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Abstract
This study addresses a task encompassing two
distinct subtasks: Sentence-puzzle and Word-
puzzle. Our primary focus lies within the
Sentence-puzzle subtask, which involves dis-
cerning the correct answer from a set of three
options for a given riddle constructed from
sentence fragments. We propose four distinct
methodologies tailored to address this subtask
effectively. Firstly, we introduce a zero-shot ap-
proach leveraging the capabilities of the GPT-
3.5 model. Additionally, we present three fine-
tuning methodologies utilizing MPNet as the
underlying architecture, each employing a dif-
ferent loss function. We conduct comprehen-
sive evaluations of these methodologies on the
designated task dataset and meticulously doc-
ument the obtained results. Furthermore, we
conduct an in-depth analysis to ascertain the
respective strengths and weaknesses of each
method. Through this analysis, we aim to pro-
vide valuable insights into the challenges inher-
ent to this task domain.

1 Introduction

The remarkable efficacy of language models in nav-
igating complex reasoning tasks, particularly in
the realm of vertical thinking, has prompted their
exploration in lateral thinking problem domains
(Waks, 1997). One such domain, exemplified by
the BRAINTEASER task (Jiang et al., 2024), en-
tails a multiple-choice Question Answering frame-
work comprising two distinct subtasks: Sentence-
puzzle and Word-puzzle. This paper directs its
focus toward the Sentence-puzzle subtask, which
hinges on unraveling the intricate nuances of com-
mon sense embedded within sentence fragments
(Jiang et al., 2023).

Initially, we adopted a zero-shot approach, fol-
lowed by experimentation with three distinct fine-
tuning methodologies tailored for Language Model
(LLM) architectures as the backbone. Addition-
ally, we have made our code openly accessible on

GitHub1 to facilitate reproducibility and further
research endeavors.

A primary challenge we encountered pertained
to the constraint imposed by the dataset size, pos-
ing impediments to both fine-tuning procedures and
model training from scratch. To mitigate this chal-
lenge, we employed various strategies, including
the utilization of k-fold cross-validation techniques,
to enhance the robustness and generalizability of
our approach.

2 Background

In the implementation of the zero-shot method,
we employed ChatGPT-3.5, utilizing a consistent
prompt template throughout. Conversely, for the
fine-tuning process, we adopted a pre-trained sen-
tence embedding technique to map input sentences
into meaningful numerical vectors, facilitating sub-
sequent decision-making regarding the provided
questions and options.

Furthermore, in our fine-tuning methodologies,
we integrated two distinct types of loss functions:
Binary Cross-Entropy loss and Triplet loss. The
Binary Cross-Entropy loss function operates on
the premise of determining whether two sentences
coherently match or not. Conversely, the Triplet
loss function aims to optimize the proximity be-
tween the question and the correct answer while
concurrently ensuring a clear distinction between
the question and unrelated options.

3 Dataset

The task dataset comprises 507 samples designated
for training purposes, with an additional 120 sam-
ples allocated for the test set. Notably, the evalua-
tion set encompasses a subset of the training sam-
ples, necessitated by data scarcity. Consequently,
for two out of the three fine-tuning methods, no

1https://github.com/MohammadHAbbaspour/
SemEval-2024_task9_BRAINTEASER
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data from the training set were utilized for evalua-
tion. Conversely, the third method, employing the
k-fold technique, leveraged the training samples
for both the training and evaluation phases.

4 System overview

4.1 Zero Shot

For the zero-shot methodology, we leveraged the
GPT-3.5-turbo model, utilizing a temperature pa-
rameter of 0.0. To elicit responses from the model,
we employed a consistent prompt template outlined
in Table 1. Within this template, we systematically
substituted the question and available options with
the corresponding tokens. Additionally, we ex-
tracted explanations from the model to facilitate a
deeper analysis of its reasoning processes.

4.2 Binary Classification

In this approach, we utilized the all-mpnet-base-
v2 model (Song et al., 2020; Jayanthi et al., 2021)
as the backbone, which was subsequently frozen.
Following this, we introduced a trainable layer
for inference purposes. The core principle un-
derlying this method involves the transformation
of each sample within the dataset, comprising a
question and three options (excluding the ’None of
the above’ option), into three distinct pairs. Each
pair encompasses the question alongside one of
its options, with a corresponding label indicating
whether the option constitutes the correct answer.
Consequently, the original training dataset, com-
prising 507 samples, was expanded to form a new
dataset comprising 1521 samples.

Moreover, during the process of feeding sen-
tences into the model, we initially present the ques-
tion and option to the backbone model. Subse-
quently, we concatenate the resulting vectors and
forward them to the inference layer. For the final
decision-making step, we apply a sigmoid func-
tion to the output of the inference layer, enabling
us to ascertain the consistency between the two
sentences by employing a threshold of 0.5.

During the inference stage, we determine the
option with the highest score among the three avail-
able options.

4.3 Triplet loss

In this approach, our base model and backbone
remain consistent with the previous section. How-
ever, the data preparation process differs. In the
original dataset, each sample consists of a single

question alongside three options, one of which is
designated as the correct answer. Consequently, for
each sample in the original dataset, we generate
two samples in the new dataset. As a result, the
new dataset comprises 1014 samples, with each
sample comprising a question as the anchor, the
correct answer as the positive, and a distractor as
the negative.

As previously elucidated, the fundamental con-
cept is to minimize the distance between the ques-
tion and the correct answer while maximizing the
distance between the question and unrelated op-
tions. To achieve this objective, we integrate a
pre-trained sentence embedding model within the
inference component.

Within our implementation, the inference com-
ponent consists of two subparts: one dedicated to
the anchor and the other to the positive and negative
instances. The anchor component essentially func-
tions as an identity layer, as it cannot glean mean-
ingful insights from a single question. Conversely,
the other component aims to discern the dispari-
ties between the positive and negative instances by
leveraging information from the question. Hence,
we concatenate the output of the sentence embed-
ding model for the question and the correct answer
to form the positive instance, and likewise for the
question and the distractor to constitute the nega-
tive instance within the triplet loss framework (see
Algorithm 1).

Algorithm 1 Algorithm of the triplet loss

procedure FORWARD(qemb, ansemb, disemb)
anchor = qemb
positive = concatenate(qemb, ansemb)
negative = concatenate(qemb, disemb)

anchor = anchor_inference(anchor)
positive = option_inference(positive)
negative = option_inference(negative)

return anchor, positive, negative

4.4 Triplet loss (K-Fold)
As previously highlighted, the limited availability
of data poses a significant challenge in this task. To
address this issue, we adopt the K-Fold technique,
a commonly employed strategy for mitigating data
scarcity. The key components of this approach
remain consistent with the previous sections, in-
cluding the backbone model and the underlying
algorithm. However, the distinguishing factor lies
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Prompt
Which option is the answer to this riddle, explain in a step-by-step manner:
<RIDDLE>
1) <OPTION1>
2) <OPTION2>
3) <OPTION3>
4) None of the above.
Please place your answer in a JSON format:

{
"option_number": <JUST_THE_NUMBER_OF_THE_CORRECT_OPTION>,
"explanation": <EXPLANATION_WHY_IT_IS_CORRECT>

}

Table 1: Constant template for prompt used in zero-shot

in the training process, wherein multiple models
are trained, and the most performant one is selected
as the final iteration based on its performance on
the evaluation data.

Initially, we partition the training dataset into k
folds, each serving as the basis for training a dis-
tinct model utilizing the Triplet loss. Subsequently,
a subset of validation data is extracted from each
fold, and the model is trained on the remaining data.
Evaluation of each model is then conducted on the
evaluation data corresponding to its respective fold.
Upon completion of the training process, k models
are obtained. To select the final model, we em-
ploy a sorting criterion based on the following key
metric:

key =
val_acc

train_loss

This metric encapsulates the trade-off between val-
idation accuracy and training loss. The selection
process involves sorting the models based on this
key metric and choosing the middle model. This
decision is predicated on the objective of maximiz-
ing validation accuracy while minimizing training
loss. However, it is important to note that models
with the highest values of key may exhibit signs of
overfitting and possess reduced generalization ca-
pabilities. Hence, opting for the middle model mit-
igates the risk of overfitting and ensures enhanced
generalization.

5 Experimental setup

5.1 Customized triplet loss

In methodologies utilizing the triplet loss paradigm,
the loss function undergoes customization. While
the original triplet loss hinges on the calculation of
the Euclidean distance as a measure of difference,

our approach diverges by customizing this metric
to cosine similarity (see Algorithm 2).

Algorithm 2 Triplet loss, customized by cosine
similarity

procedure LOSS(anchor, positive, negative)
positive_sim = cosine_similarity(anchor,

positive)
negative_sim = cosine_similarity(anchor,

negative)
loss = negative_sim - positive_sim +

margin
return loss

The maximum value of cosine similarity be-
tween two vectors is 1 which means two vectors are
the same, and the minimum value between them is
-1 which means they are different. So:

−2 ≤ positive_sim− negative_sim ≤ 2

We add the margin=2 value to the loss for shifting
it in positive numbers:

0 ≤ positive_sim−negative_sim+margin ≤ 4

Hence, if two vectors are the same it means the
loss is equal to 0 and if two vectors are opposite it
means the loss has its max value.

5.2 Hyperparameters
For the training of the discussed models, we scruti-
nized the hyperparameters outlined in Table 2.

6 Results

We conducted evaluations of the aforementioned
methods on the test set, and the results are pre-
sented in Table 3. It is evident that the zero-
shot method exhibits the best performance on the
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epochs learning rate batch size validation size k
Binary classification 10 0.001 4 - -

Triplet loss 10 0.001 16 - -
K-Fold 10 0.001 16 20 3

Table 2: Hyperparameters of models while training

S_ori S_sem S_con S_ori_sem S_ori_sem_con S_overall
Zero-shot 0.7 0.575 0.575 0.55 0.35 0.61

Binary classification 0.625 0.625 0.525 0.625 0.475 0.5916
Triplet loss(modified system) 0.65 0.65 0.625 0.65 0.525 0.641

K-Fold 0.6 0.6 0.625 0.6 0.5 0.608

Table 3: Comparison of our results

Original sentences. However, its efficacy dimin-
ishes notably when applied to other categories such
as Semantic, showcasing a significant disparity
compared to its performance on the Original sen-
tences. Conversely, all of our fine-tuning methods
demonstrate comparable performance across all
categories.

Among our fine-tuning methodologies, the
Triplet loss approach stands out with the most im-
pressive performance, achieving the highest Over-
all score among all methods.

The uniformity in scores observed with the
Triplet loss method suggests that it does not ex-
hibit bias towards specific words or segments of
the sentence; rather, it considers the entire sen-
tence holistically. This is in contrast to the zero-
shot method, where significant discrepancies exist
among its scores. However, it’s worth noting that
the performance of our fine-tuning models could
potentially improve with a larger volume of data.

7 Conclusion

In this paper, we have presented four distinct
methodologies for the BRAINTEASER task, a
novel challenge involving common sense reasoning
and sentence puzzle solving. We have evaluated
our methods on the task dataset and compared their
performance across different categories. Our re-
sults show that the zero-shot approach, based on
GPT-3.5-turbo, achieves the highest score on the
original sentences, but fails to generalize well to
other categories. On the other hand, our fine-tuning
methods, based on MPNet and various loss func-
tions, demonstrate more consistent and robust per-
formance across all categories, with the triplet loss
approach achieving the best overall score. We have

also employed the K-Fold technique to mitigate the
data scarcity issue and enhance the generalization
capability of our models. Through our analysis, we
have provided valuable insights into the strengths
and weaknesses of each method, as well as the chal-
lenges inherent to this task domain. We hope that
our work will inspire further research on this novel
and intriguing problem of common sense reasoning
and sentence puzzle solving.
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