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Abstract

This paper describes our participation in Se-
mEval 2024 Task 3, which focused on Multi-
modal Emotion Cause Analysis in Conversa-
tions. We developed an early prototype for an
end-to-end system that uses graph-based meth-
ods from dependency parsing to identify causal
emotion relations in multi-party conversations.
Our model comprises a neural transformer-
based encoder for contextualizing multimodal
conversation data and a graph-based decoder
for generating the adjacency matrix scores of
the causal graph. We ranked 7th out of 15 valid
and official submissions for Subtask 1, using
textual inputs only. We also discuss our par-
ticipation in Subtask 2 during post-evaluation
using multi-modal inputs.

1 Introduction

SemEval 2024 Task 3 focused on Multimodal Emo-
tion Cause Analysis in Conversations (Wang et al.,
2024). Figure 1 shows an example provided by
the organizers to illustrate the task. Two subtasks
were proposed: Subtask 1, which uses only textual
inputs, and Subtask 2, which allows for the consid-
eration of video and audio processing as well.

The shared task is timely given the recent success
of multimodal architectures combining computer
vision (Redmon et al., 2016; Wang et al., 2023b),
natural language processing (Devlin et al., 2019;
Beltagy et al., 2020), and speech processing (Gong
et al., 2021; Radford et al., 2022) advancements.
In the particular context of multimodal emotion
analysis, the task builds on top of previous work
such as recognizing the triggered emotions as a
classification task (Alhuzali and Ananiadou, 2021;
Zheng et al., 2023) or predicting complex cause-
effect relations between speakers (Wei et al., 2020;
Ding et al., 2020). For the particular case of the
shared task, the dataset - centered in English - relies
on (Wang et al., 2023a) and provides text, image
and audio inputs.

Figure 1: Example taken from the official website of the
SemEval Task 3 - https://nustm.github.io/SemEval-2
024_ECAC/. The goal of the task consists of predicting
(i) the emotion associated to each utterance within the
conversation, (ii) the cause-effect relations that trigger
the emotions between utterances and (iii) the associated
span in the cause utterance.

We had time and resources only to build a textual
model for official participation in Subtask 1. We
validated some multimodal baseline approaches
using vision and audio inputs, but the computa-
tional resources required to fine-tune text and video
data were beyond our range, so we participated in
Subtask 2 only during post-evaluation. In what
follows, we describe our approach. The imple-
mentation of our early prototype can be found at
https://github.com/anaezquerro/semeval24-task3.

Contribution We propose an end-to-end mul-
timodal prototype based on a large multimodal
encoder to contextualize text, image and audio
inputs with a graph-based decoder to model the
cause-effect relations between triggered emotions
within multi-party conversations. The large en-
coder joins pretrained architectures in text (De-
vlin et al., 2019), image (Dosovitskiy et al., 2021)
and audio (Baevski et al., 2020) modalities, while
the decoder is adapted from the graph-based ap-
proaches in semantic parsing (Dozat and Manning,
2018). The model is trained end-to-end.

2 Background

Multimodal Emotion Cause Analysis A num-
ber of datasets collecting multi-party conversations
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(Poria et al., 2019; Chatterjee et al., 2019; Firdaus
et al., 2020) have been published to train and test
multimodal neural architectures. Simpler config-
urations involve recognizing the speaker emotion
at each utterance - this task is commonly known
as Emotion Recognition (ER) (Poria et al., 2019) -
while others require a deeper level of understand-
ing to model interactions and causal relations be-
tween speakers - Emotion-Cause Pair Extraction
(ECPE) (Xia and Ding, 2019). The most com-
mon approaches follow an encoder-decoder neural
architecture where the encoder is conformed by
multiple modules - one module per input modality
(text, image and/or audio) - and produces an inner
representation at utterance level; and the decoder
accepts the encoder outputs as inputs and returns
a suitable output adapted to the specifications of
the targeted task. In the context of Multimodal ER,
Nguyen et al. (2023) proposed a GCN-based de-
coder to capture temporal relations (Schlichtkrull
et al., 2017), while Dutta and Ganapathy (2024)
used cross-attention to fusion the input modali-
ties and a final classification layer to predict the
targeted emotions. Approaches in ECPE require
an extra effort to represent and model causal in-
formation: Wei et al. (2020) scored all possible
utterance tuples to predict the most probable list
of emotion-cause pairs. Other authors, like Chen
et al. (2020) and Fan et al. (2020), represented the
emotion-cause pairs as a labeled graph between ut-
terances and tried to predict the set of causal edges
using a GCN or a transition-based system, respec-
tively. The SemEval 2024 Task 3 joins the recog-
nition and causal extraction tasks and challenges a
system able to both model speaker emotions and
elicit relations.

Graph-based decoding For structured predic-
tion tasks, such as dependency parsing, graph-
based approaches are a standard for computing
output syntactic representations (McDonald, 2006;
Martins et al., 2013). Particularly, Dozat and Man-
ning (2017) introduced a classifier that computes a
head and dependent representation for each token
and then uses two biaffine classifiers: one computes
a score for each pair of tokens to determine the
most likely head, and the other determines the label
for each head-dependent token pair. We will also
build upon a biaffine graph-based parser: we will
frame the task as predicting a dependency graph,
where utterances are the nodes and emotions are
dependency labels between pairs of utterances.

3 System Overview

Our system consists of two modules: a large pre-
trained encoder and a graph-based decoder (see
Figure 2). It can add extra input channels into the
encoder without requiring any adjustments to the
decoder, so the same decoder is used for both tasks,
while the encoder is adapted to incorporate text-
only (Subtask 1) or multimodal (Subtask 2) inputs.

𝑈1 𝑈2 𝑈3 … 𝑈𝑚

u1 u2 u3 … u𝑚

ENCODER

DECODER

𝑈1 𝑈2 𝑈3 … 𝑈𝑚

𝑒1 𝑒2 𝑒3 … 𝑒𝑚

Input 
utterances

Utterance
embeddings

Emotion cause predictions

Post-process

Figure 2: High-level architecture of our system. The
encoder takes as input the sequence of m utterances
of a given conversation and returns a unique vector
representation for each utterance. The decoder uses the
utterance embedding matrix to apply the affine attention
product in the decoder, obtain the scores of the adjacent
matrix and return the predicted sequence of emotions
and the cause relations between utterances.

Let C = (U1, ..., Um) be a conversation of m
utterances, where each utterance Ui = {Wi, si, εi}
is defined by (i) a sequence of words Wi =

(w
(i)
1 , ..., w

(i)
ℓ|w,i|)

1, (ii) an active speaker si and (iii)
a triggered emotion εi ∈ E2. The set of cause-pair
relations between utterances can be represented
as a directed labeled graph G = (U ,R) where
U = (U1, ..., Um) is the sequence of utterances of
the conversation assuming the role of the nodes of
the graph and R = {Ui

εj−→ Uj , i, j ∈ [1,m]}
is the set of emotion-cause relations between an
arbitrary cause utterance Ui and its corresponding
effect Uj . Thus, the task can be cast as the esti-
mation of the adjacent matrix of G, similarly to
syntactic (Ji et al., 2019) and semantic dependency
(Dozat and Manning, 2018) parsing. Adapting al-
gorithms from parsing to model emotion-cause re-
lations between utterances has also been explored
by other authors, such as Fan et al. (2020), who
instead explored a transition-based strategy.

1From now on, we denote as ℓ|·, i| the length of the i-th in
a sequence ·, so ℓ|w, i| denotes the length of the Wi. Table 2
summarizes the notation used in this paper.

2The set of emotions are described in Wang et al. (2023a).
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3.1 Textual Extraction
The first subtask draws from only textual informa-
tion to predict the adjacent matrix of G with a span
that covers the specific words from Ui that trigger
the emotion εj in the cause relation Ui

εj−→ Uj .

Textual encoder Figure 3 illustrates our encoder.
Given the sequence of utterances (U1, ..., Um),
we encoded with BERT the batched sequence of
utterances where each word sequence was pre-
ceded by the CLS token (Devlin et al., 2019).
For each Ui, we select the CLS embedding (ui)
from the contextualized embedding matrix Wi =
(ui,w1, ...,wℓ|w,i|), which is assumed to have in-
formation of the whole sentence. The CLS embed-
ding matrix U = (u1, ...,um) was passed as input
to the decoder module and the word embeddings
were reserved for the span attention module.

B
E
R
T

…𝑈1

𝑤1 𝑤𝑛

…𝑈2

…𝑈𝑚

DECODER

Word embeddings

u1

…
u2 u𝑚

Utterance
embeddings

SPAN ATTENTION

e1

…
e2 e𝑚

Effect embeddings

2

3

4

……

Textual batch

𝑊𝑚: 𝑏 𝑤1
𝑚

⋯ 𝑤ℓ|𝑤,𝑚|
(𝑚)

𝑊2: 𝑏 𝑤1
2

⋯ 𝑤ℓ|𝑤,2|
(2)

𝑊1: 𝑏 𝑤1
1

⋯ 𝑤ℓ|𝑤,1|
(1)

1

Figure 3: High level representation of the textual en-
coder. The input ( 1 ) is the matrix of stacked token
vectors of each utterance. The last hidden states of
BERT are used as word embeddings ( 2 ) and the spe-
cial CLS tokens are used as utterance embeddings ( 3 ).
The effect embeddings ( 4 ) - a partial representation
from the decoder - are taken as input to the span module
with the contextualized BERT embeddings.

Graph-based decoder Figure 4 shows the
forward-pass of the graph-based decoder from the
encoder output of Figure 3. To produce an adjacent
matrix G of dimensions m×m, where each posi-
tion (i, j) represents the probability of a causal rela-
tion from Ui (cause) to Uj (effect), the first biaffine
module uses a trainable matrix WG ∈ RdG×dG

and maps U using two feed-forward networks to a
cause (C) and an effect (E) representation. By pro-
jecting the original BERT embeddings to two dif-
ferent representations, ui ∼ (ci, ei), the decoder
learns different contributions for the same utter-
ance depending on the role. The affine product is

u1

…
u2 u𝑚

e1

…

e2

e𝑚

c1

…
c2 c𝑚

E ⋅ 𝑾𝐺 ⋅ C
⊤ =

Graph Scores തe1

…

തe2

തe𝑚

ҧc1

…
ҧc2 ҧc𝑚

തE ⋅ 𝑾𝜀 ⋅ തC =

Emotion Probability

1

3 6

2

4

5

7

Figure 4: Graph-based decoder. The utterance embed-
dings ( 1 ) are projected to different representations ( 2 ,
3 , 5 6 ) using four feed-forward networks to flexibly

represent utterance embeddings. The scores of the ad-
jacent matrix and the probability tensor are computed
with the affine attention product.

defined as G = E ·W ·C⊤. The second biaffine
module uses a trainable tensor Wε ∈ RdG×|E|×dG

to predict the probabilities of triggered emotions
between cause-effect utterances.

Span Attention module To maintain the end-
to-end prediction while learning the span asso-
ciated to each relation Ui → Uj , we created a
binary tensor S = (S1 · · ·Sm) of dimensions
m×m×maxi=1,...,m{ℓ|w, i|}3 to specify if a word
wk ∈ Wi of Ui is included in the span that triggers
an emotion in Uj . To compute each Si, the ma-
trix of word embeddings (Wi) of the utterance
Ui is passed through a One-Head Attention mod-
ule (see Figure 5), where Wi acts as the query
matrix and E as the key and value matrices, so
Si = Φ(softmax(Wi · E⊤) · E), where Φ is a
feed-forward network to project the embedding di-
mension to a unique binary value.

Encoding speaker information The dataset in-
cludes information about the active speakers in
each utterance. A first approach to use this infor-
mation as input would be concatenating the speaker
embeddings to the sequence of utterances. How-
ever, this might lead to some issues: the model
could assume that there is some inner dependency
between triggered emotions and the characters in
the conversation. This might be true in some cases,
but it can also lead to biases, and there is still the
challenge of modeling infrequent and unknown
characters. To deal with this, we encoded a con-
versation C with speakers s1, ..., sm using relative

3Note that each matrix Si has dimensions m ×
maxi=1,...,m{ℓ|w, i|} and is associated to a cause utterance.
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Figure 5: Span Attention module adapted from Vaswani
et al. (2017). The tensor of word embeddings
(W1 · · ·Wm) from the encoder (Figure 3) and the ef-
fect contextualizations (E) from the decoder (Figure 4)
are passed to the attention product using each Wi as
key and E as query and value matrices.

positional embeddings. For instance, the sequence
(Chandler, Phoebe, Monica, Chandler, Phoebe) in
Figure 1 would be encoded as (0, 1, 2, 0, 1).

3.2 Multimodal Extraction

The second subtask adds a short video represen-
tation to each utterance, so Ui in a conversation
C = (U1, ..., Um) is now a tuple of five differ-
ent elements Ui = {Wi, si, εi,Xi,ai}. The last
two added items encode the image and audio: (i)
Xi = (x

(i)
1 , ...,x

(i)
ℓ|x,i|) is the sequence of frames

of the input video, where each frame is an image4

tensor of dimensions h × w × 3 and (ii) ai is the
sampled audio signal of arbitrary length.

Image encoding We relied on a Transformer-
based architecture (Ma et al., 2022; Zheng et al.,
2023) to contextualize input images. While recent
studies have proposed adaptations of the Vision
Transformer and 3-dimensional convolutions that
capture temporal correlations between sequences of
frames for video classification (Arnab et al., 2021;
Ni et al., 2022), our experiments were constrained
by our resource limitations, preventing us from us-
ing these pretrained architectures. Hence, for our
multimodal baseline we opted for the the small-
est version of the Vision Transformer (ViT) model
(Dosovitskiy et al., 2021) pretrained on the Facial
Emotion Recognition dataset (Goodfellow et al.,
2013)5 to contextualize a small fraction of sampled
frames6, and incorporated an LSTM-based module
to derive a unique image representation for each
utterance. From an image batch Xi, each image

4All frames are RGB images, being the majority resolution
720 × 1280.

5
https://huggingface.co/trpakov/vit-face-expression.

6For our experiments we used 5 interleaved frames per
video, although a lower sampling rate can be considered de-
pending on the computational capabilities.

x
(i)
k ∈ Rh×w×3 was passed to the ViT base model

to recover the output of the last hidden layer and in-
troduce it as input to the LSTM module to recover
a final representation for Ui.

Audio encoding For our multimodal system we
used the hidden contextualizations of the base ver-
sion of wav2vec 2.0 (Baevski et al., 2020)7. Given
a raw audio (ai) of an utterance Ui, the encoder of
wav2vec 2.0 returns a sequence of hidden states
that we summarized with an additional trainable
LSTM layer to retrieve a unique vector that con-
tents the audio information.
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Figure 6: Multimodal encoder for Subtask 2.

Model fine-tuning The multimodal encoder
(§3.2) uses three pretrained architectures to con-
textualize individual utterances and passes to the
decoder the concatenation of the three unimodal
representations (Figure 6). We chose to fine-tune
only BERT during training together with the rest
of the network. This was based on our empiri-
cal observation of superior results when learning
from text compared to image and audio data. We
entrusted the learning of audiovisual data to the
LSTM learnable module within the encoder, pre-
suming an accurate initial contextualization from
wav2vec 2.0 and ViT pretrained on FER-2013.

3.3 Post-processing
Our end-to-end system directly recovers the pre-
dicted emotion-cause relations in a single post-
processing step that linearly operates with the out-
put tensors of the decoder. For the first subtask, the
decoder returns (i) the adjacent matrix G ∈ Rm×m,
(ii) the labeled adjacent matrix G ∈ Rm×m×|E|

and (iii) the span scores S ∈ Rm×m×ℓmax|w,i|. As
Dozat and Manning (2017), each arc Ui → Uj is
predicted by thresholding G, and, once the arcs
are predicted, the tensor G determines the label

7
https://huggingface.co/facebook/wav2vec2-base-960h.
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(emotion) associated to each arc. Since our for-
malization (§3.1) associates a given utterance to an
unique emotion, we leveraged the scores of G by
the cause utterances and return the emotion with
highest score. Finally, to produce a continuous
span for each score vector sij, we considered the
leftmost and rightmost elements of sij higher than
a fixed threshold.

ST-1 Pw
s Rw

s
†Fw

s Pw
p Rw

p Fw
p

BERT400 10.19 5.46 7.01 21.64 15.09 17.33

BERT600 12.61 7.43 9.32 22.06 15.2 17.95

BERT800 14.89 7.36 9.75 22.13 23.25 15.32

ST-2 Pw Rw †Fw

BERT 27.49, 17.62, 20.43

+ViT 22.38 22.72 22.17

+w2v 28.4 20.01 23.36

+w2v+ViT 23.37 7.62 11.49

Table 1: Evaluation of our prototype with different
multimodal configurations. Precision (P), recall (R) and
F-Score (F) measured the weighted average across the
eight emotions of the dataset (superscript w denotes that
the measure is weighted) and for the first subtask the
span performance is considered with strict correctness
(subscript s) or overlapping (subscript p). The symbol †
remarks the reference metric for each subtask.

4 Experiments

Validation The annotated dataset contains 1 375
multi-party conversations with a total of 13 619
utterances (Wang et al., 2023a). Although an unbi-
ased estimation of the performance of our system
would require validating the trained architecture
using all available annotated data, our time and re-
sources limitations prevented us from conducting
k-fold cross-validation. Instead, we partitioned a
15% of the annotated dataset as our development
set. The specific split used will be available with
the accompanying code to replicate our findings.

Evaluation We use the official metrics8: the
weighted strict F-Score for the Subtask 1 and the
weighted F-Score for the Subtask 2.

Hyperparameter configuration Our computa-
tional limitations prevented us from exhaustively
searching the optimal hyperparameters for our sys-
tem. We conducted some tests varying the pre-

8
https://github.com/NUSTM/SemEval-2024_ECAC/tree/main/Cod

aLab/evaluation.

trained text encoder9, model dimension, gradient
descent algorithm and learning rate and adding
or removing the speaker module. We maintained
in all experiments some regularization techniques
(such as dropout in the hidden layers and gradi-
ent norm clipping) to avoid over-fitting. Our final
configuration uses AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate of 10−6 and
is trained during one hundred epochs with early
stopping on the validation set.

5 Results

Table 1 presents the performance of our system for
both subtasks. For the first subtask, we investigated
various embedding sizes of the Biaffine decoder
while concurrently fine-tuning the largest version
of BERT10. For the second subtask, we conducted
experiments using different types of inputs to eval-
uate their impact. These included: (i) using only
text-based inputs, (ii) adding audio data, (iii) in-
corporating visual data through frames, and (iv)
leveraging all available multimodal inputs together.
For approaches (i), (ii) and (iii), only BERT was
fine-tuned, whereas for approach (iv), all pretrained
weights were frozen. These weights solely served
to contextualize input information, with the learn-
ing process confined to the decoder component.

Our top-performing model for the first subtask
achieved a validation score of 9.75 and ranked in
the evaluation set in 7th position among 15 par-
ticipants with 6.77 points. We observed a slight
performance improvement by increasing the hidden
dimension of the decoder. Thus, considering the
expansion of decoder layers could improve the per-
formance. It is worth noting the significant impact
of span prediction on the model performance: the
proportional results consistently outperform strict
metrics. Removing span prediction while retain-
ing only text inputs results in a notable increase in
F-Score (20.43 points for the second subtask), indi-
cating the crucial role of span prediction in model
learning. Furthermore, we noticed that there was
a consistent delay in the alignment between recall
and precision metrics, with precision consistently
exceeding recall by more than 5 points across all
approaches. This suggests that our system tends to
adopt a conservative behavior, avoiding the number

9We performed some experiments using all the versions
of BERT, (Devlin et al., 2019), RoBERTa (Liu et al., 2019)
and XLM-RoBERTa (Conneau et al., 2020) and selected the
best-performing textual encoder (BERT-large).

10
https://huggingface.co/google-bert/bert-large-cased
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of false cause emotion predictions.
The best validation performance for the second

subtask is achieved through the integration of text
and audio, yielding a score of 23.36 points in the
weighted F-Score. Using image data also improves
the text-only baseline, though unexpectedly lags
behind the audio model. It is important to note
that these two approaches are not directly compara-
ble due to differences in their data inputs: the text
and image model only considers a fixed number
of sampled frames, suggesting that providing more
image data (ideally, the full sequence of frames)
could potentially yield a better performance that
surpasses the audio-based approach. Unfortunately,
we could not fine-tune BERT with the full multi-
modal encoder, so we were restricted to projecting
the multimodal inputs to their respective contex-
tualizations, and relying on the trainable weights
of the decoder to optimize the full architecture.
The results prove the importance of, at least, fine-
tuning the text encoder: the F-Score only reaches
11.25 points, whereas the text finetuned baseline
nearly doubles its performance with 20.43 points,
highlighting the insufficient context of the original
pretrained BERT embeddings to address this task.

Once the post-evaluation period concluded, we
upload an experimental submission of our best mul-
timodal system to the official competition. We
obtained 15.32 points in the weighted F-Score, po-
sitioning our baseline in the 13th place out of 18
participants.

6 Conclusion

We proposed a graph-based prototype for the analy-
sis emotion-cause analysis in conversations. Given
the limited preparation time, we only submitted
official results for Subtask 1 (text-only), but also
report post-evaluation results for Subtask 2 (mul-
timodal). The task required predicting several as-
pects of the conversation: (i) the emotion associ-
ated with each utterance, (ii) the cause-effect rela-
tionships triggering these emotions between utter-
ances, and (iii) the specific span within the cause
utterance responsible for the emotion. We achieved
7th place out of 15 valid submissions for Subtask 1,
a promising outcome considering the time and re-
source constraints we had to prepare the task. Yet,
our results make us optimistic about exploring fu-
ture research avenues to enhance our system and
study lighter approaches that can perform competi-
tively. As future work, we aim to experiment with

smaller and distilled models to encode textual, vi-
sual, and audio inputs, enabling us to fine-tune the
full model cheaply.
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A Appendix

Input Description
Ui Utterance i, defined as Ui = (Wi, si, εi,Xi, ai).
Wi Word sequence of Ui as Wi = (w1, ..., wℓ|w,i|)

si Speaker of Ui, where si ∈ S
εi Emotion triggred in Ui, where εi ∈ E
S Set of speakers in the dataset.
E Set of annotated emotions.
Xi Sequence of frames of Ui as Xi = (x1, ...,xℓ|x,i|)

x
(i)
k Specific frame of Xi, where x

(i)
k ∈ Rh×w×3.

ai Sampled audio signal of Ui, where ai ∈ Rℓ|a,i|.
ℓ|w, i| Length of the sequence Wi.
ℓ|x, i| Lenght of the sequence Xi

Encoder Description
ui Encoder hidden representation of Ui from BERT, where ui ∈

R1024.
Wi BERT word embeddings of Wi as Wi =

(ui,w
(i)
1 , ...,w

(i)

ℓ|w,i|).

x̃i Visual hidden representation for Ui, obtained as x̃i =

LSTM−1
x (ViT(Xi)) ∈ RdV .

ãi Audio hidden representation for Ui, obtained as ãi =

LSTM−1
a (wav2vec(ai)) ∈ Rda .

ũi Multimodal representation for Ui as ũi = (ui|x̃i|ãi).

Decoder Description
Φ Arbitrary feed-forward network.
ci Cause embedding for Ui as ci = Φc(ui) ∈ RdG .
ei Effect embedding for Ui as ei = Φe(ui) ∈ RdG .
ci Emotion cause embedding for Ui as ci = Φc,ε(ui) ∈ RdG .
ei Emotion effect embedding for Ui as ei = Φe,ε(ui) ∈ RdG .
C Matrix of cause embeddings as C = (c1, ..., cm).
E Matrix of effect embeddings as E = (e1, ..., em).
C Matrix of emotion cause embeddings as C = (c1, ..., cm).
E Matrix of emotion cause embeddings as E = (e1, ..., em).
W Trainable weights for the first biaffine module, where W ∈

RdG×dG

Wε Trainable weights for the second biaffine module, where Wε ∈
RdG×|E|×dG .

Table 2: Symbol notation.
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