
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1529–1536
June 20-21, 2024 ©2024 Association for Computational Linguistics

Pollice Verso at SemEval-2024 Task 6: The Roman Empire Strikes Back

Konstantin Kobs†
anacision GmbH

konstantin.kobs@anacision.de

Jan Pfister† and Andreas Hotho
Data Science Chair, CAIDAS

University of Würzburg (JMU)
{lastname}@informatik.uni-wuerzburg.de

Abstract

We present an intuitive approach for hallucina-
tion detection in LLM outputs that is modeled
after how humans would go about this task. We
engage several LLM “experts” to independently
assess whether a response is hallucinated. For
this we select recent and popular LLMs smaller
than 7B parameters. By analyzing the log prob-
abilities for tokens that signal a positive or nega-
tive judgment, we can determine the likelihood
of hallucination. Additionally, we enhance the
performance of our “experts” by automatically
refining their prompts using the recently in-
troduced OPRO framework. Furthermore, we
ensemble the replies of the different experts in
a uniform or weighted manner, which builds a
quorum from the expert replies. Overall this
leads to accuracy improvements of up to 10.6
p.p. compared to the challenge baseline. We
show that a Zephyr 3B model is well suited
for the task. Our approach can be applied in
the model-agnostic and model-aware subtasks
without modification and is flexible and easily
extendable to related tasks.

1 Introduction

Language Models Are Outstanding, but2 they can
hallucinate, i.e. generate texts that are not sup-
ported by the input or the context. Hallucinations
can undermine the credibility and usefulness of
LLMs, especially for applications that require high
accuracy and reliability, such as summarization,
question answering, or dialogue. Therefore, there
is a pressing need for developing methods to detect
and mitigate hallucinations in LLMs, as well as
to understand the causes and effects of this phe-
nomenon.

In this SemEval challenge (Mickus et al., 2024),
the task is to detect LLM hallucinations based

† These authors contributed equally to this work.
1https://en.wikipedia.org/wiki/Pollice_verso
2https://x.com/ChrisGPotts/status/

1686802492104028160

on the input task given to the LLM, the LLM re-
sponse, and the ground truth answer. Here, the
input tasks can be definition modeling (DM), ma-
chine translation (MT) or paraphrase generation
(PG). Each task contains multiple examples that are
fed through an LLM and its response is classified
as hallucination or not by five annotators. There are
two subtasks in this challenge: In the model-aware
subtask, access to the generating model is given,
while in the model-agnostic subtask, the generating
model is unknown. We approach both subtasks
in the same way, by removing the model informa-
tion from the model-aware subtask. While we are
certain that access to the generating model can be
beneficial, we argue that the model-agnostic setting
has better transferability in practice.

As the competition baseline (which uses Self-
CheckGPT by Manakul et al. (2023)), we frame
the task of hallucintion detection as a “consistency
checking” problem with the given information,
where the goal is to check whether an LLM gen-
eration is supported by the ground truth. If the
generation is not supported by the ground truth,
new and thus probably false information must be
present; the LLM has hallucinated its response.

For building an intuition for our approach, we
imagine the same setting in the real world: A per-
son responds to a question and our goal is to detect
if this is a hallucination, i.e., the response is not
supported by the truth. With this real-world setting
in mind, we formulate three intuitions that we later
transfer to the challenge baseline:

(I) Instead of one person, we ask multiple dif-
ferent experts to check the response’s consis-
tency with the truth and weight the different
expert responses based on their past perfor-
mance to make a final decision.

(II) Each expert gives a certainty for their re-
sponse, so we can take this into account

1529

https://en.wikipedia.org/wiki/Pollice_verso
https://x.com/ChrisGPotts/status/1686802492104028160
https://x.com/ChrisGPotts/status/1686802492104028160


Trainset
Ground 

Truth

Guiding LM 
(ChatGPT3.5)

LLaMa2-7b
Mistral-7b

Zephyr-3b
Zephyr-7b

Phi2-2.7b

Prompt Optimization Loop

5 Optimized Prompts
per Model

Devset
Ground 

Truth

Identify Best Ensembles 
(averaging or logistic regression)

Our Best Ensemble
Across Models and Prompts

Zeph3b P: 3

Zeph3b P:4

Zeph7b P:2

Zeph7b P:1

Context: …
Sentence: …

Averaged Verdict 
Across Logits:

„Hallucination“ vs. 
„Not Hallucination“

Figure 1: Overview of our approach. We automatically optimize the prompts of multiple “expert” LLMs to check
the consistency of the given model output with the ground truth. We combine multiple experts (models-prompt-
combinations) in a uniform or weighted manner and select the best ensemble on an internal validation set. This
ensemble performs the final collective verdict, as illustrated by a part of Jean-Leon Gerome’s painting “Pollice
Verso” (1872), which represents the Ancient Roman gesture for judgment on defeated gladiators1.

when combining multiple experts’ responses
into one final judgement.

(III) Since each expert is trained differently and
has different skills, a suitable explanation of
the task to the expert is beneficial.

2 System Description

Given this intuition regarding a potential approach
to the task in the real world, we now connect these
steps to our submitted system. An overview is
found in Figure 1.

(I) We construct ensembles of multiple LLMs
that are independently asked to check the
response’s consistency with the truth. For
each ensemble of models, we combine the
responses of the LLMs using averaging or
by training a logistic regression (see Sec-
tion 2.5).

(II) Compared to the task baseline method, we
modify the procedure for how the LLMs pro-
duce their output to obtain better probability
estimates (see Section 2.3).

(III) In addition to the baseline prompt, we use an
automatic prompt optimization technique to

create five additional, well-working prompts
and use them as additional options for our
ensemble selection (see Section 2.4).

2.1 Provided Baseline

In general, our system is based on the baseline
provided by the task organizers. Here, a Mistral 7B
model is given the following prompt:

Context: [GROUNDTRUTH]
Sentence: [MODELOUTPUT]
Is the Sentence supported by the context
above? Answer using ONLY yes or no:

The next token is then generated by the LLM and
checked whether it is “yes” or “no” (possibly with
additional whitespace or capitalization). If it is a
“yes”, the output label is set to “Not Hallucination”
and its log-probability logprob is converted to the
probability p(Hallucination) = 1 − elogprob. If
it is a “no”, the output label is set to “Hallucina-
tion” and its log-probability logprob is converted
to p(Hallucination) = elogprob. If the next token
is neither a “yes” or “no”, the output label is chosen
randomly and p(Hallucination) is set to 0.5.

In the following, we apply our three intuitions to
the baseline setup in order to achieve better results.
To have a better understanding of which datasets

1530



are used, we introduce them in the following sec-
tion.

2.2 Data Splits
The task organizers provide multiple datasets from
which we use the labeled “val.model-agnostic.json”
and “val.model-aware.v2.json” files. We randomly
split the model-agnostic file into two equal datasets,
stratified by the task, such that both datasets have
similar numbers of items with the same task.

These two datasets are our “training” and “val-
idation” datasets, respectively. The full model-
aware file is used as our internal “test” dataset,
in order to estimate the performance of our system
without making a submission.

The “training” dataset is used to optimize the
prompts of the models. The “validation” dataset
is used to train logistic regressions to weight each
member of the ensemble. The “test” dataset is then
used to evaluate our results internally without sub-
mitting all ensembles of models to the competition
leaderboard.

2.3 Intuition (II): Better Output Generation
The task baseline from the organizers generates the
most probable next token and checks if it is “yes” or
“no”. When running the task baseline code, we find
that in 21 of the 499 examples from the “val.model-
agnostic.json” file, the model does not return a “yes”
or “no” directly as the highest scoring token, which
means that the output label is chosen randomly and
“P(Hallucination)” is set to 0.5.

We argue that it is not necessary to rely on the
model to generate a “valid” token at the begin-
ning and only hope for a definite answer. Instead,
we take the models’ output probability distribution
over all available tokens. From this, the combined
probability of relevant tokens can be accessed and
computed, so even if “yes” or “no” are not the most
probable tokens, a definite answer can be derived.

Let T be a mapping of all available LLM tokens
to their corresponding log probabilities, which is
accessed using T[x] for token x. Out of the LLM
vocabulary, we identify tokens indicating a positive
and negative reply, i.e. all tokens that boil down
to “yes” or “no” in any capitalization and with any
added whitespace. We call the sets of tokens P and
N for positive and negative tokens, respectively.
The probability for the answer being positive is
then computed using a modified softmax function
s, which takes only the positive and negative tokens
into account:

s(T) =

∑
p∈P exp(T[p])

∑
t∈(P∪N ) exp(T[t])

(1)

This way, even if the token with the highest prob-
ability is not a “yes” or “no”, a meaningful proba-
bility s(T) ∈ [0, 1] can be computed. This makes
our system more reproducible than the organizer’s
baseline code, since no randomly selected labels
can occur. The predicted output label is then “Not
Hallucination” when s(T) ≥ 0.5 and “Hallucina-
tion” else.

2.4 Intuition (III): Prompt Optimization

We further improve the performance of our ap-
proach by “finetuning” the used prompts for each
model we use in our ensemble independently. To
this end, we follow the OPRO approach (Yang et al.,
2023), which aims to automatically optimize the
prompts with the help of a “guiding” language
model. First, we take the baseline prompt as an
initial starting prompt and evaluate the accuracy of
the model on a split of our training dataset. Next,
the guiding language model, in turn, is prompted to
optimize the prompt that the model is acting upon.
For this, it has access to the 20 best previously eval-
uated prompts, as well as the accuracy the model
achieved when using this prompt. The task of the
guiding language model is now to generate a new
prompt that outperforms all previous prompts. Fi-
nally, the new prompt is evaluated and added to the
list of tried prompts for the next optimization step.

We employ this approach to optimize the
prompts for every used model separately, as the
optimal prompt for one model does not have to be
working well for other models. As guiding lan-
guage model we select ChatGPT3.5-Turbo3 and
evaluate the prompts on our holdout set. We
slightly adapt the original OPRO optimization
prompt as we found the “meta” prompt submit-
ted to the guiding language model to be very hard
to decipher in our case. This stems from nested
references to “below instructions” which in turn
referenced the “Context above”, although the sam-
ples are usually appended. As there are no clearly
reserved delimiters in this prompt, this can be con-
fusing when reading this optimization prompt —
even for a human. Hence we slightly change this
prompt by introducing a json-structure where fit
(empty newlines have been stripped here):

3https://platform.openai.com/docs/models/
gpt-3-5-turbo

1531

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo


Table 1: The best five prompts found by the prompt optimization method OPRO for the Zephyr 3B model. Overall,
the optimization was run for ten iterations. Shown are also the iteration in which they were proposed and their
respective accuracies on our holdout set.

Iter. Acc. Prompt

2 0.714 Decide whether the given sentence is directly supported by the provided context. Answer with a simple "yes" or "no".
8 0.714 Determine if the sentence provided is supported by the given context. Respond with a clear "yes" or "no".
1 0.694 Based on the given context and sentence, determine if the statement is supported or not. Please respond with a simple yes or no.
1 0.694 Based on the given context, determine if the sentence is correctly supported. Respond with a simple ’yes’ or ’no’.
1 0.694 Is the Sentence consistent with the provided Context? Answer with either "yes" or "no".

Your task is to generate the instruction
<INS>. Below are some previous
instructions with their scores. The
score ranges from 0 to 100.
[
{
"<INS>": "Is the Sentence supported by

the Context above? Answer using ONLY yes
or no:",
"score": 74
},
...

]
Below are some problems commonly
solved incorrectly when using above
instructions.
[three incorrectly solved examples and
their correct label formatted as json]
Generate an instruction that is different
from all the instructions <INS> above,
and has a higher score than all the
instructions <INS> above. The instruction
should begin with <INS> and end with
</INS>. The instruction should be concise,
effective, and generally applicable to
all exemplary problems above.

Table 1 shows the five best performing prompts
for the Zephyr 3B model found by OPRO.

2.5 Intuition (I): Ensemble Strategy

Our intuition is to ask multiple experts instead of
one to assess whether the model output is hallu-
cinated. This is implemented as an ensemble ap-
proach, where different models are asked to iden-
tify hallucinations. Their outputs are later com-
bined to one output label and probability.

Considered Models Since there are plenty of
open source language models available, we limit
ourselves to five different models. We select these

models from the “New & Noteworthy” section of
LM Studio, a desktop application that allows to run
LLMs efficiently on CPUs using quantized model
weights.4 We define several criteria to select our
final models:

• In order to keep inference times low, we only
consider models smaller than or equal to 7B
parameters.

• To make use of the newest models, the se-
lected models can at most be half a year old.
Based on our selection date of January 10,
2024, the models have to be released (accord-
ing to LM Studio) after July 10, 2023.

• We only take the newest version of a model
(e.g. Mistral v0.2 is used instead of v0.1).

• We try to diversify the model architectures and
training datasets by eliminating mostly Llama
2/Mistral finetuned models.

• We select general purpose LLM for the En-
glish language, i.e., no explicit code genera-
tion models or models for creative writing.

This selection process gives five models for
which we download their weights in the “Q6_K”5

quantized version: Phi 26, Mistral 7B Instruct
v0.27, StableLM Zephyr 3B8, Zephyr 7B β9, Llama
2 7B Chat10.

4The list of models can be found at https:
//github.com/lmstudio-ai/model-catalog/tree/
205a13027c9fcd7d0c4a1874d6bb0ae45922deee/models
(accessed: 2024-01-10)

5more information can be found here https://github.
com/ggerganov/llama.cpp/pull/1684

6https://hf.co/TheBloke/phi-2-GGUF
7https://hf.co/TheBloke/

Mistral-7B-Instruct-v0.2-GGUF
8https://hf.co/TheBloke/

stablelm-zephyr-3b-GGUF
9https://hf.co/TheBloke/zephyr-7B-beta-GGUF

10https://hf.co/TheBloke/Llama-2-7B-Chat-GGUF

1532

https://github.com/lmstudio-ai/model-catalog/tree/205a13027c9fcd7d0c4a1874d6bb0ae45922deee/models
https://github.com/lmstudio-ai/model-catalog/tree/205a13027c9fcd7d0c4a1874d6bb0ae45922deee/models
https://github.com/lmstudio-ai/model-catalog/tree/205a13027c9fcd7d0c4a1874d6bb0ae45922deee/models
https://github.com/ggerganov/llama.cpp/pull/1684
https://github.com/ggerganov/llama.cpp/pull/1684
https://hf.co/TheBloke/phi-2-GGUF
https://hf.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF
https://hf.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF
https://hf.co/TheBloke/stablelm-zephyr-3b-GGUF
https://hf.co/TheBloke/stablelm-zephyr-3b-GGUF
https://hf.co/TheBloke/zephyr-7B-beta-GGUF
https://hf.co/TheBloke/Llama-2-7B-Chat-GGUF


Table 2: Which ensembles we searched for and how we found them. Missing ones from this pattern are duplicates
from other ensembles. Note the absence of LLaMas, Mistrals and Phis

Validation Test Official Task Results
model-agnostic model-aware

set metr agg models acc rho acc rho acc rho acc rho

val acc single Zeph 3B P:0 0.748 0.585 0.739 0.603 0.783 0.655 0.750 0.601
val rho single Zeph 3B P:4 0.736 0.619 0.743 0.622 0.776 0.687 0.747 0.597
val acc mean Zeph 7B P:3 + Zeph 3B P:3 0.772 0.573 0.766 0.595 0.797 0.658 0.777 0.601
val rho mean Zeph 3B P:4 0.736 0.619 0.743 0.622 0.776 0.687 0.747 0.597
val acc logreg LLaMa2 7B P:3 + Mistr 7B P:0 + Zeph 3B + Zeph 7B P:0 + Zeph 7B P:2 0.780 0.510 0.741 0.540 0.793 0.594 0.763 0.519
val rho logreg Zeph 3B P:4 0.736 0.619 0.743 0.622 0.777 0.687 0.747 0.597

test acc single Zeph 7B P:2 0.708 0.490 0.749 0.482 0.746 0.525 0.743 0.418
test rho single Zeph 3B 0.732 0.597 0.727 0.622 0.756 0.690 0.735 0.590
test acc mean Zeph 3B P:3 + Zeph 3B P:4 + Zeph 7B P:1 + Zeph 7B P:2 0.756 0.560 0.772 0.585 0.799 0.646 0.772 0.560
test rho mean Zeph 3B + Zeph 3B P:4 0.740 0.615 0.729 0.626 0.769 0.689 0.744 0.598
test acc logreg Zeph 3B P:4 + Zeph 3B + Zeph 7B P:0 + Zeph 7B P:1 + Zeph 7B P:3 0.740 0.589 0.772 0.603 0.803 0.676 0.771 0.602
test rho logreg Zeph 3B + Zeph 3B P:4 0.744 0.617 0.737 0.626 0.775 0.689 0.745 0.598

— — — Mistral 7B (organizer’s baseline) 0.644 0.338 0.695 0.462 0.697 0.403 0.745 0.488
— — — Mistral 7B (organizer’s baseline) with better output generation 0.648 0.380 0.707 0.452 — — — —

Combining LLM Responses For each of the
five models, we test overall six prompts: The base-
line prompt from the organizers as well as the
five best performing prompts found by OPRO. For
each prompt, we compute the output labels (“Hal-
lucination” or “Not Hallucination”) and probabili-
ties “p(Hallucination)” for the validation and test
datasets. Given these 30 outputs per dataset, we
combine all subsets of up to five model responses
by either averaging all hallucination probabilities
(mean) or training a logistic regression on the val-
idation dataset (logreg) for a more sophisticated
combination. We then evaluate all combinations
on our validation and test datasets.

3 Results

We overall have three dimensions in which we can
select the best model/prompt ensemble for chal-
lenge submission:

1. validation (val) vs. test dataset (test) results

2. accuracy (acc) vs. correlation (rho) as evalua-
tion metrics

3. mean ensemble (mean) vs. logistic regression
ensemble (logreg) vs. single model (single)

The resulting model selections as well as the or-
ganizer’s baseline with their metrics for our val-
idation and test datasets as well as the official
task results are shown in Table 2. Besides the
model names, if a different prompt than the base-
line prompt has been used, we encode the prompt
used for the model in its name (“P:0” to “P:4” with
“P:0” being the automatically optimized prompt
that performed best on our holdout set). We can
make multiple observations in the results table.

First, the last two rows of the table show that
our proposed output generation method mostly im-
proves the baseline scores slightly. Second, all of
our model ensembles are better than the organizer’s
baseline, showing that the ensemble and logistic re-
gression implementations help in this setting. Note
that sometimes, the best model ensemble for dif-
ferent dimensions is the same, e.g. Zephyr 3B P:4
is the best model when evaluated on the validation
correlation, regardless of the ensemble strategy.

Third, nearly all selected model ensembles con-
tain the Zephyr 3B model in some form, which
is surprising, as the most other models have more
than twice the parameters. This shows that in this
task, the model size does not correlate with perfor-
mance. Overall, both Zephyr (3B and 7B) models
are well-suited for the task, even though they are
not trained by the same companies and thus not
directly related.

In terms of official task results, the model en-
semble chosen by the best test accuracy (and then
by correlation) shows the best accuracy of our sub-
missions on the model-agnostic task (80.3%). It
is an ensemble consisting of two versions of the
Zephyr 3B model as well as three versions of the
Zephyr 7B model, combined through a logistic re-
gression. It ranks 41 out of all 260 submissions for
the model-agnostic task of the challenge.

For the model-aware task, our best model ensem-
ble again consists of a Zephyr 3B and 7B version.
These models are combined using the mean ensem-
ble strategy, leading to 0.777 accuracy as official
results. This submission ranks 103 out of 295 task
submissions. Given that our approach is completely
model-agnostic and thus not specifically designed
for this subtask, the results are fairly good.

1533



4 Analysis

We present a comparative analysis of the predicted
versus actual probabilities of hallucination across
the three tasks given in the challenge datasets. To
this end, we plot the predictions for the ensem-
ble that achieved the highest accuracy on our test
set (test/acc/logreg in Table 2). In Figure 2 the
overall gold label distribution for the probability
of hallucination (p(Hallucination)) is depicted on
the left, contrasting starkly with the more extreme
predicted label distribution shown in the right plot.
This polarized nature of predictions suggests a ten-
dency for our model to forecast outcomes with
heightened certainty, a trait observable across all
ensemble models examined.

Particularly noteworthy is the paraphrase task’s
label distribution, which significantly deviates from
the other tasks. This unique distribution is reflected
not only in the ground truth data but also in our
model’s predictions, indicating a consistent model
response to the characteristics of this task.

Figure 3 underscores a clear positive correlation
between the predicted probabilities of hallucina-
tion and the ground truth scores for all task types.
Hallucination detection on the machine translation
task exhibits the strongest correlation, suggesting a
higher predictive performance, whereas for defini-
tion modeling and paraphrase generation the scores
correlate slightly less closely.

5 Discussion and Future Work

Our proposed system is easy to understand and im-
plement, can be applied both in model-agnostic and
model-aware scenarios, and is flexible in terms of
different metrics: By using smaller and fewer mod-
els in the ensemble, the runtime can be achieved.
By choosing the models based on a given metric,
the performance given this metric can be optimized.

In the following, we want to discuss two ar-
eas: Runtime optimization and task realism. The
runtime of our system depends on the number of
models. Here, we have shown that small and sin-
gle models can already lead to very good results.
Currently, we only use one type of quantization
for all models. Exploring the effects of different
quantization methods might be interesting, since
usually, with higher quantization, the model size
gets smaller and the model gets faster, but perfor-
mance degrades. Since the Zephyr 3B model is the
best model for this task, maybe another quantiza-
tion can optimize the runtime of our system even

further. Additionally, since most of our models
contain multiple versions of a prompt for the same
model, we could employ batching of these prompts.
This could also reduce the runtime of the system.

Currently, our prompt that is fed into the models
contains the model output as well as the ground
truth. The model then is instructed to check
whether the model output is grounded in the ground
truth. This approach follows the baseline provided
by the organizers. Consequently, our prompt op-
timization only uses these two inputs as well. It
might be interesting to evaluate, whether using the
model input as an additional prompt input can in-
crease the performance of the system.

Overall, we argue that in a realistic use case of
our system, the ground truth is not known when
checking for hallucinations. Instead, the system
should check whether the provided model output
is a correct answer to the model input. Since our
approach is very flexible, it is possible to enable
this use case in our system by altering the model
prompt to contain both the model input and its gen-
erated output, removing the ground truth. Then,
our system could be used as a validator step after
the output of a LLM, which catches hallucinated in-
puts or at least outputs the “p(Hallucination)” score
along with the LLM output.

6 Related Work

Hallucination detection and automated prompt op-
timization in LLMs are both vivid research topics,
which became popular with the high demand for
reliable LLM applications.

Hallucination Detection We mainly follow the
survey by Huang et al. (2023) who categorize hal-
lucinations in LLMs into two main categories: Fac-
tuality Hallucination, where the model output is
factually incorrect, and Faithfulness Hallucination,
where the model output might be correct but does
not follow the user’s directives or does not take pro-
vided context into account. For both types of hallu-
cinations, there is research to detect them. External
knowledge can help with identifying Factuality Hal-
lucinations, since the model output can be checked
against verified knowledge sources. In this chal-
lenge, external knowledge in form of the ground
truth answer is given. Uncertainty estimation of the
model output can also help with identifying Fac-
tuality Hallucinations, since the model is usually
not certain when producing wrong output. For this,
some methods use access to the model to identify

1534



Figure 2: Gold label distributions vs. model predictions (left and right, respectively), with distinct behaviors
observed for the different tasks.

Figure 3: Positive correlation between predicted and
actual hallucination probabilities for all tasks.

the uncertainty, other methods use the behavior of
the model as an uncertainty indicator. The latter
methods thus are model-agnostic.

For Faithfulness Hallucination, different metrics
based on different methods such as word overlap
or neural classifiers have been proposed. They
try to identify logical misbehavior in the model
output given the provided context by estimating the
semantic or logical difference between the model
input and its output. The idea is that Faithfulness
Hallucinations stem from models not following the
provided input and thus, the generated output is
less consistent with its input than when the model
does not hallucinate.

Prompt Optimization In the domain of prompt
optimization for enhancing the reasoning capa-
bilities of LLMs, a variety of strategies have

emerged, notably in efforts to refine these mod-
els’ performance through advanced prompting tech-
niques (Qiao et al., 2023). Among these strategies,
two prominent methods have recently gained atten-
tion for their novel approach to automatic prompt
optimization, both leveraging a “guiding language
model”. This model, by having insight into the
LLM’s predictions, iteratively refines the prompt
to achieve optimal outcomes.

The methodology introduced by Pryzant et al.
(2023) draws inspiration from the principles of
gradient descent and backpropagation. Initially,
the guiding language model reviews the exist-
ing prompt alongside the LLM’s errors, tasked
with pinpointing specific shortcomings within the
prompt — akin to identifying textual gradients. Fol-
lowing this, the same model is prompted to propose
modifications that could rectify these identified is-
sues, mirroring the process of backpropagation.
This cycle of evaluation and refinement continues
until the process reaches a state of “convergence”.

Conversely, OPRO (Yang et al., 2023) sim-
plifies this procedure by equipping the guiding
language model with a repository of previously
tested prompts and their corresponding effective-
ness scores, in addition to a set of example prob-
lems. This repository provides the model with a
richer context for decision-making, enabling it to
discern more effectively between more and less
successful prompts with each optimization itera-
tion (as described in Section 2.4). This approach
allows for a more informed and potentially more
efficient refinement process.

1535



7 Conclusion

We have introduced our system to detect hallucina-
tions in LLMs using an ensemble strategy over mul-
tiple LLMs to decide whether the provided model
output is hallucinated or not. Here, we employ a
softmax over multiple relevant tokens to better cap-
ture the certainty of the models. We also employ an
automatic prompt optimization scheme that finds
well working prompts for each ensemble member.

We have found that the small Zephyr 3B model
performs very well on this task, which motivates
future exploration of its capabilities and reasons
for them. Due to its simplicity, our system can
be easily extended to new ensemble models and
prompt templates as well as applied to new tasks,
such as hallucination detection without access to
ground truth.Future work might explore runtime
optimizations such as batching or different model
quantizations. Finally, instead of independently
optimizing the model prompts, future work might
jointly optimize all prompts for an ensemble, lead-
ing to different experts for different tasks.

Acknowledgements

This work is partially supported by anacision
GmbH and the MOTIV research project funded by
the Bavarian Research Institute for Digital Transfor-
mation (bidt), an institute of the Bavarian Academy
of Sciences and Humanities. The authors are re-
sponsible for the content of this publication.

References
Jean-Léon Gérôme. 1872. Pollice verso. Oil on can-

vas. Phoenix Art Museum, Phoenix, Arizona. Re-
trieved from https://en.wikipedia.org/wiki/
Pollice_Verso_(G%C3%A9r%C3%B4me).

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models.

Timothee Mickus, Elaine Zosa, Raúl Vázquez, Teemu
Vahtola, Jörg Tiedemann, Vincent Segonne, Alessan-
dro Raganato, and Marianna Apidianaki. 2024.
Semeval-2024 shared task 6: Shroom, a shared-task

on hallucinations and related observable overgener-
ation mistakes. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 1980–1994, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957–7968, Singapore. Association for Computa-
tional Linguistics.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2023. Reasoning with language
model prompting: A survey. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5368–5393, Toronto, Canada. Association for Com-
putational Linguistics.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers.

1536

https://en.wikipedia.org/wiki/Pollice_Verso_(G%C3%A9r%C3%B4me)
https://en.wikipedia.org/wiki/Pollice_Verso_(G%C3%A9r%C3%B4me)
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
https://aclanthology.org/2024.semeval2024-1.270
https://aclanthology.org/2024.semeval2024-1.270
https://aclanthology.org/2024.semeval2024-1.270
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
http://arxiv.org/abs/2309.03409

