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Abstract

Healthcare professionals rely on evidence from
Clinical Trial Records (CTRs) to devise treat-
ment plans. However, the increasing quantity
of CTRs poses challenges in efficiently assim-
ilating the latest evidence to provide person-
alized evidence-based care. In this paper, we
present our solution to the SemEval- 2024 Task
2 titled "Safe Biomedical Natural Language
Inference for Clinical Trials". Given a state-
ment and one/two CTRs as inputs, the task
is to determine whether or not the statement
entails or contradicts the CTRs. We explore
both generative and discriminative large lan-
guage models (LLM) to investigate their per-
formance for clinical inference. Moreover, we
contrast the general-purpose LLMs with the
ones specifically tailored for the clinical do-
main to study the potential advantage in miti-
gating distributional shifts. Furthermore, the
benefit of augmenting additional knowledge
within the prompt is examined in this work.
Our empirical study suggests that DeBERTa-lg,
a discriminative task-specific natural language
inference model, obtains the highest F1 score
of 0.77 and consistency score of 0.76 on the test
set, securing the fourth rank on the leaderboard.
Intriguingly, the augmentation of knowledge
yields subpar results across most cases.

1 Introduction

Clinical trials are conducted on human subjects to
test the safety and effectiveness of the medicine
prior to designing a new treatment, especially in
evidence-based treatments (Avis et al., 2006). Med-
ical professionals prescribe and treat their patients
based on clinical trial reports (CTR) in which the
methodology and results of clinical trials are out-
lined. However, the increasing quantity of CTRs
poses a challenge for healthcare professionals to
manually assess all of them since this process is
both time-consuming and labor-intensive (Bastian
et al., 2010; DeYoung et al., 2020).

To tackle the aforementioned issue, recent ad-
vancements in natural language processing (NLP)
encourage medical professionals to employ large
language models (LLMs) to interpret and retrieve
medical evidence from large quantities of CTRs
(Lee et al., 2020). Employing natural language in-
ference (NLI) and textual entailment in the clinical
domain (Bowman et al., 2015), professionals can
formulate a prompt or statement, for example, "A
minimum bodyweight of 55kg is required to partici-
pate in the primary trial." and input it along with
the CTRs into an LLM to determine whether the
statement entails or contradicts the evidence from
CTRs (Jullien et al., 2023b). Additionally, LLMs
can aid in retrieving evidence from the vast amount
of CTRs. This technology has the potential to en-
sure a higher level of precision and efficiency in
delivering personalized evidence-based care.

While LLMs have demonstrated significant per-
formance in numerous NLP tasks in recent years
(Brown et al., 2020), it is still challenging for them
to be deployed in the clinical domain due to their
limitation in semantic and quantitative reasoning in
language understanding. Moreover, the distribution
shift in the clinical domain makes it even more intri-
cate, which requires extensive research in this field
(Miller et al., 2020). To address the challenges,
Jullien et al. (2024) organizes the SemEval-2024
Task 2, titled "Safe Biomedical Natural Language
Inference for Clinical Trials", which aims to investi-
gate the robustness of NLI models when applied to
clinical trials with cancer patients. This task seeks
to develop an NLI system to connect the new evi-
dence and infer the knowledge from CTRs to find
an inferential relation, namely either entailment
or contradiction, between a clinical trial document
and a statement/claim.

In this study, we investigate the performance
of discriminative and generative transformer-based
LLMs in the realm of clinical inference. In addition,
we explore the potential of clinical domain-specific
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LLMs and compare them with the general-purpose
ones with the hypothesis that LLMs pre-trained
on clinical data may exhibit superior performance.
Furthermore, we study the impact of augmenting
knowledge on the semantic reasoning abilities of
these LLMs. Our extensive experiments demon-
strate that our system, leveraging the discriminative,
general-purpose DeBERTa-lg NLI model, achieves
an F1 score of 0.77 and consistency score of 0.76
without employing knowledge augmentation on the
test set and ranks fourth on the official leaderboard.

2 Background

2.1 Task Definition

In the textual entailment identification task, each
input data contains a medical statement, a section
name indicating which section the statement claims
about, and one or two CTR records that serve as
evidence to verify the statement. If the statement
only makes claims about one certain trial defined as
a primary trial, then only the primary trial will be
used as input data. On the other hand, if the state-
ment claims a comparison between a primary trial
and a second trial defined as a secondary trial, both
CTRs need to be considered as input text. Table
1 presents an example of CTR with four sections.
The task is to determine the inferential relation
between the medical statement and the associated
section in the CTR(s). There are two possible in-
ferential relations for each statement: entailment
and contradiction. Models are designed to predict
whether each statement entails or contradicts the
associated section from the claimed CTR(s).

2.2 Dataset

The Natural Language Inference (NLI) task is de-
signed based on breast cancer CTRs collected by
clinical domain experts (Jullien et al., 2023a). Each
CTR dataset consists of four sections: interven-
tion, eligibility criteria, results, and adverse events.
Each section contains multiple sentences, Formally,
St = s1t , s

2
t , ...., s

n
t , here t denotes for the type of

section. The participants are provided a text file
containing a statement, 1-2 CTRs, an inference la-
bel (Entailment or Contradiction), section that is
used for the statement. A statement can be made
from a single CTR or a comparison between two
CTRs.

3 System overview

In this section we describe about our system for
this task.

3.1 Input Prompt

According to the data description, a section con-
tains multiple sentences namely evidence. For
short input, we consider only the selected sen-
tences of the section which are annotated as re-
lated to the statement. All the sentences are con-
catenated by adding a space in between each sen-
tence to consider a hypothesis. To design the in-
put text, we consider the statement as premise
followed by all the selected sentences as claims
from the section of the claimed CTR. A separa-
tion token, denoted as [SEP], is used between the
statement and the claims. For comparison between
two claims, we concatenate the selected sentences
from both primary and secondary trials, formally,
C1s1t , .., C

1snt , ..., C
2s1t , .., C

2snt .

3.2 Knowledge Augmentation

In knowledge augmentation, we consider all the
sections as evidence. To design input text, we first
take all sentences from the related section as a
priority. Then, we concatenated the text with other
sentences from the rest of the sections. During the
comparison between the two trials, we consider
the first 500 tokens from the primary trial and 500
tokens from the secondary trial to limit the length
of the sentence to 1024 tokens.

In both cases, we design the prompt in the fol-
lowing way:

statement [SEP ] primary trial : C1stn.

secondary trial : C2sn

Secondary trials are added only for comparison
between two trials.

3.3 Discriminative Models

Discriminative models, in contrast, are focused on
learning the decision boundary that separates differ-
ent classes within the input data. Instead of model-
ing the entire data distribution, they concentrate on
capturing the conditional probability distribution
of labels given the input data. We experiment with
a collection of transformer-based discriminative
pre-trained language models. We choose models
that are trained on medical data, such as electronic
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Section Subsection Sentence

Intervention N/A
TX/Maintenance Therapy for Stage IIIB/IV Breast Cancer
busulfan: Given orally
tamoxifen citrate: Given orally

Eligibility

Inclusion
Hepatic function: Bilirubin =< 2 mg%
Karnofsky performance status > 60
Creatinine =< 2.0 mg/dl

Exclusion
Patient is pregnant
Are > 100 days from transplant
Are on steroids

Results
Outcome Measurement

Event-free Survival
Time frame: 11 years

Results 1
busulfan: Given orally
Overall Number of Participants Analyzed: 50

Adverse events N/A
Total: 2/50 (4.00%)
Pulmonary Emboli [2]1/50 (2.00%)

Table 1: An example of a clinical trial record (shortened) containing four sections namely intervention, eligibility,
results and adverse events.

health records, biomedical texts, and scientific arti-
cles. We used the BioLinkBERT (Yasunaga et al.,
2022) model, which was trained on PubMed ab-
stracts along with citation link information. Clini-
calBERT (Wang et al., 2023) trained on a large mul-
ticenter dataset with a large corpus of 1.2B words
of diverse diseases and utilized a large-scale corpus
of EHRs from over 3 million patient records to fine-
tune the base language model. Bio_ClinicalBERT
(Wang et al., 2023), a domain-specific BERT-based
model initialized with Bio-BERT model and fine-
tuned with electronic health records from ICU
patients, namely MIMIC (Johnson et al., 2016).
We also choose a task-specific model, proposed
by Laurer et al. (2024), based on DeBERTa large
and trained on general domain datasets such as
MultiNLI (Williams et al., 2018), Fever-NLI (Nie
et al., 2019), Adversarial-NLI (ANLI) (Nie et al.,
2020), LingNLI (Parrish et al., 2021) and WANLI
(Liu et al., 2022) datasets, which comprise 885,242
NLI hypothesis-premise pairs. A classification
layer is added on top of the pre-trained layers and
fine-tuned on the training set to predict the probabil-
ity of entailment or contradiction of the statement.
An overall descriptions of the models are provided
in table 2.

3.4 Generative Models
For comparison, we also solve this task by
using generative models. These models use
encoder-decoder architecture to encode input
text and directly generate output label entail-
ment/contradiction. Similar to discriminative mod-
els, we choose SciFive (Phan et al., 2021) as
a domain-specific generative pre-trained model
that follows The text-to-text transfer transformer
(T5) model (Raffel et al., 2019) and sequence-to-
sequence encoder-decoder framework. Pubmed
and PMC datasets are utilized for training the
models and MIMIC is employed to fine-tune for
NLI task. To demonstrate the effectiveness of
further fine-tuning the Clinical Trial dataset, we
apply both zero-shot and few-shot learning ap-
proaches on SciFive. On the other hand, we choose
Flan-T5 (Chung et al., 2022) as a general do-
main generative model. Similar to SciFive, Flan-
T5 builds based on T5 architecture. For genera-
tive models, we slightly change the prompt. For
SciFive, mednli : sentence1 : < premise >
sentence2 : < claims > and for FlanT5,
natural language; inference : premise : <
premise > hypothesis : < claims >.
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Type Model Parameters Variation Task-specific Domain-specific

Discriminative

ClinicalBERT 110M base No Yes

BioLinkBERT 340M large No Yes

BioClinicalBERT 110M base No Yes

DeBERTa-lg 304M large Yes No

Generative
FlanT5 250M base No No

SciFive 770M large Yes Yes

Table 2: Model specifics including the number of trainable parameters in million, variation/size, task-specificity
(whether further pre-trained on NLI task or not), and domain-specificity (whether pre-trained on medical domain
datasets or not) are shown.

Type Model W/o knowledge augmentation With knowledge augmentation

Basline F1 Faithfullness Consistency Basline F1 Faithfullness Consistency

Discriminative

ClinicalBERT 0.56 0.35 0.46 0.54 0.35 0.41

BioLinkBERT 0.57 0.31 0.49 0.57 0.31 0.49

BioClinicalBERT 0.58 0.47 0.61 0.57 0.31 0.49

DeBERTa-lg 0.77 0.80 0.76 0.75 0.79 0.75

Generative
FlanT5-base 0.58 0.57 0.63 0.51 0.63 0.61

SciFive (without FFT) 0.49 0.61 0.49 0.47 0.64 0.51

SciFive (with FFT) 0.44 0.76 0.63 0.65 0.49 0.62

Table 3: Experiment results of the clinical NLI task on the test set for several discriminative and generative models.
We report baseline F1, faithfulness, and consistency scores proposed by (Jullien et al., 2024) for each model
with/without knowledge augmentation. The best performance with respect to consistency score is bold-faced.
Discriminative DeBERTa-lg achieves the best performance while generative models show promise in several cases.
Knowledge augmentation implies including all evidence from CTR concatenated with the prompt statement and then
passed as input to the LLM. However, Knowledge augmentation shows negligible impact on model performance.
FFT stands for further fine-tuning.

4 Experimental setup

We keep the original data split (1700: 200: 5500)
provided by the task organizer for training, vali-
dation, and testing sets respectively. Huggingface
Transformers 1 library is used for tokenization and
further finetuning. Data preprocessing steps are
mainly adapted from Vladika and Matthes (2023).
For short text, the max sequence length for the
tokenizer is set to 256 and 512 for long text for Bi-
oLinkBERT, ClinicalBERT and BioClinicalBERT.
For Deberta-large, SciFive and Flan-T5 the max
sequence length for the tokenizer is set to 512 and
1024 for short and long input text respectively. We
train all language models for 20 epochs and an
AdamW (Loshchilov and Hutter, 2019) optimizer
is used for optimization with a default learning
rate of 5e-6 for discriminative models and 5e-5 for

1https://huggingface.co/docs/transformers

generative models with weight ratio of 0.06 and
weight decay of 0.01. The models are evaluated on
the validation set after each epoch by using preci-
sion, recall, and F1 scores and saved best model
based on least evaluation loss. We measure the
performance of the models based on Faithfulness
and Consistency proposed by (Jullien et al., 2024).
Faithfulness measures the ability to predict the out-
put based on the correct reason. Therefore, if se-
mantic reason change in future, models will be able
to change its prediction accordingly. On one hand,
consistency measures the ability to make same pre-
diction for the semantically equal statements which
ensures the semantic preserving in a model.

5 Results and Discussion

The experimental results are presented in Table
3. All results are calculated on the standard test
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set provided by the shared task organizers. The
outcome of the NLI model can be binary: either
entailment or contradiction. We use the metrics in-
cluding baseline F1-score, faithfulness, and consis-
tency, proposed by (Jullien et al., 2024) to calculate
the performance of the models.

Among discriminative and generative models,
we can observe that generative models including
FlanT5 and SciFive outperform the discriminative
models e.g. ClinicalBERT, BioLinkBERT, and Bio-
ClinicalBERT, in terms of faithfulness and consis-
tency. Given the moderate amount of labeled data
for this clinical inference task and textual data as
input to the model, which is of low-dimensionality
in the latent space compared to high-dimensional
vision and speech data, this enables generative mod-
els to perform well by learning the joint probabil-
ity distribution of the input features and the class
labels. However, the DeBERTa-lg, which is a dis-
criminative model, achieves the highest F1 scores
among all discriminative and generative models.
This is likely because the task involves simple bi-
nary classification, which can be comparatively
easily performed by a discriminative model by sep-
arating the data points in the data manifold through
a decision boundary. Therefore, for the clinical
inference task with the provided dataset, both gen-
erative and discriminative models can be useful and
demand empirical evaluation.

Table 3 also demonstrates that knowledge aug-
mentation by adding evidence from all the sections
does not improve the performance of the models in
almost all cases. One possible reason is that adding
more information makes it more challenging for the
models to extract the relevant information. Also,
by increasing the input length, the model struggles
with high-dimensional input space.

Among the models, only DeBERTa-lg and
FlanT5 are general-purpose models while the
rest are tailored for the clinical domains by pre-
training the models on domain-specific data. Also,
DeBERTa-lg and SciFive are the only task-specific
NLI models studied in this work. This is intrigu-
ing to observe that although DeBERTa-lg is not
pre-trained on clinical data, it yields the highest
F1-score. Thus, a model tailored to the task but
not initially trained on domain-specific data may
outperform a domain-specific model that lacks task
specificity, demonstrating the importance of task-
oriented adaptation rather than relying solely on
domain-specific pre-training. This outcome con-
tradicts our initial hypothesis that domain-specific

pre-trained LLMs are necessary for superior per-
formance.

Finally, the number of trainable parameters of
the discriminative models is not found to be linked
with model performance since discriminative Bi-
oLinkBERT, containing 340M parameters, per-
forms either on par with or subpar than Clinical-
BERT and BioClinicalBERT with 110M parame-
ters each. However, the generative SciFive model,
consisting of a larger number of trainable param-
eters than FlanT5, exhibits better performance in
certain metrics e.g. faithfulness and consistency.

6 Conclusion

In this paper, we describe our system for the
SemEval-2024 Task 2, dealing with NLI for clin-
ical trials. Leveraging DeBERTa-lg, a discrimi-
native pre-trained model tailored to the NLI task,
we achieve a consistency score of 0.76, securing
the 4th position out of 31 participants. Our explo-
ration yields intriguing insights: both discrimina-
tive and generative models exhibit promise for this
clinical inference task. In addition, we find that
knowledge augmentation poses challenges for the
model, possibly due to the higher dimensionality
of the input space. Moreover, task-specific but not
domain-specific models are found to be better per-
forming than domain-specific but not task-specific
models. However, it is worthwhile to mention that
all the models are fine-tuned with the same clinical
data. Interestingly, while the performance of the
discriminative model is not affected by the number
of parameters, it appears to influence the perfor-
mance of generative models.

As part of future work, we intend to explore
the applicability of parameter-efficient techniques
including adapter-tuning (Houlsby et al., 2019),
LoRA (Hu et al., 2021), etc. by deploying them for
the clinical inference task.
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