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Abstract

Recent advancements in natural language pro-
cessing (NLP) have prompted the development
of sophisticated reasoning benchmarks. This
paper presents our system for the SemEval
2024 Task 9 competition and also investigates
the efficacy of fine-tuning language models
(LMs) on BrainTeaser—a benchmark designed
to evaluate NLP models’ lateral thinking and
creative reasoning abilities. Our experiments
focus on two prominent families of pre-trained
models, BERT and T5. Additionally, we ex-
plore the potential benefits of multi-task fine-
tuning on commonsense reasoning datasets
to enhance performance. Our top-performing
model, DeBERTa-v3-large, achieves an impres-
sive overall accuracy of 93.33%, surpassing
human performance. The code and models
associated with this study are publicly avail-
able at https://github.com/alifarrokh/
SemEval2024-Task9.

1 Introduction

The SemEval 2024 Task 9, BrainTeaser, is a
multiple-choice question-answering task, orga-
nized by (Jiang et al., 2024) and based on the
BrainTeaser benchmark (Jiang et al., 2023) that
aims to test the ability of NLP models to exhibit
lateral thinking, a creative type of human reason-
ing process that often requires looking at problems
from a new perspective. Unlike similar benchmarks
for computational creativity, such as RiddleSense
(Lin et al., 2021), which focus on problems re-
solvable through commonsense associations, the
BrainTeaser benchmark comprises questions that
challenge models to defy default commonsense as-
sociations and linear inference chains (Jiang et al.,
2023).

The task includes two subtasks: Sentence Puzzle
and Word Puzzle. While the puzzles in the first
subtask focus on the meaning of sentences, the
word puzzles concentrate on the letter composition

of questions and their choices. The following are
examples of questions in each subtask.

• Example Sentence Puzzle
Question: A man shaves everyday, yet keeps
his beard long. How is that possible? (A)
He is a barber. (B) He wants to maintain his
appearance. (C) He wants his girlfriend to buy
him a razor. (D) None of above.
Answer: A

• Example Word Puzzle
Question: What part of London is in France?
(A) The letter O. (B) The letter N. (C) The
letter L. (D) None of above.
Answer: B

(Lin et al., 2021) discusses three types of popu-
lar methods for commonsense question answering:
1) Fine-tuning pre-trained language models such
as BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), 2) Fine-tuning text-to-text question
answering models such as T5 (Raffel et al., 2020),
3) Incorporating knowledge graphs for graph-based
language reasoning similar to KagNet (Lin et al.,
2019) and MHGRN (Feng et al., 2020). An ad-
vantage of using graph-based reasoners is the in-
terpretability of their results due to the symbolic
structures of knowledge graphs. Motivated by the
superior performance achieved by fine-tuning lan-
guage models or text-to-text models in achieving
the best results on the RiddleSense benchmark, our
study investigates the vertical thinking capabilities
of these models. We accomplish this by fine-tuning
them on the BrainTeaser dataset.

We solely engage in the first subtask of Brain-
Teaser (Sentence Puzzles) and, due to resource con-
straints, confine our experiments to models with
fewer than one billion parameters. In the subse-
quent section (Section 2), we provide a brief dis-
cussion of the models we fine-tuned. Subsequently,
we offer a more detailed introduction to the task in
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Section 3. Section 4 delves into the specifics of our
experiments and their outcomes, while Section 5
presents our results in the competition alongside a
concise error analysis.

2 System Overview

Inspired by the recent progress in pre-trained lan-
guage models, our work investigates the perfor-
mance of fine-tuned language models on the Brain-
Teaser task. Specifically, we fine-tuned two groups
of models, i.e., BERT-based and T5-based models.

2.1 BERT-based Models

The models included in this group are ALBERT
v2 (Lan et al., 2019)1, RoBERTa (Liu et al., 2019),
and DeBERTa v3 (He et al., 2023). We refer to this
group as BERT-based models because all of them
are inspired by BERT, a pre-trained bidirectional
transformer encoder (Vaswani et al., 2017), with
slight improvements in their pre-training objectives
or architectures. The overall process of fine-tuning
BERT-based models for multiple choice question
answering is illustrated in Figure 1.

Note that for the experiments in which multiple
datasets with different numbers of choices are used
during fine-tuning, we have to normalize the ques-
tions so they consist of the same number of choices,
and the model can be fine-tuned with a shared linear
projection layer. This is simply achieved by either
randomly removing extraneous options from ques-
tions with too many choices or by adding dummy
options to other ones. Since dummy options are
constant in all the questions, the model can easily
learn to ignore them and assign a zero probability
to them.

As a side note, we also fine-tuned BERT in a
sequence classification format where all options
are fed into the model so it can infer the correct one
by looking at the others. However, the performance
was suboptimal in this case, so we did not include
the results in the paper.

2.2 T5-based Models

This group includes Flan T5 (Chung et al., 2022)
and Unified-QA v2 (Khashabi et al., 2022), pre-
trained encoder-decoder transformers that convert
all NLP problems into a text-to-text format. These
models are fine-tuned to generate the correct choice
conditioned on the input question (Figure 2).

1ALBERT v2 was introduced in their GitHub repository at
https://github.com/google-research/albert
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Figure 1: Fine-tuning BERT for multiple-choice ques-
tion answering involves computing n forward passes
simultaneously for questions with n choices. The out-
put embeddings are then projected into a vector of size
n, which is fed into a SoftMax function to compute the
Cross-Entropy Loss. This optimization process aims to
maximize the score of the correct choice.

Who can shave three times a day
and maintain a beard?

(A) A barber.
(B) A superstar.
(C) A woman.
(D) None of above.

T5 A barber.

Figure 2: Fine-tuning T5-based models for multiple
choice question answering.

3 Task Overview

3.1 Adversarial Examples
The BrainTeaser dataset includes two types of ad-
versarial examples for each original data: Semantic
Reconstruction and Context Reconstruction. In
semantic reconstruction, the original question is
rephrased so that it conveys the same meaning with
the same answer. Extraneous options (i.e., other
choices) are kept unchanged in this construction
method. In context reconstruction, on the other
hand, both the original question and choices are
changed so that they describe a new situational con-
text with the same reasoning path as the original
question.

3.2 Dataset
The BrainTeaser dataset (Sentence Puzzle) con-
sists of train and test splits, containing 169 and
40 original data along with their adversarial exam-
ples, totaling up to 507 and 120, respectively. The
test set was released after the evaluation phase was
over. Furthermore, a subset of the training data
consisting of 102 examples was selected as the val-
idation set during the evaluation phase. However,
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Model BS LR

ALBERT v2 xlarge 48 1e-5
ALBERT v2 xxlarge 48 1e-5
DeBERTa v3 base 48 25e-6
DeBERTa v3 large 48 11e-6
RoBERTa base 64 1e-5
RoBERTa large 64 1e-5
Flan T5 base 24 5e-4
Flan T5 large 8 4e-4
Unified QA v2 base 24 5e-4
Unified QA v2 large 8 4e-4

Table 1: The hyper-parameters used for fine-tuning our
models. LR indicates the Learning Rate and BS shows
the Batch Size.

as described in Section 4.2, we chose to employ
k-fold cross-validation instead of relying solely on
the validation set for model development.

3.3 Evaluation Metrics

The task organizers have defined two types of accu-
racy metrics to evaluate the performance of models:
Instance-based accuracy, where each question is
considered a separate instance, and Group-based
accuracy, where each question and its adversarial
instances form a group and systems are given an
accuracy of one only when they correctly predict
all questions in the group.

We refer to the instance-based accuracy on all
examples as overall accuracy and the instance-
based accuracy on original/semantic/context
examples as ori/sem/con accuracy. Correspond-
ingly, ori-sem and ori-sem-con denote the
group-based accuracy of their corresponding ques-
tions.

4 Experimental Setup and Results

4.1 Implementation Details

All models were implemented in Python using the
Transformers (Wolf et al., 2020) library. AdamW
(Loshchilov and Hutter, 2017) was used for op-
timization, and all models were fine-tuned for 4
epochs. Due to resource constraints, we only tuned
the effective batch size and Learning Rate (LR) of
models using grid search. See Table 1 for the list
of hyper-parameters used for fine-tuning models.

Dataset(s) # Samples CV Accuracy

RS 3,510 81.43
CSQA 9,741 79.66
PIQA 16,113 79.48
SIQA 33,410 79.95
HellaSWAG 39,905 78.48
SWAG 73456 76.51

BrainTeaser 75.53

Table 2: The 5-fold cross-validation accuracies of mod-
els fine-tuned on a union of different commonsense
datasets and BrainTeaser (BT), compared with the accu-
racy of a model fine-tuned on BrainTeaser only.

4.2 Reliability of Experiments

During the development of our models, we noticed
that the limited number of training and validation
examples led to noisy results when evaluating the
original validation set. Consequently, relying solely
on this set for model development was deemed un-
reliable. Therefore, we used 5-fold cross-validation
to perform our experiments in the evaluation phase
of the competition. Data folds were created by split-
ting the 169 groups into five sections, ensuring that
questions from the same group would not appear
in both the training and validation sets. Moreover,
we observed that the random initialization of lin-
ear projection layers in BERT-based models causes
significant variations in the performance of models.
Therefore, we repeated the experiments related to
BERT-based models three times and averaged the
results to increase the reliability.

4.3 Auxiliary Datasets

In contrast to prior vertical thinking datasets, such
as PIQA (Bisk et al., 2020) and RiddleSense (Lin
et al., 2021), solving BrainTeaser’s lateral thinking
puzzles requires more creativity and defying pre-
conceptions (Jiang et al., 2023). Our hypothesis is,
however, that although combining vertical thinking
datasets with BrainTeaser may not directly improve
our model’s performance, it can provide our model
with some knowledge that might be helpful dur-
ing the reasoning process. For instance, solving
the example puzzle in Figure 2 requires the model
to have some common sense about what barbers
do and what they do not. Another reason why us-
ing auxiliary datasets during fine-tuning might be
helpful is that fine-tuning large models on small
datasets, such as BrainTeaser’s training set, can
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increase the risk of overfitting, which may be pre-
vented by using more training data.

Some datasets that cover various aspects of com-
monsense reasoning are RiddleSense (RS) (Lin
et al., 2021) for computational creativity, Common-
SenseQA (CSQA) (Talmor et al., 2018), SWAG
(Zellers et al., 2018), and HellaSWAG (Zellers
et al., 2019) for general commonsense knowledge,
Social IQA (SIQA) (Sap et al., 2019) for social
psychology knowledge, and Physical IQA (PIQA)
(Bisk et al., 2020) for physical knowledge. To
determine which ones can be effective for our
task, we fine-tuned a Flan-T5-base model on the
union of BrainTeaser’s training set and each of the
mentioned dataset’s training data, and compared
their accuracies with a similar model fine-tuned
on BrainTeaser only (Table 2). As expected, fine-
tuning on a combination of BrainTeaser and com-
monsense datasets enhances the model’s perfor-
mance in all cases. It is also notable that, despite
being the smallest dataset, RiddleSense improves
the model’s accuracy more than any other dataset,
possibly because of its distribution overlap with
BrainTeaser, as they both have been collected from
public websites and deal with computational cre-
ativity.

Following (Khashabi et al., 2020), we generate
training batches so that each one contains almost
the same number of examples from each dataset.

The datasets mentioned in our study serve
as valuable resources for enhancing the perfor-
mance of our multiple-choice QA (MCQA) models.
Among these datasets, RS, CSQA, and PIQA are
inherently structured as MCQA datasets, making
them suitable for direct use in our experiments.
However, to incorporate SWAG, HellaSWAG, and
SIQA into our study, we need to transform their for-
mats into MCQA. For SWAG, we consider sent1
as the question and concatenate sent2 with all po-
tential endings to create the options. Similarly,
in HellaSWAG, ctx-a is treated as the question,
while ctx-b is prepended to each possible ending
to form the options. Finally, in SIQA, the combi-
nation of the context and question fields in each
sample constructs the final question.

4.4 Model Selection
As discussed in Section 2, we fine-tuned two
groups of models, BERT-based and T5-based mod-
els. Following the results of the previous section
(Section 4.3), all models were fine-tuned on a com-
bination of BrainTeaser and RiddleSense. Despite

Metric Accuracy Ranking

ori 92.5 4
sem 95.0 3
con 82.5 6
ori-sem 92.5 4
ori-sem-con 82.5 5
overall 90.0 7

Table 3: The accuracies and rankings of our submission
based on different official metrics. Refer to Section 3.3
for more details about the evaluation metrics.

the potential performance improvement from in-
cluding other datasets, we limited our training set
to RiddleSense and BrainTeaser for computational
feasibility.

The reported results in Table 4 indicate that
Unified-QA’s performance is approximately on par
with or outperforms Flan T5. This is expected
because Unified-QA-v2 was specifically trained
for question answering on many QA datasets, in-
cluding CSQA, PIQA, and SIQA (Khashabi et al.,
2022), which can enhance the performance on
BrainTeaser as shown in the previous section. In
the case of BERT-based models, not only does
DeBERTa-v3 surpass all other BERT-based mod-
els, but it also achieves the highest test accuracy
among all models and slightly outperforms the hu-
man performance, suggesting the effectiveness of
its architecture for this task.

5 Results and Error Analysis

5.1 Competition Results

We submitted our DeBERTa-v3-large 2 model (Ta-
ble 4) during the competition, ranking 7 in the
official leaderboard. See Table 3 for more details.

5.2 Error Analysis

There is a 12.5% gap between the accuracies of our
best DeBERTa-v3 model on ori-sem and con (see
Table 5), signifying that even though our model
learns the semantics of puzzles very well, it some-
times fails to generalize the underlying reason-
ing paths to other similar situations. This gap is
much narrower (5%) for our Unified-QA-v2 model,
which outperforms the DeBERTa-v3 on context-

2Please note that the DeBERTa-v3-large checkpoint used
in our submission was selected before the release of the of-
ficial test set. For analysis of our best checkpoint, refer to
Section 5.2.
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Model # Params CV Accuracy Test Accuracy 1

ALBERT v2 xlarge 59M 79.38 75.83
ALBERT v2 xxlarge 223M 76.06 83.33
RoBERTa base 125M 81.42 80.83
RoBERTa large 355M 83.47 86.67
DeBERTa v3 base 184M 85.90 87.50
DeBERTa v3 large 2 434M 89.47 93.33

Flan T5 base 223M 81.43 82.50
Flan T5 large 750M 82.22 84.17
Unified QA v2 base 223M 80.49 84.17
Unified QA v2 large 734M 80.64 90.08

Human (Jiang et al., 2023) - - 91.98

Table 4: The overall 5-fold cross-validation and test accuracies of BERT-based and T5-based models
1 Best accuracies on the official test set released after the evaluation phase
2 Our submission during the evaluation phase

reconstruction adversarial examples by 2.5% de-
spite underperforming it on original and semantic-
reconstruction examples, suggesting that T5-based
models may learn to generalize the reasoning paths
in the BrainTeaser task better than BERT-based
models.

The Unified-QA-v2 model also outperforms
DeBERTa-v3 on questions to which "None of
above." is the answer (see Table 5), which is ex-
pected because T5-based models have access to
all possible choices while BERT-based models can
only see one choice at a time (see Figure 1 and
Figure 2).

Five of the six groups that included incorrect
predictions from DeBERTa-v3 and Unified-QA-v2
(see Table 5) are identical, and among the errors
made in these five groups, six out of seven wrong
predictions belong to the same questions, which in-
dicates that the two models almost made the same
mistakes. Analyzing those six questions shows us
that half of them are related to the models’ under-
standing of math.

6 Conclusion

In this study, we investigated the effectiveness of
fine-tuning various language models (including
BERT-based and T5-based models) on the Brain-
Teaser benchmark. We demonstrated the efficacy
of multi-task fine-tuning on additional common-
sense datasets and its impact on performance in
BrainTeaser.

Although our best models achieved performance

Metric DeBERTa-v3 Unified-QA-v2

ori 97.5 92.5
sem 97.5 92.5
con 85.0 87.5
ori-sem 97.5 92.5
ori-sem-con 85.0 85.0
overall 93.3 90.8
choice d1 87.0 93.0
false answers 8 11
false groups 6 6

Table 5: A comparison between the performance of our
best models - 1Overall accuracy of questions to which
"None of above." is the answer.

surpassing human levels, it’s important to note that
our study was limited to language models with
fewer than one billion parameters and training sets
comprising at most two datasets combined. Future
research could explore extending this study in these
directions, as well as investigating other aspects of
computational creativity and question-answering.

We hope that our work inspires future research
in these areas and contributes to the ongoing ad-
vancement of natural language understanding and
reasoning.
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