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Abstract

In this paper, we present our submission
to the SemEval-2024 Task 8 “Multigenera-
tor, Multidomain, and Multilingual Black-Box
Machine-Generated Text Detection”, focusing
on the detection of machine-generated texts
(MGTs) in English. Specifically, our approach
relies on combining embeddings from the
RoBERTa-base with diversity features and uses
a resampled training set. We score 12th from
124 in the ranking for Subtask A (monolingual
track), and our results show that our approach
is generalizable across unseen models and do-
mains, achieving an accuracy of 0.91. Our
code is available at https://github.com/
sachertort/petkaz-semeval-m4.

1 Introduction

SemEval-2024 Task 8 “Multigenerator, Mul-
tidomain, and Multilingual Black-Box Machine-
Generated Text Detection” (Wang et al., 2024) has
focused on the detection of machine-generated
texts (MGTs). In recent years, large language
models (LLMs) have achieved human-level perfor-
mance across multiple tasks, showing impressive
capabilities in natural language understanding and
generation (Minaee et al., 2024), including their
abilities to generate high-quality content in such
areas as news, social media, question-answering fo-
rums, educational, and even academic contexts. Of-
ten, text generated by LLMs is almost indistinguish-
able from that written by humans, especially along
such dimensions as text fluency (Mitchell et al.,
2023). Therefore, methods of automated MGT de-
tection, intending to mitigate potential misuse of
LLMs, are quickly gaining popularity. Automated
MGT detection methods can be roughly split into
black-box and white-box types, with the former be-
ing restricted to API-level access to LLMs and re-
liant on features extracted from machine-generated
and human-written text samples for classification
model training, and the latter focusing on zero-shot
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Figure 1: For each text, we get a [CLS] token embed-
ding from an autoencoder model and extract vectors
of linguistic features (e.g., lexical diversity, stylometry,
etc.). Then, we pass the concatenated vector to a feed-
forward network, whose output layer performs binary
classification — HWT vs. MGT. The configurations of
embeddings/features may vary between experiments.

Al text detection without any additional training
(see Section 2).

For our submission to SemEval-2024 Task 8, the
monolingual track of Subtask A, which focuses on
MGT detection in English across a variety of do-
mains and generative models, we have developed a
system that can be categorized as a black-box detec-
tor and is based on a combination of embeddings,
measures of lexical diversity, and careful selection
of the training data (see Figure 1). We also present
and discuss an extended set of linguistic features,
including discourse and stylistic features, that we
have experimented with during the development
phase of the competition. The main motivation for
using such a feature-based approach is that it helps
us to focus on the fundamental differences between
MGTs and human-written texts (HWTs) rather than
capture the specifics of particular models.

Our results suggest that our best model, which
uses diversity features and embeddings, outper-
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forms a very competitive baseline introduced in
this task (Wang et al., 2024), yielding an accuracy
of 0.95 on the development and 0.91 on the test set.
It brought us 12th place out of 124 teams partici-
pating in the shared task. Furthermore, our inves-
tigation shows that a model using no embeddings
but relying on such linguistic features as entity grid
and stylometry yields results that are on par with
the baseline model.

The main contributions of our work are as fol-
lows: (1) we investigate the impact on the detection
task of a variety of linguistically motivated features,
ranging from widely used stylometric features to
novel ones, including those based on high-level dis-
course analysis; and (2) we show how training data
can be selected in an informative way to help mod-
els better distinguish between MGTs and HWTs.

2 Related Work

A comprehensive survey by Yang et al. (2023) cate-
gorizes detection methods into training-based clas-
sifiers, zero-shot detectors, and watermarking tech-
niques, covering both black-box and white-box de-
tection scenarios. This survey discusses a range
of strategies, including mixed training, proxy mod-
els, and semantic embeddings, indicating ongoing
challenges in scalability and robustness. Given the
fast development of LLMs and their capabilities,
of particular interest are innovations in zero-shot
detection methods highlighted by Mitchell et al.
(2023) and Su et al. (2023). In addition, Mitchell
et al. (2023) present DetectGPT, utilizing perturba-
tion discrepancies to discern MGTs, while Su et al.
(2023) propose DetectLLM-LRR and DetectLLM-
NPR, which advance zero-shot detection by har-
nessing log rank information.

Another relevant line of research investigates the
use of linguistic and stylometric features, such as
the ones overviewed in Bergsma et al. (2012), for
MGT detection. For instance, Wang et al. (2023)
explore the use of logistic regression with GLTR
features (analyzing the distribution of token prob-
abilities and their relative frequencies within spe-
cific probability ranges from a language model’s
output), stylistic characteristics, and NELA news
verification features (style, complexity, bias, affect,
morality, and event specifics) on the M4 dataset,
and Liu et al. (2022) introduce a model exploiting
text coherence, named entities and relation-aware
graph convolutional networks under a low-resource
setting for MGT detection.

3 Methodology

Our general pipeline, visualized in Figure 1, con-
sists of the following components: (1) an autoen-
coder model fine-tuned on HWT vs. MGT clas-
sification task; (2) linguistic features extraction
pipeline; and (3) embeddings and features combina-
tion passed through a feed-forward neural network.
Below we describe some of these components in
more detail.

3.1 Embeddings

We employ an autoencoder model. First, we fine-
tune it on the HWT vs. MGT classification task,
and then we use its [CLS] tokens’ embeddings in a
feed-forward model.

3.2 Features

We study the impact on the classification accu-
racy of several types of linguistically motivated
features extracted from texts, including those based
on: 1) text statistics; 2) readability; 3) stylometry;
4) lexical diversity; 5) rhetorical structure theory
(RST); and 6) entity grid. Below we provide a de-
scription of the features and their relevance to the
task.

Text statistics  We compute the following:! 1) the
number of difficult words (words that have more
than two syllables and are not in the list of easy
words? from Dale and Chall, 1948); 2) raw lexicon
count (unique words in text); 3) raw sentence count.
In Appendix A.1, we provide the values for HWTs
and across models.

Readability We assess the readability of MGT's
and HWTs guided by the hypothesis that HWTs are
easier to read than MGTs. We calculate a range of
common readability scores for both types of texts to
assess their readability, including 1) Flesch Read-
ing Ease Test (Flesch, 1979); 2) Flesch-Kincaid
Grade Level Test (Kincaid et al., 1975); and 3) Lin-
sear Write Metric (O’Hayre, 1966).

Stylometry For stylometric features, we use
the approach proposed in Bergsma et al. (2012).
Specifically, we collect all unigrams and bigrams
from the texts and keep punctuation, stopwords,
and Latin abbreviations (e.g., i.e.) unchanged.
Then, we build two types of representations where

'We use Python’s textstat library: https://pypi.org/
project/textstat/.

2https://github.com/textstat/textstat/blob/
main/textstat/resources/en/easy_words.txt
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other words are replaced by their PoS tags and
“spelling signatures” (forms of words; e.g., xXX-dd
for i0S-17).3 Then, log token frequencies (TFs) are
computed for each text and passed to the maximum
absolute scaler, and these sparse representations
are used as features. For further processing, sparse
matrices with stylometry features are reduced by
truncated singular value decomposition to a dimen-
sionality of 768. See Appendix A.2 for the analysis
of stylometry features importance.

Lexical diversity Lexical diversity tells us how
“rich” texts are in terms of vocabulary, i.e., whether
they use rare words, or include a wide range of
synonyms, epithets, terms, etc. There are a few
measures widely used to measure lexical diversity,
mostly based on the variants of the type-token ra-
tio (TTR). We extract 10 features, such as TTR,
Maas TTR, Hypergeometric distribution d (HDD;
McCarthy and Jarvis, 2007), etc.* For an in-depth
overview, see McCarthy and Jarvis’s (2010) study
on lexical diversity assessment.

RST features In rhetorical structure theory
(RST), proposed in Mann and Thompson (1988),
texts are analyzed in terms of hierarchical struc-
tures, which represent the organization of informa-
tion and text flow. These structures are made up
of elementary discourse units (EDUs) connected
through rhetorical relations, which include “elab-
oration”, “contrast”, “cause”, “result”, etc. Us-
ing an open-source sentence-level RST parser (Lin
et al., 2019), we count the occurrences of various
relations in each text and divide them by the total
number of sentences in the text.

Entity grid Finally, we use the entity grid algo-
rithm to analyze the coherence of text by capturing
patterns of entity distribution (Barzilay and Lap-
ata, 2005). This method transforms a text into
sequences of entity transitions, documenting the
distribution, syntax, and reference information of
discourse entities. Entities from texts are first
tagged with their syntactic roles® and categorized
into three types: subject (s), object (0), and other
(x). The next step involves examining the transi-
tion of entities’ roles across consecutive sentence

3The pre-processing was done using spaCy: https://
spacy.io

*Using Python’s lexical_diversity library: https://
github.com/kristopherkyle/lexical_diversity

SNoun coreference is resolved using

(https://spacy.io) and neuralcoref
//spacy.io/universe/project/neuralcoref).

spaCy
(https:

pairs. This includes transitions like subject-to-
object, object-to-other, subject-to-none, among oth-
ers. Finally, we calculate the frequency of each
transition type for all entities by dividing the to-
tal count of each transition type by the number of
sentence pairs.

3.3 Feed-forward neural network

Finally, we use a concatenation of embeddings and
vectors representing combinations of various fea-
tures described above and pass them as input to
a feed-forward neural network. Then, the output
layer performs binary classification.

4 Data

Shared task organizers have used an extension
of the M4 dataset (Wang et al., 2023),° which
covers a range of domains (including WikiHow,
Wikipedia, Reddit, arXiv, PeerRead, and Outfox)
and texts generated by a number of LLMs (includ-
ing ChatGPT, Cohere, Davinci@@3, Dolly-v2,
BLOOMZ, and GPT-4) as well as written by humans.
Overall, the training set is roughly balanced be-
tween HWTs and MGTs, with 53% being HWTs
and with the number of HWTs being around 5
times higher than that of texts generated by any
single LLM for each of the domains. The only ex-
ception is PeerRead, where the distribution of texts
generated by each LLLM and written by humans is
about the same. At the same time, the distribution
is exactly 50%:50% for HWTs:MGTs in the devel-
opment set, and 47.5%:52.5% for HWTs:MGTs in
the test set. In addition, while both training and
development sets cover a range of domains, the test
set is limited to Outfox only.

A curious case of WikiHow Before running the
experiments, we further investigate how the train-
ing data is composed. According to Wang et al.
(2023), LLMs were provided with relatively short
inputs to generate texts across various domains:
for example, with titles for Wikipedia articles and
arXiv papers, titles and abstracts for PeerRead arti-
cles, etc. On the one hand, we observe a high level
of parallelism in the training data across HWTs
and texts generated by various models, and on the
other, we note that there is little consistency in what
models generate in certain domains: for example,
provided with a name of a personality they gen-
erate quite different Wikipedia entries, which do

https://github.com/mbzuai-nlp/M4
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not only differ from the correspondent HWTs but
also vary from one LLM to another (see examples
in Appendix B, Table 5). In contrast, texts in the
WikiHow domain appear to be more similar to each
other across LLMs, which can be explained either
by the way the data was generated (using titles and
headlines as prompts to produce MGTs) or by the
fact that there are fewer ways to explain How to do
X? compared to the tasks in other domains. More-
over, our experiments with in-domain training of
the MGT detection classifier suggest that the best
results can be obtained when it is trained on the
WikiHow domain. We follow up on these observa-
tions and create a customized training subset by
using all MGTs from the original data and limiting
HWTs to the texts from the WikiHow domain only.
This results in a training set of 56,406 MGTs and
15,499 HWTs, with the distribution between each
LLM and humans being roughly 1:1.

5 Experiments

5.1 Experimental setup

As the source of embeddings, we use
roberta-base’ (Liu et al., 2019) fine-tuned
within the baseline framework® over 3 epochs
with the learning rate of 2e-5 and Lo norm of
the weights being 0.01. The feed-forward neural
network with two hidden layers accompanied by a
ReLU activation function is then trained with the
learning rate Se-5, Ly norm of the weights 0.01,
and early stopping after 25 epochs. Each hidden
layer has batch normalization and a dropout of
0.5. We use PyTorch? (Paszke et al., 2019) for all
training and evaluation steps.

Following up on our observations on the Wiki-
How subset described in Section 4, we conduct two
series of experiments and train the feed-forward
network on: 1) the full training set; and 2) the re-
duced training set where we use MGTs from all
domains and HWTs from WikiHow only.

5.2 Experiments on the development set

The evaluation results of our model with different
feature configurations applied to the development
set are presented in Table 1. Several observations
are due at this point.

"https://huggingface.co/FacebookAI/
roberta-base

8https://github.com/mbzuai-nlp/
SemEval2024-task8/tree/main/subtaskA/baseline

9https://pytorch.org

Configuration Full train Reduced train

feat 0.60 0.60
sty 0.68 0.57
sty || feat 0.69 0.60
sty || div 0.65 0.72
sty || read 0.67 0.61
sty || rst 0.64 0.57
sty || ent 0.73 0.56
emb 0.74 0.83
emb || sty 0.73 0.82
emb || feat 0.76 0.90
emb || div 0.73 0.95
emb || read 0.72 0.81
emb || rst 0.73 0.81
emb || ent 0.73 0.82
“Baseline 074 -

Table 1: Accuracy of different configurations and the
baseline on the development set. feat stands for all
features except stylometry, sty — stylometry, div — lex-
ical diversity, read — text statistics and readability, rst
—RST, ent — entity grid, emb — embeddings (see Section
3.2).

First of all, we note that the highest accuracy
of 0.95 is achieved with the model trained on the
reduced training set using a combination of embed-
dings and diversity features. This does not mean
that lexical diversity is necessarily the most pow-
erful among linguistic features, but it suggests that
it complements embedding representations better
than other linguistic features. Moreover, it is the
only feature type that increases the accuracy ob-
tained with embeddings only. Finally, we also note
that with the linguistic features, our model can out-
perform a competitive baseline used by the task
organizers, which sets the accuracy at 0.74.

Secondly, stylometry features turn out to be the
best linguistic feature type when used on their own:
the accuracy with sty is 0.68 vs. 0.6 with feat.
These representations reflect some general patterns
of word types used in texts. However, it seems
like they alone are not enough for effective classi-
fication, at least when applied to texts generated
by modern LLMs. Notably, the configuration that
combines stylometry with entity grid features (sty
+ ent) demonstrates performance that is nearly
identical to the baseline employing a pre-trained
language model (0.73 vs. 0.74), suggesting that
entity grid adds further information about text co-
herence. Other features like RST do not seem to
help distinguish MGTs from HWTs. This finding
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Configuration Train Accuracy F;

emb || div reduced 0.91 0.92

sty || ent full 0.84 0.85
Baseline full 088 -

Table 2: Metrics on the test set. The first row is our
main submitted configuration. The organizers do not
report only the baseline’s F} score.

suggests that the frequency or efficacy with which
humans and models employ rhetorical structures is
comparable.

Finally, we observe that the performance of the
model using emb features always increases if it is
trained on the reduced set. This determines the
model configuration for our final submission.

6 Results

Table 2 presents accuracy on the test set obtained
with two configurations: a model using embed-
dings and lexical diversity features trained on the
reduced training set, and a model using stylometry
and entity grid features trained on the full train-
ing set, which showed promising results on the
development set. The former one is our main
configuration: our team has submitted its pre-
dictions for the test set and scored 12th in the
shared task (out of 124 teams). This model out-
performs the organizers’ baseline, which sets the
accuracy at 0.88. However, we note that the latter
model, which relies on linguistic features only and
does not employ any pre-trained language model,
also shows promising results, further strengthen-
ing our hypothesis that linguistic features are able
to capture important properties of LLM-generated
texts.

6.1 Analysis

We further analyze the performance of our best
model across different LLMs on the test set, as illus-
trated in Figure 2. The results show that our model
accurately identifies texts from Dolly-v2, Cohere,
and ChatGPT as machine-generated, and achieves
near-perfect classification precision on texts from
GPT-4 and Davinci@@3. BLOOMZ is the only model
that presents a problem for our classifier, with an
8% misclassification rate. Additionally, we ob-
serve that 18% of HWTs are incorrectly classified
as being generated by machines. This shows the
remarkable generalizability of our approach com-
pared to Wang et al. (2023), who reported that “it is
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Figure 2: Performance of our classifier across models.
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Figure 3: Performance of our classifier across domains
(on the development set).

challenging for detectors to generalize well on un-
seen examples if they are either from different do-
mains or are generated by different large language
models. In such cases, detectors tend to misclassify
machine-generated text as human-written”.

Furthermore, we evaluate our model’s perfor-
mance across domains (Figure 3). Our analysis
reveals that we can accurately identify all MGTs
and nearly perfectly recognize HWTs from arXiv.
Our classifiers face the biggest difficulties when
classifying MGTs from PeerRead and HWTs from
Wikipedia. These results are aligned with those
reported in Wang et al. (2023), who also found
that training on Wikipedia leads to the worst out-of-
domain accuracy.

In summary, our classifier demonstrates gen-
eralizability, performing well on both previously
unseen models (GPT-4 and BLOOMZ) and domains
(with all texts in the test set being from Outfox).

7 Conclusions

When developing the models for our submission
to the SemEval-2024 Task 8, we have primarily fo-
cused on: (1) the contribution of linguistic features
to the task, and (2) the selection of the informative
training data. Our results suggest that models using

1144



only linguistic features (specifically, those based
on stylometry and entity grid) can perform com-
petitively on this task, while careful selection of
the training data helps improve the performance of
the models that rely on embeddings. This shared
task demonstrates that it is possible to distinguish
between HWTs and MGTs, but the results also sug-
gest promising avenues for future research, includ-
ing in-depth analysis of the training data selection
techniques and expansion of the linguistic features.

Limitations

Our work is limited to the English language only
as we opted to participate in a single Subtask of
SemEval-2024 Task 8. In addition, this work is
only limited to the domains and LLMs included in
the shared task data, therefore, the generalizability
of our approach beyond these domains and LLMs
will need to be verified in future experiments.
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A Features Analysis

A.1 Text statistics across models

Table 3 shows various text statistics calculated on
the training set. It can be seen that HWTs have
higher values than all MGTs across all these met-
rics.

Model DW LC SC
ChatGPT 64 350 19
Cohere 37 256 13
Davinci@@3 58 315 16
Dolly-v2 54 342 18
Human 91 582 30

Table 3: Text statistics on the training set. DW = difficult
words (mean), LC = lexicon count (mean), SC = sen-
tence count (mean).

A.2 Stylometry features importance

Stylometry features are passed to a linear SVM
classifier'? to extract coefficients that may be in-
terpreted as feature importances. Table 4 presents
the most important features for MGTs and HWTs
in the case of binary classification: for example,
we can see that proper nouns are mostly associated
with HWTs. It also makes it clear how the features
are ordered by importance.

MGT feature Wt. HWT feature Wt.
How to 3.28 NOUN SPACE -4.12
SPACE How 2.34  SPACE -4.12
NUM VERB 2.07  XXxx -3.93
Xxxxx the 2.00 SPACE ADJ -3.10
How 1.78  SPACE PROPN -3.10
SPACE NUM 1.77  the SPACE -2.67
Well 1.57 NOUN -2.57
Xxx the 1.38 NUM SPACE -2.21
dd Xxxxx 1.37 PROPN SPACE -2.15
NOUN you 1.37  _XXX_d -2.14

Table 4: Stylometric features highly weighted by the
binary SVM classifier.

B Data Statistics

Table 5 shows some examples of parallel texts ex-
tracted from three domains represented in the train-
ing set (WikiHow, Wikipedia, and PeerRead). As
explained in Wang et al. (2023), the data for each

From scikit-learn (Pedregosa et al., 2011): https:
//scikit-learn.org.
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WikiHow

ChatGPT Buying Virtual Console games for your Nintendo Wii is a fun and easy process that can net
you some classic games to play on your console. [...]

Cohere How to Buy Virtual Console Games for Nintendo Wii
The Nintendo Wii has a feature called the Virtual Console that allows you to download and
play games from past Nintendo consoles, such as the Nintendo Entertainment System. [...]

Davinci@@3 How to Buy Virtual Console Games for Nintendo Wii
Most people know that Nintendo’s library of classic titles is available on the Wii platform
through the Virtual Console. [...]

Dolly-v2 Find a few Wii Points cards from game retailers like GameStop., Make sure your Wii is
online and on a secure connection if possible. [...]

Human They are about $20 a card. Or, if you want to just buy points with your credit card, Skip
down to the section, With a Credit Card. [...]

Wikipedia

ChatGPT William Whitehouse was a 19th-century British engineer and inventor who made significant
contributions to the field of hydraulics. [...]

Cohere William Whitehouse (1567-1648) was an English scholar, schoolmaster, and Anglican
clergyman. [...]

Davinci@@3 William Whitehouse (August 6, 1590 - May 18, 1676) was an English priest, scholar and
biblical commentator. [...]

Dolly-v2 William Whitehouse (born William John Whitehouse; 15 July 1944) is an English musician,
singer and songwriter. [...]

Human William Edward Whitehouse (20 May 1859 - 12 January 1935) was an English cellist. [...]

PeerRead

ChatGPT The paper "End-to-End Learnable Histogram Filters" aims to introduce a novel approach
that enables histogram filters to be learnable end-to-end. [...]

Cohere This paper addresses the problem of designing end-to-end learnable histogram filters. [...]

Davinci@@3 This paper presents an interesting approach to combining problem-specific algorithms with
machine learning techniques to find a balance between data efficiency and generality. [...]

Dolly-v2 The paper End-to-End Learnable Histogram Filters demonstrates an interesting technique
for reducing photo noise without blurring the image. [...]

Human We are retracting our paper "End-to-End Learnable Histogram Filters" from ICLR to submit

a revised version to another venue. [...]

Table 5: Parallel HWTs and texts generated by different LLMs in the training set extracted from selected domains.

domain was generated in a different way (for in-
stance, using an article title only in some cases, and
more extended inputs in others). We observe that
there is much less consistency between the outputs
generated by different LLMs in such domains as
Wikipedia and PeerRead than in WikiHow. For in-
stance, in the case of generated Wikipedia articles,
the models cannot even agree on what personality
they are describing (which is obvious from the very
first sentences of such generated articles), while
in the case of generated reviews from PeerRead,
article descriptions also exhibit high diversity in
the way they are presented in the review. At the
same time, we hypothesize that generating texts
for the WikiHow domain, describing How to do X?,
results in higher consistency in the models’ outputs,
which is exemplified in Table 5.
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