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Abstract

This paper presents the MasonTigers’ entry
to the SemEval-2024 Task 8 - Multigener-
ator, Multidomain, and Multilingual Black-
Box Machine-Generated Text Detection. The
task encompasses Binary Human-Written vs.
Machine-Generated Text Classification (Track
A), Multi-Way Machine-Generated Text Classi-
fication (Track B), and Human-Machine Mixed
Text Detection (Track C). Our best perform-
ing approaches utilize mainly the ensemble of
discriminator transformer models along with
sentence transformer and statistical machine
learning approaches in specific cases. More-
over, zero-shot prompting and fine-tuning of
FLAN-T5 are used for Track A and B.

1 Introduction

In academia and beyond, machine-generated con-
tent is proliferating across news platforms, social
media, forums, educational materials, and schol-
arly works. Breakthroughs in large language mod-
els (LLMs), like GPT-3.5 and GPT-4, facilitate the
creation of fluent responses to diverse user queries.
While this capability raises prospects of replacing
human labor in various tasks, concerns arise about
potential misuse, including the generation of de-
ceptive misinformation (Chen and Shu, 2023) and
completing student assignments, which hinders the
development of essential writing skills (Jungherr,
2023).This highlights the importance of develop-
ing automated systems to detect and mitigate the
potential abuse of machine-generated content, as
well as distinguishing between machine-written
and human-generated text. Additionally, Prior stud-
ies (ZeroGPT 1; Mitchell et al., 2023; Bao et al.,
2023) predominantly adopted a binary classifica-
tion approach for machine-generated text (MGT),
with a primary focus on English. However, there

* denotes equal contribution.
1www.zerogpt.com/

has been limited research addressing the amalga-
mation of human-written and MGT texts (Wang
et al., 2024d).

In response to these limitations, SemEval-2024
introduces a shared task: Multigenerator, Mul-
tidomain, and Multilingual Black-Box Machine-
Generated Text Detection (Wang et al., 2024c).
This task comprises three subtasks, each target-
ing different aspects of machine-generated text
complexity.Subtask A focuses on Binary Human-
Written vs. MGT Classification, involving two
tracks: monolingual and multilingual. Subtask B
tackles Multi-Way Machine-Generated Text Clas-
sification to identify the source of a given text.
Subtask C involves detecting the transition point
within a mixed text, determining where it shifts
from human-written to machine-generated. The
data provided for this task is an expansion of the
M4 dataset (Wang et al., 2024d) and benchmark
evaluation of (Wang et al., 2024b). .

In conducting these tasks, we conduct a range
of experiments and observe that ensemble methods
outperform individual models significantly in clas-
sification tasks, e.g., Goswami et al. (2023) Emran
et al. (2024), Ganguly et al. (2024). Our weighted
ensemble approaches achieve accuracies of 74%,
60% and 65% in subtask A monolingual; multilin-
gual tracks and subtask B respectively, given that
we have used different models for both tasks. In
subtask C, we explore different setups, ensembling
which results in Mean Absolute Error (MAE) of
60.78. For the classifications, we utilize zero-shot
prompting and fine-tuning of FlanT52, while ad-
hering to the restriction of no data augmentation in
this task.

2 Related Works

The difficulties of separating human-written text
from large language models and the significance of

2huggingface.co/google/flan-t5-base/
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Source Train Dev
chatGPT Cohere Davinci Dolly Human Bloomz Human

arxiv 3000 3000 2999 3000 15498 500 500
peerread 2344 2342 2342 2344 2357 500 500
reddit 3000 3000 3000 3000 15500 500 500
wikihow 3000 3000 3000 3000 15499 500 500
wikipedia 2995 2336 3000 2702 14497 500 500
Total 54406 63351 2500 2500

Table 1: Label Distribution of Train and Validation Data for Binary Human-Written vs. Machine-Generated Text
Classification (Subtask A - Monolingual)

trustworthy methods for evaluation are highlighted
by recent research (e.g. Chaka 2024, Elkhatat
et al. 2023). In terms of human evaluation of
MGT, Guo et al. (2023) indicates that generated
texts from large language models tend to exhibit
less emotional and objective content compared to
human-written texts. Tang et al. (2023) suggests
that distinct signals left in the machine-generated
text may facilitate the identification of suitable fea-
tures to differentiate between MGT and human-
written texts. Whereas, Sadasivan et al. (2023)
observes that detection techniques become less ef-
fective as language models improve. Moreover,
Ippolito et al. (2019) advocates for the importance
of using both human and automatic detectors to
assess the humanness of text generation systems.

Previous work in determining MGT from human-
written ones include higher order n-grams (Gallé
et al., 2021), utilizing linguistic patterns (Muñoz-
Ortiz et al., 2023), curvature-based criterion
(Mitchell et al., 2023), tweaking with multiple vari-
ables (Dugan et al., 2023), fine-tuning transformer-
based models e.g., Capobianco; Chen and Liu
(2023). Very recently, Wang et al. (2024a) puts
forward LLM-Detector, offering a fresh method for
identifying text at both document and sentence lev-
els by employing Instruction Tuning of LLMs. To
tackle challenges of this field, several datasets have
been released, e.g., MULTITuDE (Macko et al.,
2023), M4 (Wang et al., 2024d). Additionally, there
have been multiple shared tasks organized related
to this topic (Shamardina et al., 2022a; Molla et al.,
Molla et al.; Kashnitsky et al., 2022. Despite sev-
eral collective findings and techniques, as argued
by Sadasivan et al. (2023), there remains a critical
need for the creation of reliable detection meth-
ods capable of accurately distinguishing between
human and machine-generated text, a requirement
essential across both English and other languages.

3 Datasets

Wang et al. (2024d) collects datasets from a vari-
ety of sources, including Wikipedia (the March
2022 version), WikiHow (Koupaee and Wang,
2018), Reddit (ELI5), arXiv, PeerRead (Kang
et al., 2018)(for English), and Baike (for Chinese).
They employ web question answering for Chinese,
news content for Urdu, Indonesian, and RuATD
(Shamardina et al., 2022b) for Russian language.
The method of prompting machine-generated text
(MGT) has been extensively outlined in Wang et al.
(2024d).

Subtask A, Binary Human-Written vs. Machine-
Generated Text Classification, in the monolingual
track involves a same-domain cross-generator ex-
periment, where instances are exclusively in En-
glish and gathered from five distinct sources with
two labels: 0 and 1. Human-generated texts receive
a label of 0, while machine-generated texts from
four different LLMs (chatGPT, Cohere, davinci-
003, and Dolly-v2) are labeled as 1. The distribu-
tion of Train and Validation datasets, both in terms
of labels and sources, along with the number of test
instances, is detailed in Tables 1. During the test
phase, there are 16,272 instances labeled as 0 and
18,000 instances labeled as 1.

On the other hand, Subtask A in the multilin-
gual track entails a cross-domain same-generator
experiment. Instances are sourced from nine dif-
ferent sources during the training phase, includ-
ing four different languages, while the validation
dataset comprises three different languages as in-
dicated in Table 2. Similar to the monolingual
task, human-generated texts are labeled as 0, and
machine-generated texts from five different LLMs
(Bloomz (Muennighoff et al., 2022), chatGPT, Co-
here, davinci-003, and Dolly-v2) are labeled as 1.
In the test phase, there are 20,238 instances labeled
as 0 and 22,140 instances labeled as 1.
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Source Train Dev
Bloomz chatGPT Cohere Davinci Dolly Human ChatGPT Davinci Human

arxiv 3000 3000 3000 2999 3000 15998 - - -
peerread 2334 2344 2342 2344 2344 2857 - - -
reddit 2999 3000 3000 3000 3000 16000 - - -
wikihow 3000 3000 3000 3000 3000 15999 - - -
wikipedia 2999 2995 2336 3000 2702 14997 - - -
Bulgarian 0 3000 0 3000 0 6000 - - -
Chinese 0 2970 0 2964 0 6000 - - -
Indonesian 0 3000 0 0 0 2995 - - -
Urdu 0 2899 0 0 0 3000 - - -
Arabic - - - - - - 500 0 500
German - - - - - - 500 0 500
Russian - - - - - - 500 500 1000
Total 83571 83846 2000 2000

Table 2: Label Distribution of Train and Validation Data for Binary Human-Written vs. Machine-Generated Text
Classification (Subtask A - Multilingual)

Source Train Dev
Bloomz chatGPT Cohere Davinci Dolly Human Bloomz chatGPT Cohere Davinci Dolly Human

arxiv 3000 3000 3000 2999 3000 2998 - - - - - -
reddit 2999 3000 3000 3000 3000 3000 - - - - - -
wikihow 3000 3000 3000 3000 3000 2999 - - - - - -
wikipedia 2999 2995 2336 3000 2702 3000 - - - - - -
peerread - - - - - - 500 500 500 500 500 500
Total 11998 11995 11336 11999 11702 11997 500 500 500 500 500 500

Table 3: Label Distribution of Train and Validation Data for Multi-Way Machine-Generated Text Classification
(Subtask B)

Label Test Data
Human (0) 3000
chatGPT (1) 3000
cohere (2) 3000
davinci (3) 3000
Bloomz (4) 3000
Dolly (5) 3000
Total 18000

Table 4: Label Distribution of Test Data for Multi-Way
Machine-Generated Text Classification (Subtask B)

Subtask B, Multi-Way Machine-Generated Text
Classification, represents another cross-domain
same-generator experiment. In contrast to Sub-
task A, Subtask C involves six labels: 0 for human,
1 for chatGPT, 2 for Cohere, 3 for davinci-003,
4 for Bloomz, and 5 for Dolly. These labels cor-
respond to instances sourced from five different
sources. However, it’s noteworthy that the sources
for the training and validation data differ, and this
distinction is outlined in Tables 3 and 4.

Subtask C, involving Human-Machine Mixed

Text Detection, provides a composite text with a
human-written first part followed by a machine-
generated second part. The task is to discern the
boundary, and labels are provided as word indices
to distinguish it. The label distribution of data is
shown in Table 5.

Data Count
Train 3649
Dev 505
Test 11123

Table 5: Number of Instances for Human-Machine
Mixed Text Detection (Subtask C)

4 Experimental Setup

4.1 Data Preprocessing

In the monolingual track of subtask A, we received
approximately 160K instances for training and de-
velopment. To preserve the text’s integrity, we
eliminate special characters, extra new lines, un-
necessary whitespace, and hyperlinks from the data,
ensuring that only the essential text remains in sub-
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tassk A (monolingual), B & C. However, in the mul-
tilingual track of subtask A, since none of our team
members are familiar with the languages present
in the instances, we only remove hyperlinks. We
ensure that punctuation marks such as full stops,
commas, and exclamation signs are retained in all
instances, as they play a crucial role in this task
(Tang et al., 2023).

4.2 Hyperparameters

In our experimental setup, we configure several
key parameters to train our model effectively. We
utilize a batch size of 16, controlling the number of
training samples processed in each iteration, learn-
ing being set to 1e-5, and incorporating dropout
with a rate of 0.25 to prevent overfitting by ran-
domly dropping a fraction of units during training.
Maintaining a fixed sequence length of 512 tokens
ensured consistency in input data processing. For
optimization, we employ the AdamW optimizer
(Loshchilov and Hutter, 2017), known for its effi-
cacy in training deep neural networks with added
weight decay regularization. These experiments
are conducted on a 80GB NVIDIA A100 GPU ma-
chine over the period of 24 hours, leveraging its
computational power and memory capacity. By
systematically adjusting these parameters, we aim
to understand their influence on the model’s perfor-
mance, ultimately optimizing our approach for the
task at hand. The adjustment of these parameters
is carried out in both subtask A & B.

4.3 Models: SubTask A

In monolingual track, we employ Roberta (Liu
et al., 2019), DistilBERT (Sanh et al., 2019), and
ELECTRA (Clark et al., 2020). Subsequently, we
apply a weighted ensemble method, incorporating
RoBERTa, DistilBERT, and ELECTRA, employ-
ing a voting strategy due to their closely compa-
rable individual accuracies. The weights are their
corresponding accuracy.

Similarly, in the multilingual track, we utilize
LASER (Li and Mak, 2020), mBERT (Devlin et al.,
2018), and XLMR (Goyal et al., 2021). Following
that, we deploy a weighted ensembled strategy in-
volving these models, utilizing the voting method.

4.4 Models: SubTask B

Subtask B, poses a considerable challenge, as op-
posed to the first two tracks where the model dis-
tinguishes between human and machine-generated
text. Here, the model must differentiate among

human-generated text and five distinct LLMs. For
this, we leverage Roberta, ELECTRA, Deberta (He
et al., 2020), and subsequently create a weighted
(weights are set as acauracy) ensemble approach of
these models using voting technique.

4.5 Models: SubTask C

In subtask C, we find the embedding of the train-
ing data using Term Frequency - Inverse Docu-
ment Frequency (TF-IDF) (Aizawa, 2003), Positive
Point-wise Mutual Information (PPMI) (Church
and Hanks, 1990), and the embedding using lan-
guage model RoBERTa (Liu et al., 2019). Then
for each training embedding generated by these ap-
proaches, we apply Linear Regression (Groß, 2003)
and ElasticNet (Zou and Hastie, 2005) separately
on these embeddings and predict the first word or
index of from where the machine-generated text
started in a specific data instance. We selected
the word that is the starting word of the closest
neighboring paragraph as the predicted word in-
dex. Then we clip the predicted values to ensure
the predictions range from 0 to the length of the
specific data instance (rounded if necessary). In
the development phase, we find the Mean Abso-
lute Error (Chai and Draxler, 2014) of these six
predictions (three each by Linear Regression and
ElasticNet). Then we perform a weighted ensem-
ble depending on the Mean Absolute Error of the
six predicted results and get our ensembled MAE
in the development phase. We also perform this ap-
proach on the test data and find our smallest MAE
in the evaluation phase.

4.6 Prompting and Fine-Tuning LLM

Prompt: <Text> If this piece of
text is Human Generated, answer 0
or If Machine Generated, answer 1.

Figure 1: Sample FlanT5 prompt.

For subtasks A & B, we experiment with
FlanT5 zero-shot prompting, utilizing the Hug-
ging Face Transformers3 library, specifically
the T5ForConditionalGeneration class and
T5Tokenizer. Training is conducted on an NVIDIA
A100 GPU with 80GB memory over 24 hours.
The prompting sample for subtask A is shown in
Figure 1. In subtask B, we maintain consistency
in prompting by keeping the question the same as

3huggingface.co/docs/transformers/
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Monolingual Multilingual
Model Dev Test Model Dev Test
Baseline (RoBERTa) 0.74 0.88 Baseline (XLM-R) 0.72 0.81
FLAN-T5 Prompting 0.49 0.52 FLAN-T5 Prompting 0.42 0.39
FLAN-T5 Fine-tuning 0.57 0.53 FLAN-T5 Fine-tuning 0.48 0.43
RoBERTa 0.70 0.73 LASER 0.52 0.50
DistilBERT 0.69 0.70 mBERT 0.57 0.58
ELECTRA 0.78 0.71 XLMR 0.61 0.59
Ensemble (Wt. accuracy) 0.79 0.74 Ensemble (Wt. accuracy) 0.63 0.60

Table 6: Accuracy of Binary Human-Written vs. Machine-Generated Text Classification (Subtask A)

labeling the human-generated text as "1", while
prompting the machine-generated texts from
various Language Model Models (LLMs) as
categories "2" through "6."

We also finetune a t5-small model over 2 epochs,
setting the learning rate to 0.001 and the batch size
to 4. We employ a full finetuning (FFT) approach
without the utilization of any quantization method
like LoRa (Hu et al., 2021) or QLoRA (Dettmers
et al., 2023). Due to the adoption of an FFT ap-
proach and the sheer size of the dataset, we do not
experiment with a wide set of hyper-parameters.
We empirically choose a few combinations and
report the best results.

5 Results

Subtask A and B are evaluated based on Accuracy,
as specified by (Wang et al., 2024c), while Subtask
C employs Mean Absolute Error (MAE) as the
evaluation metric 4.

In the monolingual track of Subtask A, ELEC-
TRA demonstrates superior accuracy (0.78) com-
pared to RoBERTa (0.70) and DistilBERT (0.69)
during the development phase. Consequently, the
weighted ensemble of these three models achieves
an accuracy of 0.79 in our development submission,
surpassing the baseline RoBERTa model. Upon
publishing test labels, a comparison with the test
label results reveals accuracies detailed in Table
6, with the ensemble model achieving an accuracy
of 0.74, while the baseline accuracy increases to
0.88, differing by 0.14 compared to the develop-
ment phase. In the multilingual track, XLM-R
outperforms LASER and mBERT with an accuracy
of 0.61. Ensembling these models achieves accura-
cies of 0.63 in the development phase and 0.60 in
the test phase, whereas the baseline accuracies are

4https://github.com/mbzuai-nlp/
SemEval2024-task8

0.72 and 0.81, respectively. Both zero-shot prompt-
ing and fine-tuning FlanT5 demonstrate less than
satisfactory performance, yielding accuracies of
0.53 and 0.43 in the monolingual and multilingual
tracks, respectively.

Model Dev Test
Baseline (RoBERTa) 0.75 0.75
FLAN-T5 Prompting 0.54 0.48
FLAN-T5 Fine-tuning 0.57 0.54
RoBERTa 0.72 0.56
ELECTRA 0.73 0.59
DeBERTa 0.77 0.64
Ensemble (Wt. accuracy) 0.79 0.65

Table 7: Accuracy of Multi-Way Machine-Generated
Text Classification (Subtask B)

Within subtask B, DeBERTa outperforms
RoBERTa and ELECTRA, achieving superior per-
formance with an accuracy of 0.77. Ensembling
these models yields accuracies of 0.79 and 0.65
in both the development and test phases, whereas
baseline RoBERTa gives 0.75 in both phases. Sim-
ilar to subtask A, fine-tuning and prompting FLAN
T5 exhibit suboptimal results in both phases shown
in Table 7.

In subtask C, various methods are consid-
ered, and it is found that RoBERTa with Elastic
Net achieved the minimum Mean Absolute Er-
ror (33.28). Table 8 highlights that Elastic Net
outperforms Linear Regression in terms of lower
MAE during both the development and test phases.
To enhance predictive performance, we employ a
weighted ensemble of development phase MAE of
six combinations, resulting in MAE values of 31.71
and 60.78 during the development and test phases,
respectively. However, the baseline (longformer)
model gives MAE of 3.53± 0.21 and 21.54.
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Model Dev Test
Baseline (Longformer) ≃ 3.53 21.54
TF-IDF + LR 44.15 71.23
PPMI + LR 41.93 68.41
RoBERTa + LR 37.52 65.82
TF-IDF + EN 38.36 67.09
PPMI + EN 35.67 63.36
RoBERTa + EN 33.28 62.34
Wt. (dev. MAE) Ensemble 31.71 60.78

Table 8: Mean Absolute Error(MAE) value of Human-
Machine Mixed Text Detection (Subtask C) (LR = Lin-
ear Regression, EN = ElasticNet)

6 Error Analysis

In the monolingual track of Subtask A, the final
model demonstrates proficiency in accurately iden-
tifying machine-generated text. Nonetheless, there
is a notable presence of false positives, indicating
instances where the model incorrectly identifies
human-written texts as machine-generated. De-
spite this, the model effectively detects machine-
generated text without omission. Similarly, in
the multilingual track of Subtask A, the ultimate
model excels in accurately distinguishing machine-
generated text. However, false positives are preva-
lent, indicating numerous cases where human-
written texts are inaccurately classified as machine-
generated. Additionally, the model encounters in-
stances where it fails to predict machine-generated
texts.

In Subtask B, the model excels in accurately pre-
dicting chatGPT-generated texts. However, its per-
formance declines notably for davinci-generated
text, often misclassifying it as chatGPT generated.
Additionally, the model’s accuracy is lower for
Dolly-generated and human-written texts, indicat-
ing a discrepancy in handling machine-generated
versus human-written content.

For subtask C, MAE is higher due to the pres-
ence of outliers because the dev MAE was signif-
icantly lower than the test MAE. To handle this
issue, it is essential to address the preprocessing
of data, handling outliers, selecting appropriate
features, optimizing model complexity, improving
data quality, and ensuring model stability through
proper tuning and evaluation procedures. This can
be the future scope of research in this specific do-
main.

For a clearer understanding, refer to the visual
evaluations in Figure 2, 3, 4 of Appendix.

7 Conclusion

In our investigation of SemEval-2024 Task 8, we
applied a diverse set of methodologies, encom-
passing statistical machine learning techniques,
transformer-based models, sentence transformers,
and FLAN T5. Subtask A involved binary classi-
fication, where the monolingual track focused on
cross-generator scenarios within the same domain,
and the multilingual track addressed cross-domain
scenarios within the same generators. Subtask B
dealt with multi-label classification, requiring the
discrimination of human-generated text from five
distinct language models. Subtask C centered on
Human-Machine Mixed Text Detection, employing
TF-IDF, PPMI, and RoBERTa with Linear Regres-
sion and ElasticNet for prediction. The outcomes
of three subtasks highlighted the efficacy of ensem-
ble methods, showcasing specific models excelling
in each subtask. Additionally, we explored the ap-
plicability of zero-shot prompting and fine-tuning
FLAN-T5 for Tracks A and B.

In summary, our approach harnessed a blend of
transformer models, machine learning methodolo-
gies, and ensemble strategies to tackle the complex-
ities presented by SemEval-2024 Task 8. The paper
underscores the imperative need for robust detec-
tion methods to effectively navigate the growing
prevalence of machine-generated content.

Limitations

The task involved extensive datasets in each phase
of all subtasks, leading to prolonged execution
times and increased GPU usage. Additionally, the
texts themselves were lengthy. Moreover, the prohi-
bition of additional data augmentation added to the
complexity of the task. The nuanced distinction be-
tween human-written and machine-generated text,
which can sometimes be challenging for humans to
discern, poses an even greater difficulty for models
attempting to learn this differentiation.
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Figure 2: Confusion Matrix (Binary Human-Written vs. Machine-Generated Text Classification : Monolingual
(Left), Multilingual (Right))

Figure 3: Confusion Matrix (Multi-Way Machine-Generated Text Classification)

Figure 4: Regression (Human-Machine Mixed Text Detection)
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