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Abstract

ECPE (emotion cause pair extraction) task was
introduced to solve the shortcomings of ECE
(emotion cause extraction). Models with se-
quential data processing abilities or complex
architecture can be utilized to solve this task.
Our contribution to solving Subtask 1: Tex-
tual Emotion-Cause Pair Extraction in Con-
versations defined in the SemEval-2024 Task
3: The Competition of Multimodal Emotion
Cause Analysis in Conversations is to cre-
ate a two-step solution to the ECPE task utiliz-
ing GPT-3 for emotion classification and Span-
BERT for extracting the cause utterances.

1 Introduction

This paper introduces an approach for the emotion-
cause extraction problem in dialogues. An emotion
cause is defined and annotated in the given subtask
as a textual span. Input to the model is a conver-
sation containing the speaker and the text of each
utterance. The model output should include all
emotion-cause pairs, where each pair contains an
emotion utterance along with its emotion category
and the textual cause span in a specific cause utter-
ance, e.g.(U3_Joy, U2_"You made up!").

Our contribution to solving Subtask 1: Tex-
tual Emotion-Cause Pair Extraction in Con-
versations defined in the SemEval-2024 Task 3:
The Competition of Multimodal Emotion Cause
Analysis in Conversations (Wang et al., 2024) is
as follows: 1) utilize GPT-3 for emotion classifica-
tion, ii) utilize SpanBERT architecture to extract
the cause utterances in dialogues as Q&A task, iii)
contribute to solving the ECPE by finding its possi-
ble solutions in other NLP fields.

The task was separated into two parts - emo-
tion classification, called subtask 1.1, and emotion-
cause pair extraction, termed subtask 1.2. We have
used GPT-3 and the SpanBERT model for these
subtasks. In this paper, we also reflect on the re-
sults we got in the case of both subtasks, namely

emotion classification and emotion-cause pair ex-
traction. Our model, with one test entry, scored 9th
in the competition.'

2 Related work

In recent years, many authors have suggested their
approach to solving the ECPE task. Xia and
Ding (2019) defined the ECPE task and proposed
a two-step framework. First, independent multi-
task learning (named Indep) consisting of BILSTM
modules and interactive multi-task learning (called
Inter-EC for a model that uses emotion extraction to
improve cause extraction and Inter-CE for a model
that uses cause extraction to enhance emotion ex-
traction) was used to extract a set of emotion cases
and a set of cause clauses. Secondly, the sets were
paired to yield a set of candidate emotion-cause
pairs. Finally, a logistic model regression was used
to filter the pairs. This two-step framework suffers
from error propagation from the first step to the sec-
ond step. Ding et al. (2020a) has also proposed a
one-step framework that takes emotion-cause pairs
as a 2D representation scheme with BiLSTM mod-
ules. These representations are forwarded into the
2D Transformer framework to capture pair inter-
action. Finally, binary classification is conducted
to extract valid emotion-cause pairs. The new pro-
posed framework outperforms the two-step frame-
work by 7.6 percentage points of the F1 score. Re-
garding the joint framework, Ding et al. (2020b)
have proposed a sliding window multi-label learn-
ing scheme named ECPE-MLL. It works on the as-
sumption that all clauses in a document are emotion
clauses, and an emotion-oriented sliding window is
built centered on each emotion clause. In each win-
dow, the emotion clause extracts one or more of the
corresponding cause clauses (the iterative synchro-
nized multi-task learning (ISML) model is intro-
duced to solve these subtasks). The results of this

"https://codalab.lisn.upsaclay.fr/competitions/1614 1#results
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learning can be transformed into emotion-cause
pairs. This approach serves an excellent advan-
tage over the two-step framework proposed before.
Chen et al. (2022) have proposed two alignment
mechanisms with a model named A?Net. Text
documents are encoded with BERT and a parti-
tion filter network (PFN) to implement the first
alignment mechanism: feature-task alignment to
produce emotion-specific, cause-specific, and in-
teraction features. The features are applied for EE
(emotion and interaction features), CE (cause and
interaction features), and ECPE tasks (all features).
The inter-task alignment reduces then the inconsis-
tency between label spaces among all tasks. The
proposed framework achieves a higher F1 score
and recall in the ECPE task, a higher F1 score in
the EE task, and a higher recall and F1 score in
terms of the CE task when compared to ECPE-2D.

3 Methodology

The emotion extraction cause task consists of two
components - emotion extraction from the conver-
sation and emotion cause span extraction. The first
one could have been considered as a baseline for
the second one, as we needed to identify which
emotion and utterance should be used in the pro-
cess of the cause search. There are two ways of
approaching this problem. We could have created
one model for both subtasks or separated it into
two subsequent tasks, where each could be imple-
mented using different models.

We have decided to go with the second approach,
as we concluded that those less complex parts could
have better quality in the end, even though we are
aware of the error propagation, which definitely
will be present in such a case.

3.1 Subtask 1.1

The first subtask aims to create a classification
model, which will perform emotion recognition
in each utterance of the conversation.

We have focused on two different models while
approaching this problem. At first, we decided to
use BiLSTM, but the results were not promising
(refer to Appendix A and Section 4.1.2). Then, we
have focused on utilizing the GPT-3 model (Brown
et al., 2020) along with AssistantAPI provided by
OpenAl

3.1.1 Dataset

The training dataset, presented by the SemEval
competition organizers, contained information

about conversations between groups of people and
emotion-cause pairs extracted from that conversa-
tion. The conversation consisted of multiple utter-
ances, each with defined text, speaker, and emotion
expressed by the speaker and their id.

The given dataset was transformed into a set of
objects, where each represents a single utterance
along with information about the context (concate-
nated utterances within the conversation) and ex-
pressed emotion.

3.1.2 Model

For the GPT-3 model, we have decided to use a
standard Assistant (by only defining its purpose)
and one enriched with data retrieval (by adding
properly labeled data as its knowledge base).

The purpose of both Assistants was defined us-
ing the description:

You are a system which analyzes conversation
which consists of utterances sequence (attribute
"context" in the given JSON object) among with
given utterance (attribute "utterance" in the given
JSON object) and then predicts emotion expressed
(fear, surprise, joy, disgust, sadness, anger or neu-
tral, you cannot use any other emotion as an an-
swer and you must detect at least one of those
emotions) in that utterance adding it to the answer
using "**" symbol to emphasize answer’s location.

The enrichment of the second Assistant was
based on the OpenAl Knowledge Retrieval func-
tionality 2. A selected number of records described
further in Section 4.1 were fed into the GPT-3
model as a knowledge base. Upon querying, the
model performs either a vector search or passes the
file content to the context of the model calls. For
further clearance, a model with/without a knowl-
edge base will be called GPT-3 based Assistant
with/without knowledge base.

3.2 Subtask 1.2

The second subtask aims to find which utterances
in a given context are responsible for inducing the
emotion predicted in subtask 1.1 (for details please
refer to Section 3.1). The main idea of the second
subtask is to fine-tune the SpanBERT model (Joshi
et al., 2020) and perform question-answering to
find the utterances in the dialogue for predicted
emotion.

Zhttps://platform.openai.com/docs/assistants/tools/
knowledge-retrieval
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Dataset Count
train 5635
validation 1349
test 2380

Table 1: Train, validation, test dataset sizes for subtask
1.2

3.2.1 Dataset

The raw dataset that was presented in Section 3.1
and split into the 0.6-0.15-0.25 ratio was trans-
formed to fit the question-answering task. The
duplicates were removed. The original text field
combined with the person speaking speaker in
each conversation in the provided SemEval (Wang
et al., 2023) dataset was converted into the context
column. The question to be answered was for-
mulated as follows: What caused the [emotion]?,
where [emotion] refers to the predicted emotion
for a given utterance combined into the context.
Additionally, information was provided to indicate
where the answer starts in the context, and text
column to show the answer in the context. Table 1
shows the dataset sizes used for subtask 1.2.

A tokenizer was used with the original Span-
BERT to fit the dataset into the SpanBERT input.
Along the tokenization process, the following pre-
processing steps were also applied:

1. For questions (column question) and contexts
(column contexts), tokenization with trunca-
tion and padding on the right was applied. The
max length of sequences was set to 512 (de-
fault SpanBERT value), and the stride was
also used and set to 128 so that if the context
is long, each of the features retrieved from the
context has a context that overlaps the context
from the previous feature.

2. For answers, the start position and end posi-
tion were marked so that the current span’s
token index and the current span’s end token
index were put correctly even if the answer
is out of span (CLS token was added in that
case). If the answer was in a given span, the
token start index and token end index were
put to the two ends of the answer.

3.2.2 Model

The model used to finetune the data prepared for
subtask 1.2 was SpanBERT? (Joshi et al., 2020)

*HuggingFace implementation has been used.

sadnessf 15 3 9 1 2 2 1

disgustt 1 1 1 7 a 2 3

Actual Class

angerp 17 4 2 0 16 6 1

fear} 3 1 0 0 1 5 0 20

surpriser 8 8 1 1 2 3 26

Predicted Class 0

Figure 1: Confusion matrix for the GPT-3 based Assis-
tant with knowledge base

finetuned previously on the SQuAD v1.1 for the
Q&A downstream task.

4 Experimental Results

This section presents the experiment results (before
evaluation phase) in terms of both subtasks.

4.1 Subtask 1.1

4.1.1 GPT-3 model

We have checked the accuracy of the GPT-3 model
by utilizing 400 randomly selected utterances. As-
sistant, which was enhanced by adding a knowl-
edge base, was using another randomly selected
(but not similar to the ones in the test dataset) 500
records from the training dataset.

During the testing phase, we calculated the pre-
dicted labels’ F1-score, accuracy, and recall and
created a confusion matrix.

Figures 1, 2 and Tables 2, 3 refer to the con-
fusion matrix for the Assistant with and without
knowledge base accordingly.

Emotion Precision Recall FI1-Score
neutral 0.63 0.56 0.59
joy 0.42 0.72 0.53
sadness 0.60 0.27 0.37
disgust 0.39 0.37 0.38
anger 0.53 0.35 0.42
fear 0.22 0.50 0.30
surprise 0.55 0.53 0.54
Accuracy 0.52
Macro Avg 0.48 0.47 0.45
Weighted Avg 0.55 0.52 0.52

Table 2: Classification Report for the GPT-3 based As-
sistant with knowledge base
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Emotion Precision Recall F1-Score Emotion Precision Recall F1-Score
neutral 0.62 0.26 0.37 neutral 0.45 0.39 0.42
joy 0.31 0.86 0.46 joy 0.24 0.35 0.28
sadness 0.27 0.09 0.14 sadness 0.14 0.09 0.11
disgust 0.32 0.37 0.34 disgust 0.06 0.03 0.04
anger 0.43 0.48 0.45 anger 0.09 0.06 0.07
fear 0.25 0.50 0.33 fear 0.05 0.04 0.04
surprise 0.41 0.35 0.38 surprise 0.20 0.32 0.25
Accuracy 0.39 Accuracy 0.28
Macro Avg 0.37 0.42 0.35 Macro Avg 0.18 0.18 0.17
Weighted Avg 0.47 0.39 0.37 Weighted Avg 0.29 0.28 0.28

Table 3: Classification Report for the GPT-3 based As-
sistant without knowledge base

neutral 88 4 7 14 5 14
joyt 7 56 0 2 o 0 4 70
sadness| 8 9 3 5 1 3 4

disgust} 3 2 0 7 4 1 2

Actual Class

anger| 7 9 2 1 2 2 3 30

feart 1 2 0 0 1 5 1 20

surprisef 3 13 2 2 7 4 17

Predicted Class

Figure 2: Confusion matrix for the GPT-3 based Assis-
tant without knowledge base

By looking at the Tables 2, 3, one can see that
average Macro and Weighted metrics are higher
in all given cases: F1-score, Precision, and Recall
when dealing with GPT-3 Assistant with knowl-
edge base. Metrics for emotions such as sadness
for GPT-3 based Assistant without knowledge are
relatively low compared to much better results in
terms of metrics when dealing with GPT-3 based
Assistant with knowledge base. Figures 1 and 2
present the confusion matrices for two version of
GPT-3 classifier. For GPT-3 based Assistant with
the knowledge base, more neutral cases were pre-
dicted correctly. In contrast, without the knowledge
base, more neutral cases were predicted incorrectly
as joy class.

4.1.2 BiLSTM model

The following Figures 3, 4 and Tables 4, 5 refer to
the confusion matrix for Model 1 and Model 2 ac-
cordingly used in the BiLSTM experiment (please
refer to Appendix A for training and model details).

While analyzing the confusion matrix and val-
ues of the metrics for the test data, one can see that

Table 4: Classification Report for Model 1

S
neutral 452 260 736 394 690 1750

1500

1250
sadnessf 306 214 119 52 137 8 119

1000
disgust | 124 55 35 17 50 28 56

Actual Class

angerf 435 281 129 86 200 127 220

fear| 93 47 30 21 a8 a2 58

surprisef 434 224 114 70 210 144 420

Predicted Class

Figure 3: Confusion matrix for the Model 1

the results are not the best - weighted accuracy is
around 0.3, while recall and F1-scores are approx-
imately 0.28. Results for both Models are pretty
similar, so we can only say that context was not
utilized by us well enough for it to affect prediction
results (Figures 3 and 4).

The performance of the model was also affected
by the distribution of the labels (refer to Figure
5) - such an unbalanced dataset caused labels for
neutral, joy, surprise, anger (and also sadness) were
more likely to be classified in the right way than

B
neutral [EEEIEEREETER 63 20 156 36 272
500

joyp 183 200 30 10 33 19 97
sadnesst 126 72

disgust| 45 2 9 3 9 ) 13

Actual Class

anger| 158 99 41 6 26 10 85 200

fear} 31 20 3 3 9 4 23

surprise - 125 97 27 5 35 1 141

Predicted Class

Figure 4: Confusion matrix for the Model 2
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Emotion Precision Recall F1-Score
neutral 0.47 0.34 0.40
joy 0.19 0.21 0.20
sadness 0.11 0.12 0.11
disgust 0.03 0.05 0.03
anger 0.12 0.14 0.13
fear 0.04 0.12 0.06
surprise 0.23 0.26 0.25
Accuracy 0.25
Macro Avg 0.17 0.18 0.17
Weighted Avg 0.30 0.25 0.27

Table 5: Classification Report for the Model 2

Label Distribution for datasets (Percentage)

° ~ ~ " - » ©

Figure 5: Label distribution in the dataset

fear and disgust ones.

When considering the best GPT-3 model with
the knowledge base and all BiILSTM models, the
GPT-3 overperforms the BILSTM model in all pre-
sented metrics. It became clear that if we want
to use BiLSTM models for the classification tasks
where context plays an important role, there should
be more complex preprocessing techniques and
feature extraction for both the model input and the
attention layer (both utterances and context values)
that would be solved by utilizing GPT-3 model.

4.2 Subtask 1.2

Regarding fine-tuning the SpanBERT model, train-
ing and validation loss were calculated on the given
dataset.

Two metrics were chosen to test the SpanBERT
model. First is defined as EM or exact match and
is defined as a sum of all of the individual exact
match scores in the set, divided by the total number
of predictions in the set. Also, the F1-score was
used.

Table 6 summarizes the training configuration.
The parameters were set so that the learning rate
is minimized, batch size does not exceed the given

Parameter Value
Learning rate le-5
Batch size 8
Training epochs 4
Weight decay 0.01

Table 6: Training config for subtask 1.2

Metric Value
EM 21.42
F1-score 33.87

Table 7: Exact match and F1-score for Q&A task

RAM of the machine, training epochs was set
to between 2 and 4 according to BERT’s authors’
(Devlin et al., 2019) and weight decay was set to
default.

Figure 6 presents the training and validation loss.
The scores obtained for the Q&A task on the test

Training and Validation Loss per Epoch

—e— Training Loss
—e— Validation Loss

Epoch

Figure 6: Training and validation in the epochs

dataset are shown in Table 7.

4.3 Results Analysis
4.3.1

In case of subtask 1.1, the acquired metrics for both
assistant models demonstrate considerable promise.
The model employed in this scenario was not pre-
trained, relying solely on its foundational capabili-
ties as a Large Language Model (LLM). As antici-
pated, the model utilizing a knowledge base yielded
superior results. We achieved a weighted F1-score
of 0.52, accompanied by recall and precision values
of 0.52 and 0.55, respectively.

For subtask 1.2, obtained metrics presented in
Table 7 are much lower than metrics obtained in
the SpanBERT case, where results on the SQuAD
1.1 were EM: 85.49, F1: 91.98. Given the nature
of such models, metrics on our dataset should be

Models performance
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close to the baseline set by SpanBERT.

4.3.2 Limitations and future work

As for subtask 1.1, textual data makes determin-
ing expressed emotion challenging due to the ab-
sence of non-verbal cues. With abundant data and
resources for fine-tuning, models can predict emo-
tions more efficiently. Despite precise instructions,
models may occasionally "hallucinate" and provide
unsuitable answers, interpreting emotions differ-
ently from the defined set of six instructions.

Much more attention should be paid to prepro-
cessing and analyzing the train, val, and test dataset
in subtask 1.2 to provide more meaningful and bal-
anced questions and answers in a given context.
The provided sizes of all datasets could be much
higher to utilize fine-tuning training fully. The
training parameters should also be applied more
carefully, and hyperparameter tuning should also
be used.

5 Evaluation and Conclusions

For the evaluation phase, we have used the evalu-
ation data provided by the Organizers. The data
was emotion-classified using GPT-3, and the data
was suited for span extraction as in Section 3.2.
We have also tried to use BiLSTM in this case,
however, its capabilities were very limited when
processing data with unknown words and short sen-
tences (the probability of each occurrence of emo-
tion was nearly identical). The results from Span-
BERT were answers to questions built upon clas-
sified emotions. Obtained answers were added to
the original evaluation dataset’s utterances (called
main utterances in the following text) based on the
created by Author unique ID. Answers also con-
tained spans of text that could occur in different ut-
terances, so the utterances that did not belong to the
main utterance were placed in different lists (mean-
ing multiple cause spans) in each matched main
utterance. Based on the main utterance answer and
additional answers, emotion-cause pairs were cre-
ated in a manner that the "emotion-cause_pairs" list
contained emotion utterance along with its emotion
category and a cause utterance ID followed by po-
sition indexes of predicted cause span within the
utterance. The position index starts from 0, and the
ending index is the index of the last token plus 1
excluding the punctuation token at the beginning
and end. The evaluation phase ended for 1 entry
uploaded on the CodaLab (Pavao et al., 2023) sub-
mission as follows: w-avg. Strict F1: 0.0449, w-

avg. Proportional F1: 0.0723, Strict F1: 0.0462,
Proportional F1: 0.0717, resulting in 9th place out
of 29 teams. The results showed that each of the
presented subtasks, namely emotion classification
and emotion-cause pair extraction, could perform
better in terms of classifying emotions and extract-
ing spans. The changes could improve the overall
score by employing GPT-4 architecture and experi-
menting with span extraction model architecture as
well.
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A BiLSTM for emotion recognition in
conversations

For the emotion classification task, the BILSTM
model was tested (Schuster and Paliwal, 1997).

A.1 Preprocessing

Preprocessing for this task was separated into a few
different steps:

1. Duplicates elimination, as we have discov-
ered that sometimes data might have dupli-
cates within;

2. Special signs and stopword removal - in this
case, punctuation and digits were removed
from the text, then data was converted to low-
ercase, split into a list of words, and cleaned
from English stopwords obtained from the
NLTK library;

3. Text tokenization, indexing, and text to-
sequence conversion - vectorization was done
on the text by turning text into a vector based
on TF-IDF and by fitting it to the processed
text;

4. Sequence padding, to make sure that all of the
input sequences are of the same length;

A.2 Model

The training dataset, presented by the SemEval
competition’s creators, contained information
about a conversation between some group of peo-
ple and emotion-cause pairs extracted from that
conversation. The conversation consisted of multi-
ple utterances, each with defined text, speaker, and
emotion expressed by the speaker and their id.

For this task, such dataset was partitioned with
a ratio of 0.6-0.15-0.25 to create, train, validate,
and test datasets. Such a dataset was transformed
into a set of objects, where each represents a single
utterance along with information about the context
(concatenated utterances within the conversation)
and expressed emotion.

Two configurations were checked to establish
which parameters would give the best result. All of
the configurations used categorical cross-entropy
(Lin et al., 2017) as a loss function, Adam (Kingma
and Ba, 2014) as an optimization algorithm, and
f1_score, accuracy, and recall were noted during
all of the training stages. The model in each config-
uration had seven outputs, each for every primary
emotion (Ekman, 1992), including neutral.

Output Shape
[(None, 250)]
[(None, 250)]

(None, 250, 250)
(None, 250, 250)
(None, 250, 500)
(None, 250, 150)
(None, 250, 150)
(None, 250, 300)

Layer (type)

utterance_input (InputLayer)
context_input (InputLayer)
embedding_12 (Embedding)
embedding_13 (Embedding)
concatenate_6 (Concatenate)
bidirectional_1 (Bidirectional)
attention_1 (Attention)
concatenate_7 (Concatenate)
global_max_pooling1d_1

(GlobalMaxPooling1D) (None, 300)
dense_5 (Dense) (None, 64)
dropout_2 (Dropout) (None, 64)
dense_6 (Dense) (None, 32)
dropout_3 (Dropout) (None, 32)
dense_7 (Dense) (None, 7)

Table 8: Second BiLSTM Model with Attention layer
configuration

The first configuration (similar, but less complex
than presented in Table 8) was a BiLSTM with
two hidden layers and ReLU set an activation func-
tion, with an attention layer (for utterance data and
without context) set with softmax as an activation
function.

The second configuration shown in Table 8 was
a BILSTM with two hidden layers and ReLLU set
an activation function, with an attention layer for
contextual data set with softmax as an activation
function and an additional layer for 1D convolution
operation.

A.3 Evaluation

We have trained both models using train and vali-
dation datasets and then tested them using the cor-
responding set.

A3.1

During the testing phase, loss function and accu-
racy were calculated for training data, and for the
validation data were also calculated recall and f1
score. A confusion matrix was created for the test
data.

Metrics

A.3.2 Training and testing

Both models show the same tendencies for the train-
ing data, with the loss function decreasing with
each epoch and accuracy getting better (Figure 7).

However, looking at the accuracy, f1 score, and
recall, their values are pretty similar for the data in
the same batch (Model 1 or Model 2); results for
Model 2 are significantly better (Figure 8).
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Loss and accuracy for the train data
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Figure 7: Metrics for test dataset in relation to the num-
ber of the epoch

Accuracy, Recall and F1 Score metrics for
Validation dataset
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Figure 8: Metrics for validation dataset in relation to the
number of the epoch
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