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Abstract 

This study describes the model design of 
the NYCU-NLP system for the SemEval-
2024 Task 2 that focuses on natural 
language inference for clinical trials. We 
aggregate several large language models to 
determine the inference relation (i.e., 
entailment or contradiction) between 
clinical trial reports and statements that 
may be manipulated with designed 
interventions to investigate the faithfulness 
and consistency of the developed models. 
First, we use ChatGPT v3.5 to augment 
original statements in training data and then 
fine-tune the SOLAR model with all 
augmented data. During the testing 
inference phase, we fine-tune the OpenChat 
model to reduce the influence of 
interventions and fed a cleaned statement 
into the fine-tuned SOLAR model for label 
prediction. Our submission produced a 
faithfulness score of 0.9236, ranking 
second of 32 participating teams, and 
ranked first for consistency with a score of 
0.8092.  

1 Introduction 

Biomedical Natural Language Inference (NLI) 
seeks to determine whether a proposed statement is 
entailment, contradiction, or neutral according to a 
given clinical trial. The MEDIQA-2019 shared task 
(Ben Abacha et al., 2019) covered an NLI subtask 
in the medical domain, including clinical sentences 
from the MIMIC-III database (Romanov and 
Shivade, 2018). In this shared task, most systems 
were built on the BERT model (Devlin et al., 2019) 
and MT-DNN (Liu et al., 2019). The BERT-
BiLSTM-Attention model (Lee et al., 2019) was 
proposed for medical text inference. The 
DoubleTransfer model (Xu et al., 2019) was 
presented to use a multi-source transfer learning 

approach to acquire knowledge from MT-DNN and 
Sci-BERT (Beltagy et al., 2019). In addition, since 
the evaluation data is sourced from the clinical 
domain, variations of BERT such as BioBERT (Lee 
et al., 2020) and ClinicalBERT (Huang et al., 2020) 
were used frequently.  

SemEval-2023 Task 7 (Jullien et al., 2023b) 
(called NLI4CT) focused on multi-evidence 
natural language inference for Clinical Trial 
Reports (CTR) (Jullien et al., 2023a). Participants 
should determine the inference relation (i.e., 
entailment or contradiction) between CTR-
statements in the NLI subtask. The sentence-level 
and token-level encodings were exploited in a 
multi-granularity inference network (MGNet) 
(Zhou et al., 2023).  The DeBERTa-v3 model (He 
et al., 2023) was fine-tuned on the prompted input 
sentences to discriminate the inference relation 
between the statement and clinical trials (Wang et 
al., 2023b). The BioLinkBERT transformer 
(Yasunaga et al., 2022) was used with a soft voting 
ensemble mechanism to enhance the NLI 
performance (Chen et al., 2023). The Flan-T5 
model (Chung et al., 2022) was fine-tuned with 
instructions to explore its capabilities for multi-
evidence NLI (Kanakarajan and Sankarasubbu, 
2023). 

Following the success of the NLI4CT-2023 task, 
SemEval-2024 Task 2 (Jullien et al., 2024) re-
grounds this task in interventional and causal 
analyses of NLI models (Yu et al., 2022), with a 
contrast set containing the designed interventions 
and expected labels to investigate the faithfulness 
and consistency of the developed models. This task 
is based on the same collection of breast cancer 
CTRs (Jullien et al., 2023a). The statements in the 
training set are identical to those in the previous 
task, but perform a variety of interventions to 
statements on the development and test sets, 
making claims about a single CTR or comparing 
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two CTRs while either preserving or inversing the 
entailment relations. For the NLI4CT-2024 task, 
given a statement with/without interventions, the 
participating system should determine the 
inference relation as either entailment or 
contradiction.  

This paper describes the NYCU-NLP (National 
Yang Ming Chiao Tung University, Natural 
Language Processing Lab) system for the 
NLI4CT-2024 task. Given the promising results 
obtained by Large Language Models (LLM) for 
various NLP tasks, we aggregate several LLMs in 
biomedical NLI for clinical trials. We use ChatGPT 
(OpenAI, 2023) to augment original statements and 
then fine-tune the SOLAR model (Kim et al., 2023) 
with instructions designed for the NLI task. Since 
a statement may be manipulated during testing 
inference phase, we first fine-tune the OpenChat 
model (Wang et al., 2023a) to reduce the influence 
of interventions. Finally, a cleaned statement along 
with CTRs is fed into the fine-tuned SOLAR model 
for label prediction (i.e., entailment or 
contradiction). Evaluation results show that our 
proposed NYCU-NLP system had a faithfulness 
score of 0.9236, ranking second among 32 
participating teams, and ranked first for 
consistency with a score of 0.8092. 

The rest of this paper is organized as follows. 
Section 2 describes the NYCU-NLP system for the 
NLI4CT-2024 task. Section 3 presents the results 

and performance comparisons. Conclusions are 
finally drawn in Section 4. 

2 The NYCU-NLP System  

Fig. 1 shows our NYCU-NLP system architecture 
for the NLI4CT-2024 task. Our system is 
composed of four main parts:  1) ChatGPT 
(OpenAI, 2023) for data augmentation; 2) 
Instruction tuning on SOLAR (Kim et al., 2023); 3) 
OpenChat (Wang et al., 2023a) for intervention 
reduction; and 4) Fine-tuned LLM for label 
prediction.   

2.1 Data Augmentation 

We use ChatGPT (OpenAI, 2023) to augment the 
training data for intervention adaptation. Fig. 2 
shows the prompts inputted to the ChatGPT API 
(gpt-3.5-turbo-1106) and example outputs. We 
provide a system prompt to set up ChatGPT as a 
writer, skilled in rewriting sentences. For the first 
prompt, we obtain three rewritten statements 
without any restrictions. For the second prompt, we 
ask the LLM to rephrase four statements, each 
independently fulfilling the following 
requirements: 1) change as many words as possible 
except the existing words in primary and secondary 
trials; 2) change the order of existing words in the 
statement; 3) change percentage numbers to 
decimals and vice versa; and 4) change the 
numbers in terms of percentages and decimals to a 

 

Figure 1: Our NYCU-NLP system architecture for the NLI4CT-2024 task. 
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fraction form.  The above prompts are used for both 
entailment and contradiction labels. However, the 
third prompt is designed for the entailment label 
only, rewriting the original statements with 
contrary meanings to obtain contradictive 
inferences.  

We also clean augmented statements to remove 
potentially inappropriate statements. For prompts 
2-3 and 2-4, if the original statements do not 
contain numbers, but augmented statements 
contain numbers in any forms, we remove those 
augmented statements because these numbers are 
mostly hallucinations. 

2.2 Instruction Tuning 

We use original and augmented statements with the 
corresponding labels to fine-tune the SOLAR 
model (Kim et al., 2023). SOLAR-10.7B presents 
a depth up-scaling (DUS) technique to integrate 
Mistral 7B (Jiang et al., 2023) weights into the 
upscaled layers, and performs continued pre-
training for the entire model. Supervised fine-
tuning (SFT) and direct preference optimization 
(DPO) (Rafailov et al., 2023) were then used to 
fine-tune the model with designed instructions.  

 We continually fine-tune the SOLAR-10.7B-
Instruct-v1.0 LLM. We use instruction tuning (Wei 
et al., 2022) and LoRA (Hu et al., 2021) techniques 
with prompts shown in Fig. 3 to optimize the 
SOLAR model for this NLI task. Flash attention 

(Dao et al., 2022) is also used to reduce the GPU 
requirements and accelerate the model fine-tuning 
process.  

2.3 Intervention Reduction 

A testing statement may be manipulated with 
some interventions, including numerical reasoning, 
vocabulary and syntax, and semantics, to 
investigate the consistency and faithfulness of the 
developed models. Technical details used to 
perform the interventions were not disclosed 
during the evaluation phase.  

Therefore, we fine-tuned OpenChat v3.5 (Wang 
et al., 2023a) to reduce the influence of 
interventions. OpenChat is a framework used to 
advance open-source language models with mixed-
quality data. As shown in Fig. 4, we used two 
exemplars for two-shot prompt learning. First, we 

 

Figure 2: Prompts designed for data augmentation in ChatGPT v3.5. 

 

Figure 3: Prompts used for instruction tuning 
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randomly collected 10,000 abstracts published 
from Jan. 1st to Jan. 10th, 2024 from the arXiv 
preprint server. These were segmented into a total 
of 21,135 sentences. Finally, we randomly selected 
one sentence as an intervention sentence for both 
exemplars. The statements were selected from the 
training set, in which the first statement contains 
only one sentence and the second statement 
contains at least two sentences. 

During the evaluation phase, an original 
statement is regarded as a manipulated statement 
and the fine-tuned LLM is expected to identify a 
cleaned statement. In most cases, a cleaned 
statement is a part of an original statement for 
intervention reduction. If an output statement 
contains sentences that don’t belong to the original 
statement, the cleaned statement will be discarded 
and the original statement is used as the input for 
inference testing.  

2.4 Fine-tuned LLMs for Label Prediction 

Following the instruction shown in Fig. 3, the fine-
tuned LLM processes a given statement based on 
the CTRs and answers the question without 
explaining its reasoning in detail. In the LLM 
response, if the first token is Yes or True, the 
predicted label is entailment, and otherwise 
contradiction. If the first token belongs to neither 
of these characteristics, we will check the 
vocabulary table to determine the corresponding 

probabilities of Entailment and Contradiction 
tokens. If the former exceeds the latter, the 
predicted label is returned as entailment, and 
otherwise contradiction.   

3 Experiments and Results  

3.1 Data 

The datasets were mainly provided by task 
organizers (Jullien et al., 2024). A total of 1000 
collected breast cancer CTRs were used as known 
premises. The training set used 1,700 statements to 
make claims about a single CTR or to compare two 
CTRs labelled as either entailment or contradiction. 
We used these statements for data augmentation, 
producing a total of 13,484 generated statements 
for LLM fine-tuning.  

During the system development and evaluation 
phases, task organizers performed a variety of 
interventions on the statements in the development 
and test sets, either preserving or inversing the 
entailment relations. A total of 2,142 statements 
were used to develop the system and obtain the 
optimized parameters. Finally, the test set 
containing 5,500 statements was used to evaluate 
the system performance.  

3.2 Settings 

In addition to our fine-tuned SOLAR model (Kim 
et al., 2023), we used Mistral (Jiang et al., 2023), 

 

Figure 4: Prompts designed for intervention reduction in OpenChat v3.5. 
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Orca2 (Mitra et al., 2023) and Qwen (Bai et al., 
2023) LLMs for performance comparison. All 
models were downloaded from HuggingFace1. We 
continuously fine-tuned these models using the 
augmented training set. All models were 
configured to obtain the highest average 
faithfulness and consistency scores on the 
development set. The hyperparameter values of our 
used SOLAR LLM were finally optimized as 
follows: epochs 20; batch size 8; optimizer 
Adafactor; learning rate schedule used a cosine 
decay with optional warmup; warmup ratio 0.05; 
max learning rate 7.5e-5; LoRA r 16; LoRA alpha 
16; LoRA drop 0.05; max token length 2048 and 
original statement sample ratio 0.3.  

3.3 Metrics 

The control F1 measures fundamental model 
performance of those testing instances without 
interventions, identical to the previous NLI4CT-
2023 task and thus facilitating a direct performance 
comparison. 

 Faithfulness is estimated to measure the 
model’s ability to correctly change its predictions 
when exposed to a semantic-altering intervention. 
The better system is expected to make the correct 
prediction for the correct reason.  

Consistency measures the model’s ability to 
predict the same label for original statements and 
contrast statements for semantic-preserving 
interventions. The better system is expected to 
produce the same outputs for semantically 
equivalent problems.  

3.4 Results 

Table 1 shows our submissions obtained consistent 
results for the development and test sets. The 
SOLAR model (Kim et al., 2023) outperformed 
Orca2 (Mitra et al., 2023), Quwen (Bai et al., 2023) 

 
1 https://huggingface.co/upstage/SOLAR-10.7B-
Instruct-v1.0 
https://huggingface.co/microsoft/Orca-2-13b 

and Mistral (Jiang et al., 2023) LLMs for all 
metrics.  

Our SOLAR LLM achieved a control F1 score 
of 0.7790, significantly outperforming our 
submission for the NLI4CT-2023 task (F1 of 
0.7091) based on ensemble BioLinkBERT 
transformers (Chen et al., 2023). This confirms that 
using LLMs properly can outperform pre-trained 
language models for the same task. In addition, the 
number of parameters in the LLM doesn’t directly 
influence performance, indicating that model 
architecture is more important rather than scale.  

In our proposed system workflow, regardless of 
which LLM model was used as the main 
framework for the NLI task, a higher faithfulness 
score was achieved when compared with the 
consistency score. This indicates that an LLM 
usually makes correct predictions with correct 
reasons. 

In summary, in the NLI4CT-2024 task, our 
system based on the SOLAR model produced a 
promising faithfulness score of 0.9236, ranking 
second place among 32 participating systems, and 
ranked first for consistency with a score of 0.8092.  

4 Conclusions 

This study describes the NYCU-NLP submission 
for the SemEval-2024 NLI4CT task, including 
system design, implementation and evaluation. We 
aggregated several LLMs to determine the 
inference relation between CTRs and statements 
that may be manipulated with designed 
interventions to investigate the faithfulness and 
consistency of the developed models. Our system 
obtained a faithfulness score of 0.9236, ranking 
second among all 32 participating teams, and 
ranked first for consistency with a score of 0.8092. 

https://huggingface.co/Open-Orca/Mistral-7B-
OpenOrca 
https://huggingface.co/Qwen/Qwen-14B-Chat  

Model (#para) Development Test 
F1 Faithfulness Consistency F1 Faithfulness Consistency 

Orca2 (13B) 0.8223 0.8899 0.7914 0.7747 0.8692 0.7643 
Qwen (14B) 0.8367 0.8542 0.8076 0.7657 0.8681 0.7730 
Mistral (7B) 0.8500 0.9196 0.8213 0.7623 0.8611 0.7805 

SOLAR (10.7B) 0.8842 0.9554 0.8506 0.7790 0.9236 0.8092 

Table 1:  Fine-tuned LLM results for the development and test sets.  
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