesis in the MT task. The
source sentence may be in languages other than
English, but the target sentence is always in En-
glish. In the PG task, each sample has a source
and hypothesis. We can detect hallucinations in
these two tasks using the target sentence as the
reference for the MT task and the source sentence
as the reference for the PG task. Since the nature
of hallucination in the PG and MT tasks is almost
the same, the training data of both tasks were used
to train the model for these two tasks. For Each
task, the model with the highest accuracy on vali-
dation data was saved. The sequence classification
method is utilized to detect hallucinations. The
reference sentence is placed at the beginning, fol-
lowed by the hypothesis sentence, separated with a
"[SEP]" token. The hypothesis is the output of the
LLM that may contain hallucinations. Finally, the
entire sequence is fed into the NLI model, which
outputs probabilities for each class, contradiction,
and entailment. If the hypothesis contains informa-
tion that contradicts the reference, the output label
of our NLI model should be equal to 1, indicating
contradiction. The probability of contradiction is
considered equivalent to the probability of halluci-
nation.

In addition to training classifier models, we have
conducted tests to evaluate the performance of

142



src The budget cannot be adopted against the will of the European Parliament.
hyp The European Parliament does not approve the budget.PG
label Not Hallucination

src Doonii fayyadamuun meeshaa geejibuun namootabaay’ee fi meeshaalee galaanarra
cesisuuf karaa baayee si’aataa dha.

tgt Using ships to transport goods is by far the most efficient way to move large
amounts of people and goods across oceans.

hyp Using a gas-fired device is a way to stop people from using natural gas and other
equipment.

MT

label Hallucination

src Communistic birds. What is the meaning of communistic?
tgt Living or having their nests in common.
hyp Of or pertaining to communism.

DM

label Hallucination

Table 2: Data samples of PG, MT, and DM tasks

two large language models, Falcon-7B and chat-
GPT3.5, on the hallucination detection task. For
this purpose, we have instruction-fine-tuned the
falcon-7B model on the labeled training and val-
idation data. For chat-GPT3.5, the accuracy was
calculated on the trial set using zero and two-shot
inference. For these two models, only the results
on the trial set were presented.

We also thought we might find a meaningful con-
nection between token probabilities in the output
sequence and hallucination. For this, we took the
top token probabilities of the output sequence of the
LLM (PG, MT, and DM LLMs) with their labels.
We fed them as input to an RNN model, such as
LSTM, to predict hallucination based on model un-
certainty of token probabilities. Unfortunately, we
found out that when outputting hallucinated output,
the model is as confident as non-hallucinated ones,
and the classifier model could learn absolutely noth-
ing from the token probabilities, no matter how we
change the model complexity or hyperparameters.

4 Experimental Setup

To provide enough labeled data to train our mod-
els, a total of 3000 of the model-aware and model-
agnostic training samples were labeled. Different
data splits were tested to get the best accuracy on
each task. The details of the split used to train the
model with the best accuracy for each task are spec-
ified in colab notebooks on GitHub1. The results

1https://github.com/z-rahimi-r/
HalluSafe-at-SemEval-Task-6-SHROOM

DM PG MT

#Samples 36 9 35

Falcon7B 2-shot 47.22 44.44 45.71

Falcon7B 4-shot 33.33 55.55 48.57

Falcon7B finetuned 41.66 66.66 0.4

ChatGPT3.5 zero-shot 86.11 65.71 44.44

ChatGPT3.5 2-shot 86.11 74.28 88.88

ChatGPT3.5 4-shot 83.33 82.85 66.66

Best-DM-DeBERTa 94.44 55.55 85.71

Best-PG-DeBERTa 86.11 77.77 77.14

Best-MT-DeBERTa 91.66 55.55 94.28

Table 3: Results on Trial set

of the trial set are presented in Table 3.

All three models are trained for ten epochs with
a learning rate equal to 2e-5 and batch size equal to
eight samples. The base model for all three tasks
is DeBERTa-v3-large (He et al., 2023), trained
on the NLI task with two classes of contradiction
and entailment. We have used the Hugging-Face
transformers library (Wolf et al., 2020) to train De-
BERTa models implemented with PyTorch. For in-
struction fine-tuning the Falcon-7B model, we also
used the Hugging-Face library and LoRA method
(Hu et al., 2022). The prompt used for fine-tuning
Falcon and inference from chatGPT is similar to
that used in the selfCheckGPT (Manakul et al.,
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src A five, six, seven, eight.
tgt And 5, 6, 7, 8.
hyp A number between five and eight.

PG

gold label Hallucination

src Est-ce que tu l’aimes?
tgt Do you love him?
hyp Do you love her?

MT

gold label Not Hallucination

src Haul away, keeping strain on both parts of the halyard so that the <define>
pigstick </define> remains vertical as it goes up and doesn’t foul the spreaders.

tgt (nautical) A staff that carries a flag or pennant above the mast of a sailboat.
hyp (nautical) A halyard.

DM

gold label Not Hallucination

Table 4: Examples of wrongly classified samples

acc model-agnostic rho model-agnostic acc model-aware rho model-aware
Baseline 69.66 40.29 74.53 48.78
Nli-only 72.4 59.77 73.93 56.33
Best-models 75.93 61.53 78.33 53.74

Table 5: Results on Final Test set

2023). The examples can be found in the Appendix.
All notebooks, labeled data, and links to saved mod-
els are present on our GitHub.

5 Results

We have achieved 75.93% and 78.33% accuracy
for the model-aware and model-agnostic tracks of
hallucination detection on final test data. We have
ranked 19th and 30th in model-aware and model-
agnostic tracks with a 2.93% and 8.4% difference
with respect to the first-ranked team in the competi-
tion. The accuracies of the best model for each task,
along with the accuracy of the base NLI model, are
provided in Table 5. Also, examples of wrongly
classified samples are provided in Table 4. As you
can see the wrongly classified samples are challeng-
ing. The problem that exists with some samples
of the MT task is that in some cases, relying only
on the tgt field may result in a wrong label, and it
is necessary also to consider the content of the src
field as well. This is true about the MT example
presented in the table. In this example, hyp and tgt
are both correct translations of the source sentence,
but when the content of hyp is evaluated against
the tgt, it is wrongly labeled as hallucination.

6 Conclusion

In this work, we have trained classifiers based
on Natural Language Inference to detect halluci-
nated outputs for the two model-aware and model-
agnostic subtasks of the SemEval-2024 Task-6-
SHROOM (Mickus et al., 2024). We have also
conducted experiments to evaluate LLMs’ ability
to perform this task. The fluency of the output of
LLMs makes it difficult even for a human evaluator
to recognize the hallucinated output. To train the
classifiers, we labeled 3000 training data. Labels
may be a little affected by the subjectivity of the
annotator, and for future work, it is better to have
more than one person label each data sample. Our
HalluSafe classifiers have achieved 75.93% and
78.33% accuracy for the model-aware and model-
agnostic tracks of hallucination detection on final
test data and have outperformed official baselines.
Regarding future work, enhancing the quality of
training data in the pre-training and fine-tuning
stages can effectively reduce hallucinations. Given
the potential limitations of storing all necessary in-
formation within the memory of models, coupled
with the need for regular updates to certain infor-
mation, it may be beneficial to equip models with
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search tools rather than relying solely on memory.
It is important to train LLMs during the fine-tuning
and instruction-tuning stages to refrain from an-
swering questions if they lack sufficient knowledge
on a particular subject, which needs a mechanism
to be incorporated into these models to enable them
to identify the boundaries of their knowledge.
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A Appendix

An example of instruction used for fine-tuning
Falcon-7B is presented in Table 6. Also, a few-
shot example for the PG task for inference from
Chat-GPT and Falcon-7B is provided in table 7.
Few-shot examples are selected from the develop-
ment set for each task.
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<human>:
[Context]: Being familiar with the working environment and able to intervene early is
important for health care.
[Sentence]: Health care can be improved by being familiar with the working environment.
Is the Sentence supported by the Context above? Answer using ONLY yes or no:
<assistant>: [label]: yes

Table 6: Falcon-7B Fine-tuning Instruction Example

[Example 1]:
Context: I thought so, too.
Sentence: I thought you’d be surprised at me too.
Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: no

[Example 2]:
Context: I haven’t been contacted by anybody.
Sentence: I have not been contacted.
Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: yes

[Example 3]:
Context: That was my general impression as well.
Sentence: I thought you’d be surprised at me too.
Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: no

[Example 4]:
Context: I said nothing of the kind.
Sentence: I never told you that before.
Is the Sentence supported by the Context above? Answer using ONLY yes or no:
[label]: yes

[Example 5]: the sample to be labeled...

Table 7: 4-Shot Chat-GPT Prompt Example
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