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Abstract

Semantic Textual Relatedness holds significant
relevance in Natural Language Processing, find-
ing applications across various domains. Tra-
ditionally, approaches to STR have relied on
knowledge-based and statistical methods. How-
ever, with the emergence of Large Language
Models, there has been a paradigm shift, ush-
ering in new methodologies. In this paper, we
delve into the investigation of sentence-level
STR within Track A (Supervised) by leveraging
fine-tuning techniques on the RoBERTa trans-
former. Our study focuses on assessing the
efficacy of this approach across different lan-
guages. Notably, our findings indicate promis-
ing advancements in STR performance, par-
ticularly in Latin languages. Specifically, our
results demonstrate notable improvements in
English, achieving a correlation of 0.82 and
securing a commendable 19th rank. Similarly,
in Spanish, we achieved a correlation of 0.67,
securing the 15th position. However, our ap-
proach encounters challenges in languages like
Arabic, where we observed a correlation of only
0.38, resulting in a 20th rank.

1 Introduction

STR delineates the meaningful association between
linguistic units, showcasing conceptual proxim-
ity within a shared semantic frame (Taieb et al.,
2019; Abdalla et al., 2021). For instance, "cup"
and "coffee" are related in meaning, yet they are
not synonymous (Jurafsky and Martin, 2009). De-
spite its crucial role in various NLP applications
such as Spelling Correction, Word Sense Disam-
biguation, Plagiarism Detection, Opinion Mining,
and Information Retrieval (Franco-Salvador et al.,
2016; Chen et al., 2017; Taieb et al., 2019), STR
has garnered less attention compared to Semantic
Textual Similarity (STS) due to a scarcity of avail-
able datasets. Addressing this gap, Abdalla et al.

(2021), and Ousidhoum et al. (2024a) contributed
to the field by constructing the first sentence-level
STR datasets. In this paper, we endeavor to tackle
the STR problem within shared Task 1(Ousidhoum
et al., 2024b), Track A, leveraging supervised data
in English, Spanish, and Arabic languages provided
by Ousidhoum et al. (2024a). Additionally, we
briefly explore Track C and provide supplementary
details in Appendix B as a secondary objective.

Building upon the findings of Abdalla et al.
(2021), which underscore the superior performance
of fine-tuning Transformer models in supervised
tasks, our proposed system captures the relation-
ship among sentences by fine-tuning the RoBERTa
Transformer (Liu et al., 2019). At the core of our
system, we employ a pre-trained RoBERTa model
as a regression model and fine-tune it to generate
a floating-point value for the input text. During
the pre-training process of RoBERTa, the emphasis
is placed on tasks related to NLU. This involves
exposing the model to a diverse range of linguistic
contexts and training it to comprehend the nuances
of language. Furthermore, the integration of a Clas-
sifier Head enables sentence classification, a pivotal
aspect of our system architecture elaborated upon
in section 3.

Our experimental results showcase promising
performance on English and Spanish datasets,
achieving respective correlation rates of 0.82 and
0.67 on test data, surpassing the baseline correla-
tion set by SemEval-2024 at Subtask A (Ousid-
houm et al., 2024b). However, the model’s per-
formance on Arabic data falls short, yielding only
a 38% correlation on development data. We at-
tribute this discrepancy to differences in the under-
lying RoBERTa model and its training methodol-
ogy across Latin and non-Latin languages, a topic
further explored in section 5. To promote repro-
ducibility and facilitate future research endeavors,
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the complete codebase of our project has been
shared on GitHub1.

2 Background

2.1 Dataset Overview
The SemEval-2024 Task 1 is structured into Tracks
A, B, and C, each tailored to specific methodologies
and objectives. Our focus lies on Track A (Super-
vised), which utilizes labeled data to train STR
systems. The datasets for Task 1 encompass train-
ing, development, and test sets across 14 languages,
each comprising sentence pairs (Ousidhoum et al.,
2024a). Each sentence pair is annotated with a
semantic relatedness score, ranging from 0 (indi-
cating no relatedness) to 1 (suggesting strong relat-
edness). Participants are tasked with predicting the
degree of semantic relatedness between sentence
pairs, crucial for furthering research in NLP.

2.2 Related Work
The exploration of sentence-level STR has been
hindered by the scarcity of available datasets
(Abdalla et al., 2021). Existing datasets, such
as those compiled by Finkelstein et al. (2002),
Gurevych (2006), Panchenko et al. (2016), and
Asaadi et al. (2019), predominantly focus on
unigram and bigram STR. However, the seminal
works of Abdalla et al. (2021), and Ousidhoum
et al. (2024a) paved the way for further research
by constructing the first sentence-level STR
datasets. Traditionally, both STR and STS have
been approached using knowledge-based and
statistical methods (Sadr, 2020; Chandrasekaran
and Mago, 2020). Notable efforts include the
application of knowledge bases such as thesauri,
ontologies, and dictionaries for STR, as surveyed
by Salloum et al. (2020). Statistical methods,
on the other hand, leverage features extracted
from corpora, with prominent examples including
Latent Dirichlet Allocation (LDA) by Blei et al.
(2009) and Latent Semantic Analysis (LSA) by
Landauer and Dumais (2008) for topic modeling.

In recent years, the application of deep learning
methodologies has surpassed traditional ap-
proaches in STS tasks. Noteworthy advancements
include the Tree-LSTM model proposed by Tai
et al. (2015), which outperformed other neural net-
work models in SemEval-2014. He and Lin (2016)
introduced a hybrid architecture of Bi-LSTM and

1https://github.com/Sharif-SLPL/Sharif-STR

CNN, outperforming the Tree-LSTM model on
the SICK dataset. Wang et al. (2016) achieved
state-of-the-art results using the Word2Vec
embeddings model in both the QASent and the
WikiQA datasets, while Shao (2017) leveraged
GloVe embeddings to achieve the third rank in
SemEval-2017.

Several studies have demonstrated that
fine-tuning transformer-based models achieves
state-of-the-art in comprehending the semantics
of textual data. The transformer model, first
introduced by Vaswani et al. (2017), employs
attention mechanisms to capture word semantics.
Later on, Devlin et al. (2019) utilized it to
create BERT word embeddings. Subsequently,
XLNet, proposed by Yang et al. (2019), surpassed
BERT in performance. Consequently, Lan et al.
(2019) introduced ALBERT, which outperforms
previous models. Additional transformer-based
variations of BERT models include TinyBERT
(Jiao et al., 2020), RoBERTa (Liu et al., 2019), and
DistilBERT (Sanh et al., 2019). Also, Raffel et al.
(2019) presented five distinct versions of the T5
transformer model, each varying in parameter size.
Their work demonstrated that the performance
of these pretrained models improves with larger
datasets and enhanced computational resources.

Laskar et al. (2020) addressed sentence
similarity modeling within an answer selection
task. Through experiments conducted, they
showed that fine-tuning RoBERTa model achieves
state-of-the-art performance across datasets. Yang
et al. (2020) showcased that the RoBERTa-based
model achieved superior performance compared
to the BERT and XLNET models in a clinical
STS task, achieving a Pearson Correlation of
0.90. Similarly, Huang et al. (2021) conducted
a comparison of TF-IDF combined with various
models including ALBERT, BERT, and RoBERTa
for word similarity detection in sentence pairs
within Task 2 of SemEval-2021. Their experimen-
tal findings substantiated that RoBERTa yielded
superior results by 0.846 on the test data. Nasib
(2023) addressed reference validation task by
employing BERT, SBERT, and RoBERTa. His
study illustrated the efficacy of fine-tuning a
RoBERTa-based model for text classification tasks,
achieving state-of-the-art performance across
multiple benchmark datasets. He emphasized that
optimizing the model’s performance involves activ-
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ities such as hyperparameter tuning, regularization,
and data augmentation.

Abdalla et al. (2021) conducted an extensive in-
vestigation into semantic sentence representation
methods, revealing that supervised methods uti-
lizing contextual embeddings, particularly those
fine-tuning BERT or RoBERTa, outperform other
techniques, reaching a correlation of 0.83. Build-
ing upon these findings, we adopt fine-tuning
RoBERTa as the primary strategy in this paper.
Subsequent sections will detail our system archi-
tecture.

3 System Overview

In this section, we present a comprehensive
overview of our system’s architecture, outlining
the key algorithms and modeling decisions that
underpin our model.

3.1 Core Algorithms and System Architecture

Our system harnesses the Transformer architec-
ture for its ability to capture long-range depen-
dencies. At its core, we harness the power of a
pre-trained RoBERTa model (Liu et al., 2019) for
regression analysis, tailoring its parameters to accu-
rately predict a floating-point value from the input
text. While RoBERTa isn’t explicitly trained for
sentence relatedness scoring, its training encom-
passes an understanding of the relatedness of sen-
tences within discourse, rendering it suitable for
our task.

During the pre-training process of RoBERTa, the
emphasis is placed on tasks related to NLU. This
involves exposing the model to a diverse range of
linguistic contexts and training it to comprehend
the nuances of language. Our word embeddings
utilize an embedding matrix with a dimensionality
of 768. Position embeddings and token type em-
beddings further contribute to the model’s compre-
hension of sequential and contextual information
within the input data.

The RobertaEncoder comprises a stack of 12
identical RobertaLayers, each employing a multi-
head self-attention mechanism. This mechanism
enables the model to concurrently absorb different
parts of the input sequence, showing promise in
analyzing similarities between various inputs. Fol-
lowing the attention mechanism are intermediate
sub-layers and output sub-layers. The intermediate
sub-layer employs a fully connected feed-forward

network with a GELU activation function, while
the output sub-layer is responsible for proper trans-
formation and normalization of features.

The classification head, positioned after the en-
coder, is tasked with generating the final output
for sequence classification. It consists of a linear
layer with 768 input features, followed by a dropout
layer to prevent over-fitting. An additional linear
layer featuring a solitary output neuron enables bi-
nary classification. By viewing the problem as a
regression task, the classifier yields a linear output
designed for a singular class, producing a proba-
bilistic value indicative of the relatedness between
input sentences.

3.2 Resources
For training our model, we relied on the dataset
provided for SemEval-2024 Task 1 (Ousidhoum
et al., 2024a). In addition to the primary dataset,
we augmented our training dataset using the T5
model (Raffel et al., 2019). By leveraging T5’s
paraphrasing capabilities, we explored data aug-
mentation techniques for Track A on the training
sets of our dataset but failed to achieve consistent
results across experiments. While some experi-
ments showed an increase in model accuracy, in
other cases, it did not alter the results. Data aug-
mentation consistently worked well only on the
English dataset. More details about data augmen-
tation results and our secondary investigation on
Track C are provided in Appendix A and B.

By incorporating both the SemEval-2024 Task 1
dataset (Ousidhoum et al., 2024a) and augmented
training data generated by T5, our approach ben-
efits from a comprehensive and diverse set of re-
sources, enabling robust training and evaluation
of our STR model across multiple languages and
textual domains.

3.3 System Challenges
Augmenting the dataset for training set using T5
paraphrases posed several challenges. Firstly,
while the primary dataset was labeled through col-
laborative human judgment, the augmented data
lacked this human validation. This absence of hu-
man labeling for the augmented data may poten-
tially impact its quality. Moreover, the augmenta-
tion process introduced alterations to the diversity
of the data, presenting a challenge to maintaining
the original data variety.

The decision to employ data augmentation ex-
clusively for testing purposes raises concerns re-
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garding its potential impact on model quality. Ad-
dressing these challenges associated with data aug-
mentation is crucial for improving the efficacy of
our model. Exploring solutions to mitigate these
issues can enhance our approach to tackling the
task at hand.

4 Experimental Setup

4.1 Dataset
The dataset statistics utilized for each language are
presented in Table 1:

As shown in Table 1, approximately 0.8 of the
Task 1 dataset is allocated for system training,
while the remainder is reserved for evaluation. The
limited availability of training data necessitates cau-
tious consideration during testing, as the model’s
performance may be influenced by the scarcity of
training instances. Additionally, the entire develop-
ment set is utilized for model selection.

4.2 Pre-processing and Hyper-Parameter
Tuning

A crucial aspect of our pre-processing involves con-
verting the labels (scores) of each data instance
to float values, ensuring compatibility with the
model’s expected input format. Furthermore, the in-
put texts undergo tokenization using the RoBERTa-
tokenizer both during training and inference.

Hyperparameter tuning plays a pivotal role in op-
timizing model performance. Our tuning process
encompasses exploring various hyper-parameters,
including learning rates in the range of [0.00001,
0.00003], dropout rates ranging from [0.1, 0.3],
batch sizes spanning [4, 32], and token sizes
from [32, 128]. Through iterative experimenta-
tion, we determined that a learning rate of 0.00003,
a dropout rate of 0.1, a token size of 128, a batch
size of 16, and a weight decay of 0.01 yield optimal
results across all languages.

The selection of an appropriate token size is
not solely based on computational considerations;
rather, it is informed by dataset analysis. Upon
examination, it became evident that the majority
of data instances are predominantly short, aligning
with our token size choice. Additionally, truncation
during tokenization supports the chosen token size,
ensuring efficient model training without sacrific-
ing data representativeness.

4.2.1 Mean Squared Error (MSE)
Mean Squared Error quantifies the average of the
squared differences between predicted and actual

values. It is calculated using the formula:

MSE =
1

N

N∑

i=1

(yi − ŷi)
2 (1)

Where N is the number of instances, yi is the true
label, and ŷi is the predicted value.Additionally,
Mean Absolute Error computes the average abso-
lute differences between predicted and actual val-
ues.Moreover, the R-squared score assesses the
proportion of variance in the dependent variable
explained by the independent variable.

These evaluation measures collectively shed
light on our regression model’s performance in
predicting the degree of relatedness between text
samples. Using these metrics together enables
the monitoring of the model’s performance and,
hence, facilitates decisions on hyper-parameters,
model selection, etc. The evaluation method and
hyper-parameter choices remain consistent across
all models and languages. For the analysis of re-
sults presented in Section 5, the obtained scores
were discretized and categorized into five distinct
ranges to enhance visual understanding.

5 Results

5.1 Findings
A direct comparison with previous models and
datasets similar to this task is challenging due to our
specific focus on fine-tuning the RoBERTa model
and utilizing the dataset provided by Ousidhoum
et al. (2024a). Drawing from the insights of Raffel
et al. (2019) working on the STS dataset, it is ev-
ident that the performance of transformer models
improves with larger training corpora and enhanced
computational resources. Raffel et al. (2019)
demonstrated that the RoBERTa transformer-based
model achieved a Pearson correlation of 0.922, sur-
passing ERNIE 2.0, DistilBERT, and TinyBERT
on STS dataset benchmarks. Conversely, ALBERT,
XLNet, and T5-11B outperformed RoBERTa on
the same task, achieving a Pearson correlation of
0.925. Therefore, we recommend conducting a
benchmark study of top-performing transformer
models like RoBERTa, ALBERT, XLNet, and T5-
11B in future research endeavors. Using the offi-
cial metric of Spearman Correlation proposed in
SemEval-2024 Task 1 (Ousidhoum et al., 2024b),
our system achieves the following scores on differ-
ent data splits and languages:

As shown in Table 2, Firstly, comparing the per-
formance between English, Spanish, and Arabic
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Language/Split Dataset Train Testset Devset

English 5752 4400 1101 251
Spanish 1702 1249 313 140
Arabic 1360 1009 252 97

Table 1: Dataset Statistics

Language/Split Devset Testset(Competition)

English 0.83 0.82
Spanish 0.71 0.67
Arabic 0.32 0.38

Table 2: Correlation Metric Scores

models, we observe varying degrees of success.
The English model demonstrates the highest Spear-
man Correlation scores, both on the development
and test sets, with scores of 0.83 and 0.82, respec-
tively. This indicates that the English model per-
forms relatively well in capturing the semantic re-
latedness between text pairs. Similarly, the Span-
ish model also achieves respectable scores, albeit
slightly lower, with scores of 0.71 on the develop-
ment set and 0.67 on the test set. However, the
Arabic model lags significantly behind, exhibiting
notably lower scores of 0.32 on the development
set and 0.38 on the test set.

The disparity in performance between the Arabic
model and the English and Spanish models could
be attributed to several factors. One possible expla-
nation is the availability and quality of training data.
The Arabic dataset may suffer from a scarcity of
labeled instances, resulting in a less robust model.
Additionally, linguistic and structural differences
between Arabic and Latin languages may pose chal-
lenges for the model in accurately capturing se-
mantic relatedness. This discrepancy underscores
the importance of adequately addressing language-
specific characteristics and challenges in model
development.

Furthermore, the analysis of the Arabic model’s
performance on the test set reveals a noteworthy
observation. Despite achieving a relatively low
Spearman Correlation score, the model appears to
disproportionately classify most inputs as highly
related. This discrepancy suggests a potential lim-
itation in the model’s ability to discern varying
degrees of relatedness accurately. It implies that
while the model may perform adequately in certain
aspects, such as overall correlation with human

annotations, it may struggle with nuanced interpre-
tations of relatedness levels in real-world scenarios.
The output of the model is provided in Appendix
D.

The scatter plots depicted in Figure 1, respec-
tively for English, Spanish, and Arabic, illustrate
the correlation between the model predictions and
human annotations. The English model closely
aligns with human annotations, while the Spanish
model exhibits an even closer alignment on certain
inputs. However, the Arabic model’s performance
varies, indicating discrepancies between predicted
and actual relatedness scores. These findings under-
score the importance of dataset size and linguistic
nuances in model performance across different lan-
guages. Further investigation is warranted to elu-
cidate the factors influencing model behavior and
to improve performance, particularly in languages
with limited training data.

5.2 Error Analysis
While confusion matrices are less commonly uti-
lized in regression problems, discretizing the
model’s scores allows us to glean insights into
its performance. Confusion matrix plots for En-
glish, Spanish, and Arabic are provided in Figure
2, respectively. Upon examining the confusion
matrix of the English dataset, it becomes appar-
ent that the model performs well within certain
score ranges. However, there are notable areas, par-
ticularly within the highly related range (0.6-1.0),
where our model could benefit from improvement.

A similar observation holds true for the Spanish
dataset, where the model demonstrates proficiency
in predicting less related sentences but encounters
challenges with highly related ones. Conversely,
the Arabic dataset presents a markedly different
scenario. While the majority of predictions fall
within the mid-range of relatedness, they are pre-
dominantly incorrect.

Based on the histogram and extracted statistics
from the fine-tuning data in Figure 3 in Appendix C,
it appears that the majority of the training data has
a distribution centered around the median (Spanish
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Figure 1: Scatter Plots of English, Arabic and Spanish Languages

Figure 2: The Confusion Matrix Plot of English, Arabic and Spanish Languages

Mean Score: 0.43, Arabic Mean Score: 0.50). Con-
sequently, finte-tuned Arabic and Spanish models
seem to have less capability in understanding data
on both ends of the spectrum.

These insights highlight the model’s strengths
and weaknesses across different datasets and under-
score the need for further investigation into improv-
ing performance, particularly in accurately predict-
ing highly related sentences across all languages.
Further exploration of the factors contributing to
model errors, such as dataset characteristics and lin-
guistic nuances, is essential for refining the model’s
predictive capabilities.

6 Conclusion

In our investigation, we focused on fine-tuning
RoBERTa for STR, primarily targeting Latin
languages like English(0.82) and Spanish(0.67).
While our approach showed promising results for
these languages, particularly in achieving high cor-
relation, the outlook was less favorable for Ara-
bic(0.38). This echoes discussions in previous
works, emphasizing the significant influence of the
data on model performance. Our exploration into

Track C, which is given in Appendix B, further
enriched our understanding of the challenges and
opportunities in STR system development. As a
contribution to the field, we put forth several rec-
ommendations for enhancing STR systems. Firstly,
we propose the development of additional Trans-
former models trained on diverse language families,
focusing on languages that share similarities with
Latin languages. Furthermore, a comprehensive
benchmark of models on the STR dataset is essen-
tial, building on previous research that highlights
the strong performance of models like ALBERT,
XLNet, and T5-11B on the STS dataset. Moreover,
the utilization of translation techniques and data
augmentation methods could enhance model per-
formance, particularly for languages with limited
training data. In conclusion, our study sheds light
on the nuances of STR system development and un-
derscores the importance of considering language-
specific factors and domain characteristics. By
pursuing the avenues outlined in this paper, we aim
to contribute to the advancement of STR research
and facilitate the development of more robust and
accurate models for NLU tasks.
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A Data Augmentation Results

As we describe data augmentation in section 3.2,
we use T5 model to augment some training data
and use them in training of model.So in this section
we show results of data augmentation effect on
Pearson Correlation for English language in Table
3.

Model
hyper parameters

without
data augmentation

with
data augmentation

Learning rate 3e-5
Max length 128 0.79 0.81
Batch size 16

Epoch 4

Table 3: Data Augmentation Affect on Pearson Correla-
tion

B Track C - Cross-Lingual

Using the translation method in Track C, we em-
ployed our Track A model trained on English lan-
guage. The input sentences were first translated
into English using the Google Translate API, fol-
lowed by the utilization of the trained Track A
model. The evaluation results demonstrate promis-
ing performance across some languages with this
approach. However, errors might arise from ei-
ther the Google Translate API or the model itself.
Exploring alternative translation APIs could po-
tentially enhance the overall performance. Fig-
ures 3, 4, and 5 display the outputs in Afrikaans,
Amharic, and Modern Standard Arabic. Addition-
ally, the high-quality output images are provided in
our GitHub project.

Test Data Pearson Correlation MSE
afr_test_with_labels.csv 0.8 0.0204
amh_test_with_labels.csv 0.73 0.0309
arb_test_with_labels.csv 0.51 0.0431

Table 4: Track C Results

Figure 3: Output of Afrikaans

Figure 4: Output of Amharic Language
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Figure 5: Output of Modern Standard Arabic

C Histogram of Spanish and Arabic
Languages

Figure 6: Histogram of Spanish and Arabic Training
Dataset

D Outputs of Track A (Supervised)

Figure 7: Output of English Language

Figure 8: Output of Spanish Language

Figure 9: Output of Arabic Language
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