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Abstract

This paper introduces the system developed by
USTC-BUPT for SemEval-2024 Task 8. The
shared task comprises three subtasks across
four tracks, aiming to develop automatic sys-
tems to distinguish between human-written
and machine-generated text across various do-
mains, languages and generators. Our system
comprises four components: DATeD, LLAM,
TLE, and AuDM, which empower us to effec-
tively tackle all subtasks posed by the challenge.
In the monolingual track, DATeD improves
machine-generated text detection by incorpo-
rating a gradient reversal layer and integrating
additional domain labels through Domain Ad-
versarial Neural Networks, enhancing adapta-
tion to diverse text domains. In the multilin-
gual track, LLAM employs different strategies
based on language characteristics. For English
text, the LLM Embeddings approach utilizes
embeddings from a proxy LLM followed by a
two-stage CNN for classification, leveraging
the broad linguistic knowledge captured during
pre-training to enhance performance. For text
in other languages, the LLM Sentinel approach
transforms the classification task into a next-
token prediction task, which facilitates easier
adaptation to texts in various languages, espe-
cially low-resource languages. TLE utilizes
the LLM Embeddings method with a minor
modification in the classification strategy for
subtask B. AuDM employs data augmentation
and fine-tunes the DeBERTa model specifically
for subtask C. Our system wins the multilin-
gual track and ranks second in the monolingual
track. Additionally, it achieves third place in
both subtask B and C.

1 Introduction

The burgeoning capabilities of large language mod-
els (LLMs), exemplified by ChatGPT (OpenAI,
2022), GPT-4 (OpenAI, 2023) and Llama (Touvron
et al., 2023a), have made machine-generated text
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more fluent and human-like, which has led to an in-
creasing concern about the abuse of LLMs such as
misinformation spread (Bian et al., 2023; Hanley
and Durumeric, 2024; Pan et al., 2023) and dis-
ruption in education system (Perkins et al., 2023;
Vasilatos et al., 2023). So far humans perform
only slightly better than chance when distinguish-
ing between text generated by LLMs and human
(Mitchell et al., 2023), so it calls for an automatic
system to identify machine-generated text.

To this end, MBZUAI NLP department holds
SemEval-2024 Task8, which consists of three sub-
tasks. Subtask A focuses on determining whether
a full text is human-written or machine-generated.
The biggest challenge lies in the domain differ-
ence between the training set and test set while
the multilingual track requires strong adaptation
to text across various languages. It demands the
model to have a strong capability of generaliza-
tion in out-of-domain scenarios. Subtask B aims at
doing multi-way machine-generated text detection
and brings a new challenge of identifying the text
source without knowing the domains in the test set.
Subtask C proposes human-machine mixed text
detection, which gives a text where the first part
is human-written and the second part is machine-
generated. The goal is to robustly determine the
boundary where the change occurs using a fairly
small training set. A detailed description can be
found in the task description paper (Wang et al.,
2024).

Currently, training-based machine-generated
text detection strategies such as fine-tuning
RoBERTa model (Solaiman et al., 2019) under-
perform in the out-of-domain scenario. Promi-
nent zero-shot methods (Mitchell et al., 2023; Yang
et al., 2023) can only discriminate whether a text is
produced by a specific LLM or by a human. Sniffer
(Li et al., 2023) and SeqXGPT (Wang et al., 2023a)
appear to handle the problem of subtask B and
C, but the claimed result is based on the assump-
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tion that we know the origins of the text. There-
fore, we propose our system, which consists of
Domain-Adaptive Text Detection (DATeD), LLM-
Powered Language-Aware Model (LLAM), Three-
stage LLM Embeddings (TLE) and Augmented
DeBERTa Model (AuDM). It performs outstand-
ingly in out-of-domain scenarios, especially in sub-
task A.

In DATeD, we enhance performance by innova-
tively incorporating Domain Adversarial Neural
Networks (DANN) (Ganin et al., 2016) into the
task of machine-generated text detection. DANN
consists of a feature extraction layer and a category
predictor, forming the backbone network to pre-
dict classification labels. Furthermore, the domain
classifier is connected to the backbone network
through a gradient reversal layer for classifying
domain labels. This enables the model to learn
transferable features between the training and de-
velopment set, effectively overcoming challenges
in out-of-domain scenarios. We achieve second
place out of 126 participants.

In LLAM, we handle text from various lan-
guages in a distinct manner. For English text, we
employ LLM Embeddings, leveraging the powerful
representation capabilities of LLM by directly ex-
tracting embeddings from the last layer of a proxy
LLM, and we classify the text using a two-stage
CNN. For text in other languages, we utilize LLM
Sentinel, which reframes the classification task as
a next-token prediction task. We win the first place
in the track among 59 participants.

In TLE, we utilize the LLM Embeddings method
mentioned above, with only a minor difference in
the classification strategy. We rank third out of 70
participants.

In AuDM, we fine-tune a DeBERTa-base (He
et al., 2021) model with a linear layer for token
classification. This is an easy but effective system
and ranks third out of 30 submissions.

In short, our contributions are as follows:
(1) We come up with a comprehensive system

for machine-generated text detection in varies sce-
narios (Section §3), which significantly improves
the performance compared to the baseline in all
subtasks (Section §5).

(2) We utilize DANN in machine-generated text
detection in DATeD (Section §3.1), and employ two
adaptive strategies leveraging LLM capabilities in
LLAM (Section §3.2).

(3) Extensive experimental analysis demon-
strates the effectiveness of DATeD and LLAM (Sec-

tion §5).

2 Related Work

2.1 Detecting LLM-Generated Text

The detection of machine-generated text is often
expressed as a classification task. One way to
solve this problem is to use supervised learning
to train classification models on datasets that con-
tain both machine-generated and human-written
text. For example, GPTZero (Tian, 2023) collects
human-written text from a variety of domains, in-
cluding student-written articles, news articles, and
question-and-answer datasets across multiple dis-
ciplines. G3Detector (Zhan et al., 2023) claims to
be a general-purpose gpt generated text detector
implemented by fine-tuning RoBERTa-large (Liu
et al., 2019), however, the effect of text detection
generated by multiple generators will be poor. T5-
sentinel (Chen et al., 2023) trains RoBERTa and
T5 (Raffel et al., 2023) classifiers on the OpenG-
PTText dataset they built, and then uses the T5
model’s ability to predict the conditional proba-
bility of the next word to classify multiple text
sources. SeqXGPT (Wang et al., 2023a) introduces
the sentence-level detection challenge by synthe-
sizing a dataset containing documents that have
been polished with a Large Language Model. Se-
qXGPT uses sequence annotation methods to train
its model and selects the most frequent class as sen-
tence class, which provides a scheme for subtask
C. However, a model explicitly trained to detect
machine-generated text may overfit the training
distribution of its domain (Bakhtin et al., 2019),
resulting in poor generalization.

In addition, (Solaiman et al., 2019) notes the
surprising power of a simple zero-shot method for
machine-generated text detection, which thresh-
olds candidate paragraphs based on their aver-
age log-probability under a generative model, a
powerful baseline for many zero-shot learning
machine-generated text detection tasks. Detect-
GPT (Mitchell et al., 2023) demonstrates that text
sampled from LLMs tends to occupy regions of
negative curvature of the model’s log-probability
function. Building upon this observation, a new
curvature-based criterion is defined to determine
whether a paragraph is generated by a given LLM.
Its outstanding performance can only be guaran-
teed by a large disturbance function and a large
number of perturbations, so more computational
resources are required.

1512



2.2 Domain Adversarial Neural Networks

Machine learning models typically assume that the
training and test sets come from the same data
distribution. However, labeled data is scarce, and
it is the norm for unlabeled data, which may not
align with the distribution of labeled data (Has-
sanPour Zonoozi and Seydi, 2023), to constitute
the majority of the data. In the task of machine-
generated text detection, there are cases where the
sources and generators differ between the source
domain and the target domain. For instance, in the
monolingual track of subtask A, the test set may
include sources and models, such as BLOOMZ
(Muennighoff et al., 2022), that are not present in
the training set. Across data generated by different
models, significant differences may exist in content
style, text length, word frequency, and other distri-
butions. This discrepancy results in models trained
on labeled training data failing to generalize well
to detect text data generated by other models. The
core issue addressed by domain adversarial neu-
ral networks (Ganin et al., 2016) is mitigating the
impact of inconsistent data distributions between
the training and test sets on the performance of
machine learning models. This enables models to
learn sufficiently robust text representations and
reduce differences in data distributions at the rep-
resentation level. Introducing domain adversarial
neural networks into monolingual generated text
detection enhances the model’s ability to general-
ize and transfer across different machine-generated
text models (Chen et al., 2020).

3 System Overview

Our system consists of four components: DATeD,
LLAM, TLE and AuDM. Each of these compo-
nents addresses one of the four tracks of the task
respectively.

In subtask A, we aim to do machine-generated
text detection on mono/multilingual data. In the
monolingual track, the domains in test set differ a
lot from ones in training set. We innovatively apply
DANN to the detection in DATeD. This is achieved
by adding a gradient reversal layer on top of the
base model. Additionally, besides category labels,
we incorporate extra domain labels into the dataset
(training set: 0, development set: 1), enabling the
model to learn transferable features between the
training and development set (Section §3.1).

In the multilingual track, another challenge is
that the model is supposed to have robust gener-

alization capabilities to adapt to the distinct char-
acteristics of different languages, especially low-
resource languages. We propose LLAM, which
employs different methods for different languages.
For text identified as English, we feed it into a
proxy LLM to extract embeddings from the last
layer and subsequently pass it through a two-stage
CNN for classification. In the case of non-English
text, we redefine the classification task as a next-
token prediction task (Section §3.2).

In multi-way text detection, texts originate from
human, ChatGPT, Cohere, Davinci, BLOOMZ and
Dolly (Conover et al., 2023). The challenge lies
in distinguishing texts generated by various LLMs.
Therefore we conduct a three-stage classification
based on the LLM Embeddings method (TLE) men-
tioned in the multilingual track to better fit the sce-
nario of multi-classification (Section §3.3).

In human-machine mixed text detection, the tar-
get is to do fine-grained detection. Inspired by the
wide use of BERT (Devlin et al., 2019) in sequence
labeling task, we fine-tune a DeBERTa model with
data augmentation (AuDM) to classify each token
in a text (Section §3.4).

3.1 Domain-Adaptive Text Detection
The overall process of Domain-Adaptive Text De-
tection is illustrated in Figure 1. The model com-
prises three components: a feature extraction layer
(such as RoBERTa) acquires text representation, a
category predictor determines whether the given
text is machine-generated, and a domain classifier
is employed to mitigate differences in data distri-
bution between the training and development sets,
thereby enhancing the generalization capability of
machine-generated text detection.

The feature extractor and label predictor
constitute a feedforward neural network serving as
the backbone of machine-generated text detection,
utilized to classify data from the source domain.
The label predictor employs MLP for classification,
aiming to predict labels accurately. Following the
feature extractor, we append an additional branch
called the domain classifier. The domain classifier
is interconnected through a gradient reversal layer
to classify data in the feature space, determining
whether it originates from the source domain or
the target domain.
Forward propagation During forward prop-
agation, given an input text of n tokens
x = {x1, · · · , xn}, we initially input the text
x into the model. We opt for RoBERTa as the
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Figure 1: Overall architecture of DATeD

feature extractor Gf (·), utilizing the output vector
corresponding to the CLS token as the semantic
representation of the input text, denoted as Gf (x).
Subsequently, Gf (x) is simultaneously fed into
the label predictor Gy(·) and the domain classifier
Gd(·), yielding Gy(Gf (x)) and Gd(Gf (x)) ,
representing the category label y and the domain
label d, respectively (as shown in the green and
blue sections depicted in Figure 1).
Back propagation During back propagation,
the cross-entropy loss function is computed by
comparing the category labels y predicted by the
category predictor with the actual labels in the
source domain, resulting in category loss (Ganin
and Lempitsky, 2015). Additionally, we calculate
the cross-entropy loss function by comparing
the domain labels d classified by the domain
classifier with all data from both the source
and target domains, obtaining domain loss. It
is worth mentioning that the gradient reversal
layer behaves like a feedforward neural network
during forward propagation. However, during
backward propagation, the gradients are reversed
(we achieved by multiplying by a negative identity
matrix). Finally, the model updates its label
predictor and domain classifier by summing up
their respective losses (as shown in Formula 1).
This setup enables the label predictor to distinguish
categories in the source domain data (Ganin
et al., 2016), while rendering the domain classifier
unable to discern the origin domain of the data.

Lall = Ly + λLd (1)

Ly represents the label predictor loss in the source
domain, Ld represents the domain classifier loss, λ
is a hyperparameter.

3.2 LLM-Powered Language-Aware Model
In the multilingual machine-generated text detec-
tion task, we propose our model LLAM, which
employs the language identification tool langde-
tect 1 to determine the language of the input text
first. Then, we utilize LLM Embeddings and LLM
Sentinel to detect English and non-English text re-
spectively. The overall architecture of LLAM is
depicted in Figure 2.
LLM Embeddings For English text, we use Llama-
2-70B (Touvron et al., 2023b) as the proxy LLM to
obtain embeddings of the input text. Given an input
text of n tokens x = {x1, · · · , xn}, we initially
input the text x into the proxy LLM to get the to-
ken embeddings from the last layer. Subsequently,
we calculate the average of token embeddings h
to serve as the text representation. This represen-
tation is then inputted into a two-stage CNN for
classification. In the first stage, the CNN extracts
relevant features from the input representation h.
This process is accomplished through the utiliza-
tion of three convolutional and pooling layers. In
the second stage, the extracted feature is fed into
three fully connected linear layers to output class
probabilities p. The model is trained by minimiz-
ing the cross-entropy loss.
LLM Sentinel (Chen et al., 2023) have proposed
utilizing the base LLM’s inherent next-token pre-
diction ability for detection, advancing the field by
choosing the T5 model as the base LLM. Draw-
ing inspiration from this approach, for non-English
text, we choose the mT5-large model as our proxy
LLM. LLM Sentinel relies on the LLM’s capa-
bility to predict the conditional probability of the
next token. Given an input text of n tokens

1https://pypi.org/project/langdetect/
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Figure 2: Overall architecture of LLAM

x = {x1, · · · , xn}, let Y denote the set of la-
bels in this particular task, which contains "hu-
man" and "machine". We can establish a bijection
f : Y → Y , where Y serves as a stand-in for the
labels. Consequently, we reframe the binary classi-
fication task x → Y as a next-token prediction task
x → Y . To accomplish this, we employ reserved
tokens, Y , which are not present in the text dataset.
Specifically, We use < extra_id_0 > for human
and < extra_id_1 > for machine. Therefore, the
binary classification task can be effectively tackled
using the LLM:

ŷ = f−1

(
argmax

y∈Y
P(y|x)

)
(2)

Besides, in order to adapt to the characteristics
of natural language, our team add a prompt be-
fore the detected text to fine-tune the LLM to per-
form it. The prompt used by our team is "Dis-
cern whether the following text is authored by a
human or a machine. If human-written, respond
with < extra_id_0 >; if machine-generated, re-
spond with < extra_id_1 >: ’text’". Regard-
ing the model’s output, the decoding space con-
sists of token probabilities for the entire dictionary.
We simply need to extract the probability distri-
bution over the set Y , corresponding to the token
probabilities for < extra_id_0 > (human) and
< extra_id_1 > (machine). We then compare
their magnitudes and select the larger of the two as
the prediction result.

3.3 Three-stage LLM Embeddings
Building upon the LLM Embeddings approach out-
lined in Section 3.2, TLE additionally employs a
three-stage classification process to address sub-
task B. Firstly, we distinguish between human-
generated and machine-generated text. Subse-
quently, we categorize ChatGPT and Cohere as
a single class for a four-class classification, dif-
ferentiating them from Davinci, BLOOMZ, and
Dolly. Given the challenges we encountered in dis-
tinguishing between Cohere and ChatGPT in our
initial experiments, we proceed with a binary clas-
sification specifically focusing on ChatGPT and
Cohere.

3.4 Augmented DeBERTa Model
In human-machine mixed text detection, we set up
a model with a DeBERTa-base layer and a linear
layer. The human token is classified as 0 and the
machine token is classified as 1. The boundary is
where the change of 0 to 1 occurs. We also perform
data augmentation by employing Llama-2-7B to
further generate training data.

4 Experimental setup

4.1 Datasets and Evaluation Metrics
Datasets The dataset for this task is an extension of
the M4 (Wang et al., 2023b) dataset. Unlike the M4
dataset, this task samples human data to ensure data
balance. New domains, generators, and languages
appear in the test set to evaluate the generalization
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ability of the algorithm. See Table 1 and Table 4
for the division of the dataset. See Appendix A for
more details.

Train Dev Test

Human 63351 2500 16272
Machine 56406 2500 18000

Total 119757 5000 34272

Table 1: Dataset division of monolingual track for sub-
task A.

Train Dev Test

Human 83846 2000 20238
Machine 88571 2000 22140

Total 172417 4000 42378

Table 2: Dataset division of multilingual track for sub-
task A.

Train Dev Test

Human 11997 500 3000
ChatGPT 11995 500 3000
Cohere 11336 500 3000
Davinci 11999 500 3000

BLOOMZ 11998 500 3000
Dolly 11702 500 3000
Total 71027 3000 18000

Table 3: Dataset division of subtask B.

Train Dev Test

3649 505 11123

Table 4: Dataset division of subtask C.

Evaluation Metrics The evaluation metrics for
subtask A and B are accuracy. Accuracy is the ratio
of the number of samples that the model predicts
correctly to the total number of samples. Subtask
C is evaluated using the MAE metric, which calcu-
lates the absolute difference between the predicted
and actual boundary positions for each sample and
takes the average value. The performance is better
when MAE is smaller.

4.2 Training

Domain-Adaptive Text Detection In the mono-
lingual track of subtask A, we initially define the
training set and development set as the source do-
main and target domain respectively. Apart from
the class labels provided by the dataset, we aug-
ment both the source and target domain datasets
with additional domain labels. Specifically, the
domain labels for the source domain samples are
categorized into one class (e.g., labeled as 0), while
the domain labels for the target domain samples are
categorized into another class (e.g., labeled as 1).
Since the overall loss computation includes both
the label loss from the source domain and the do-
main loss from both the source and target domains,
an equal number of samples from both the source
and target domains is necessary to calculate the
total loss. Therefore, it is imperative to balance
the proportion of samples between the source and
target domains. Please refer to Appendix B.1 for
detailed settings.
LLM-Powered Language-Aware Model LLAM
is composed of two parts: the LLM Embeddings
model and the LLM Sentinel model. During the
training process of our LLM Embeddings model,
we split the training set into new training and de-
velopment sets in a 9:1 ratio. The highest accuracy
attained on the new development set during train-
ing is used to select the best checkpoint. Our final
LLM Sentinel model is trained with the complete
training set of this subtask and undergoes validation
on the entire development set of the same subtask
after each epoch. The final model chosen is the
one demonstrating the optimal performance on the
development set. For more details about the experi-
ment, please refer to Appendix B.2.
Three-stage LLM Embeddings Our final model
is trained in three stages, utilizing data from the
corresponding categories in the subtask B dataset
for each stage. See more details in Appendix B.3.
Augmented DeBERTa Model For our final sub-
mission, we do augmentation by adding the devel-
opment set to the training set and using Llama-2-7B
to continue generating based on training data. The
checkpoint with the lowest MAE on the develop-
ment set is chosen for submission. More details are
in Appendix B.4.

5 Results

In this section, we report our results on all three
subtasks and discuss our findings of the current
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System Accuracy
Baseline 88.46
Genaios 96.88
mail6djj 95.76
L3i++ 85.83
QUST 84.16
USTC-BUPT (ours) 96.10

Table 5: Performance on subtask A: monolingual track.

work. We provide the final submission results, as
well as the results from several top-ranked systems.

5.1 Subtask A: Monolingual Track

In this part, we present a portion of the official
results from the monolingual track and analysis of
the selection process for target domain data.

5.1.1 Main Results
There are 126 teams that participate in the mono-
lingual track. Due to the limited space, we only
compare our system with the systems from teams
Genaios, mail6djj, QUST and L3i++. The official
results are shown in table 5. Our system achieves
an accuracy of 96.10% and secures second place
in the official ranking, surpassing the baseline of
88.46% by 7.64%. This indicates that adding do-
main adversarial neural networks solves the im-
pact of inconsistent data distribution between the
training and test set, enabling the model to learn
transferable features between the two sets, thus sig-
nificantly improving model performance. Upon
reviewing the methods published by other partic-
ipants, we find that our result (96.10%) is not far
from Genaios (96.88%). Notably, while Genaios
utilizes the larger Llama-2-13B model, we achieve
similar performance using the smaller RoBERTa-
base model.

5.1.2 Target Domain Data Selection
We conduct a series of experiments regarding qual-
itative and quantitative data selection. Qualitative
analysis aims to verify whether the target domain
utilizes the development set or the test set. This
is because the generative models utilized in the
training set and the test set may overlap. Using the
test set directly as the target domain could result
in texts generated by the same generative model
(belonging to the same domain) being assigned dif-
ferent domain labels. According to our submitted
results, training with the development set as the
target domain results in the best performance with

System Accuracy
Baseline 80.89
FI Group 95.84
KInIT 95.00
priyansk 93.77
L3i++ 92.87
USTC-BUPT (ours) 95.99

w/o LLM Embeddings 92.03
w/o LLM Sentinel 82.05

Table 6: Performance on subtask A: multilingual track.

an accuracy of 96.10%. However, training with
the test set as the target domain results in an accu-
racy of only 88.70%. Observing the distribution of
generative models in the test set further validates
these findings. The test set comprises existing mod-
els such as ChatGPT, Cohere, and also features
the emergence of a new generation model, GPT-
4. Thus, utilizing the test set as the target domain
could lead to misdefined domain labels.
Quantitative analysis aims to explore how many
repetitions of the target domain could yield better
results. This is because updating the loss necessi-
tates domain label loss from both the source do-
main and target domain, as discussed in Section
§4.2 about DATeD, which requires an equal number
of samples from each. Hence, the number of target
domain samples to be duplicated needs exploration.
According to our submitted results, repeating the
target domain 15 times yields nearly the same num-
ber of samples as the source domain, resulting in
the best performance with an accuracy of 96.10%.
When repeated three times, the detection accuracy
in the test set decreased to 91.75%.

5.2 Subtask A: Multilingual Track

In this part, we offer partial results from the leader-
board in the multilingual track and perform an ab-
lation study.

5.2.1 Main Results
There are 59 teams that participate in the multilin-
gual track. Due to the limited space, we only com-
pare our system with the systems from teams FI
Group, KInIT, priyansk, L3i++. The official results
are shown in Table 6. Our system achieves the best
result in the official ranking with 95.99% accuracy,
surpassing the baseline by 15.10%. This showcases
the powerful representational capacity of LLMs
and encourages us to explore further strategies to
leverage it.
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System Accuracy
Baseline 74.61
AISPACE 90.85
Unibuc-NLP 86.96
dianchi 83.48
L3i++ 83.12
USTC-BUPT (ours) 84.33

w/o three-stage strategy 80.94

Table 7: Part of the official results for subtask B.

5.2.2 Ablation Study
We conduct extensive ablation experiments to show
the effectiveness of LLM Embeddings and LLM
Sentinel respectively. The results are shown in Ta-
ble 6. When we remove the language discriminator
and only use the LLM Sentinel method, the accu-
racy drops to 92.03%. Since mT5 is designed for
multilingual text-to-text tasks, its training corpus
may be more biased towards encompassing texts
in diverse languages rather than focusing on a spe-
cific language, such as English. Consequently, this
could result in inferior performance on English text
classification tasks due to the model’s lack of ex-
posure to a sufficient amount of English texts for
optimal training. However, when we solely utilize
the LLM Embeddings method, the accuracy de-
creases to 82.05%. Since most of the training data
for Llama-2-70B is in English, its ability to com-
prehend other languages is limited. The potential
of other multilingual LLMs awaits exploration in
future research. A more detailed discussion is in
the Appendix C.

5.3 Subtask B: Multi-Way Track

Our final submission achieves an accuracy of
84.33%, marking a 9.72% improvement over the
baseline, as shown in Table 7. This indicates that
LLM can capture subtle differences between dif-
ferent models, allowing for classification based on
these distinctions. Furthermore, rather than directly
implementing multi-classification, we embrace a
three-stage strategy. This results in an enhancement
in model performance from 80.94% to 84.33%, sug-
gesting that we can prioritize the classification of
categories with a significant gap before handling
the others.

5.4 Subtask C: Mixed Track

After the release of the golden label, we test the
performance of our model with a Bi-LSTM (Zhou

System MAE
Baseline 21.535
TM-TREK 15.684
AIpom 15.940
Fine-tuned RoBERTa-large 20.876
Fine-tuned DeBERTa-large 18.075
USTC-BUPT (ours) 17.702

with Bi-LSTM 16.556

Table 8: Part of the official results for subtask C.

et al., 2016) layer. The MAE of our final submis-
sion is 17.702, and the new result is 16.556, only
slightly larger than the SOTA benchmark by TM-
TREK but saliently smaller than the baseline as
seen in Table 8. This shows the strong ability of
DeBERTa to extract effective contextualized fea-
tures, while LSTM (Hochreiter and Schmidhuber,
1997) helps process sequential information in the
text. The result compared with DeBERTa-large
also shows that the effectiveness of the encoder
model is not linear with the scale.

6 Conclusion

In conclusion, this paper presents the development
and performance of our system for the SemEval-
2024 Task 8. Our system wins the multilingual
track and secures second place in the monolin-
gual track. Additionally, we attain third place in
both subtask B and subtask C. We demonstrate
the efficacy of incorporating DANN, which sig-
nificantly enhances out-of-domain accuracy by in-
troducing a gradient reversal layer and integrating
additional domain labels. Leveraging LLM embed-
dings proves to be a straightforward yet effective
method, harnessing the representation capabilities
of LLM without fine-tuning. Furthermore, our im-
plementation of LLM Sentinel exhibits remarkable
performance, especially in low-resource language
scenarios. In the future, we plan to investigate the
application of DANN to multi-label classification
scenarios and explore more effective strategies to
leverage LLM embeddings.
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A Data

In the monolingual track of subtask A, the
dataset contains both human-written and machine-
generated text. Different from the training and
development set, all the data in the test set comes
from a new area: student essays Outfox, and a new
generator GPT-4 appears to generate machine text.

In the multilingual track, the text is not only in
English, but also in Chinese, German, Russian and
other languages. Compared to the training and the
development set, two new fields of Outfox and Ital-
ian text appear in the test set, and new generators
Llama-2-finetune and Jais-30B (Sengupta et al.,
2023) are used to generate machine text.

In the dataset of subtask B, the generators re-
main the same in the training set, development set
and test set, including Human, ChatGPT, Cohere,
Davinci, BLOOMZ and Dolly. However, the text of
the test set is only from the student essays Outfox
instead of wikiHow, etc.

Each text of the subtask C dataset is composed
of human-written text and machine-generated text,
and its label is an index, representing the boundary
where the change occurs.

Tables 9 to 12 detail the data sources and the
distribution of the model, which is conducive to
evaluating the model’s generalization ability.

Train Dev Test

wikiHow ✓ ✓
Wikipedia ✓ ✓

Reddit ✓ ✓
arXiv ✓ ✓

PeerRead ✓ ✓
Outfox ✓

Table 9: Source distribution of subtask A monolingual
track.

Train Dev Test

Human ✓ ✓ ✓
ChatGPT ✓ ✓
Cohere ✓ ✓
Davinci ✓ ✓
Dolly ✓ ✓

BLOOMZ ✓ ✓
GPT-4 ✓

Table 10: Model distribution of subtask A monolingual
track.
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Train Dev Test

wikiHow ✓
Wikipedia ✓

Reddit ✓
arXiv ✓

PeerRead ✓
Bulgarian ✓

Urdu ✓
Indonesian ✓

Chinese ✓
Russian ✓
Arabic ✓ ✓

German ✓ ✓
Outfox ✓
Italian ✓

Table 11: Source distribution of subtask A multilingual
track.

Train Dev Test

Human ✓ ✓ ✓
ChatGPT ✓ ✓ ✓
Cohere ✓ ✓
Davinci ✓ ✓ ✓
Dolly ✓ ✓

BLOOMZ ✓ ✓
Llama 2 ✓
Jais-30B ✓

Table 12: Model distribution of subtask A multilingual
track.

B Detailed Experimental Setup

B.1 Domain-Adaptive Text Detection
Typically, the number of samples in the training set
far exceeds that in the development set, which can
also be observed in this competition dataset. The
imbalance between the domain labels of the source
and target domains is substantial, with 119,757
samples in the source domain and only 5000 sam-
ples in the target domain. To address this issue, we
innovatively repeat the target domain 15 times to
achieve a nearly 1:1 ratio of domain labels between
the source and target domains, without compro-
mising the genuine domain and classification label
values of the target domain.

We opt to utilize the pre-trained model
RoBERTa-base as the feature extraction layer for
DANN to extract features from the text to be de-

tected. Subsequently, we input the text information
separately into the label classifier and the domain
classifier. Apart from the batch size, which is set
to 32, which differs from the baseline, all other
hyperparameters remain consistent with the base-
line. Specifically, the learning rate is set to 2e-5,
and the optimizer selected is AdamW (Loshchilov
and Hutter, 2017). The maximum token truncation
length for the text is set to 512 tokens. We conduct
training for 10 epochs on a single NVIDIA A40
40GB GPU.

B.2 LLM-Powered Language-Aware Model
LLM Embeddings We utilize the int8 quantized
variant of Llama-2-70B as the proxy LLM for ob-
taining embeddings on a single NVIDIA A800
80GB GPU, with the maximum length set to 1024.
For the two-stage CNN, the input channel is set
to 1. A total of three convolutional layers are em-
ployed, with the number of kernels being 32, 64,
96 respectively. The sizes of their corresponding
kernels are 24, 16, 8. We use the AdamW optimizer
with a linear warmup decay learning schedule and
a dropout of 0.1. The batch size and learning rate
are set to 128 and 3e-4, and models are trained for
50 epochs.
LLM Sentinel We fine-tune the mT5-large model
for 15 epochs using two NVIDIA A40 GPUs.
Throughout this process, we utilize the Adafactor
optimizer (Shazeer and Stern, 2018) to minimize
GPU memory usage and expedite training. The
optimizer utilizes the following hyperparameters: a
learning rate of 1e-3, stability parameters of (1e-30,
1e-3), gradient clipping threshold of 1.0, learning
rate decay rate of -0.8, momentum parameter set
to None, weight decay of 0.0, relative step set to
False, parameter scaling set to False, and warm-up
initialization set to False. The maximum length
constraint is set to 1024.

B.3 Three-stage LLM Embeddings
The hyper-parameters of this experiment are con-
sistent with the method mentioned above for LLM
embeddings. Please refer to Appendix B.2 for more
details.

B.4 Augmented DeBERTa Model
All hyper-parameters synchronize with the baseline.
We only change the model structure and fine-tune it
using a single NVIDIA GeForce RTX 3090 GPU.
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Method Accuracy
T5-small (directly) 77.06
T5-small (prompt) 87.76
LLM Embeddings (English) 97.30
LLM Sentinel (English) 82.04
mT5-large 90.58
mT5-xl 73.56

Table 13: Performance comparison of different methods
on the development set.

C More Analysis of Multilingual Track

C.1 Prompt Impact
In the initial stages of the experiment, we com-
pared the impact of adding prompts on model
performance for monolingual binary classification
tasks. We trained and tested the T5 model using the
monolingual training and development sets, respec-
tively. The experimental results (Table 13) indicate
that adding prompts could effectively enhance the
model’s performance on this task. Therefore, for
multilingual task, we directly adopt the approach
of adding prompts.

C.2 Language-Aware Strategy
During the experimental phase, we compared the
performance of LLM Embeddings and LLM Sen-
tinel on English texts. We trained them using the
monolingual training set of subtask A and vali-
dated the monolingual development set. The ex-
perimental results are presented in Table 13. The
results demonstrate that LLM Embeddings outper-
form LLM Sentinel. Consequently, for English
text, we opt for LLM Embeddings.

C.3 LLM Selection
In the later stages of the experiment, we also ex-
plored larger models, such as mT5-xl. Considering
that the test set in the competition does not include
Russian, we evaluated the performance of mT5-xl
on languages other than Russian for this task. We
trained the mT5-xl model using the whole multilin-
gual training set and utilized texts from languages
other than Russian in the multilingual development
set as the new development set. The training was
conducted with the same experimental parameters
as mT5-large (see details in Appendix B.2). We
compare the best accuracy results of mT5-large
and mT5-xl on the new development set (Table
13). The experimental results indicate that employ-
ing larger models with more parameters does not

yield better experimental outcomes for this task.
Therefore, we choose mT5-large as our LLM.
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