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Abstract

Safe and reliable natural language inference is
critical for extracting insights from clinical trial
reports but poses challenges due to biases in
large pre-trained language models. This paper
presents a novel data augmentation technique
to improve model robustness for biomedical
natural language inference in clinical trials. By
generating synthetic examples through seman-
tic perturbations and domain-specific vocab-
ulary replacement and adding a new task for
numerical and quantitative reasoning, we in-
troduce greater diversity and reduce shortcut
learning. Our approach, combined with multi-
task learning and the DeBERTa architecture,
achieved significant performance gains on the
NLI4CT 2024 benchmark compared to the orig-
inal language models. Ablation studies validate
the contribution of each augmentation method
in improving robustness. Our best-performing
model ranked 12th in terms of faithfulness and
8th in terms of consistency, respectively, out of
the 32 participants.

1 Introduction

In the domain of clinical trial analysis, researchers
and practitioners are overwhelmed with an ever-
expanding corpus of clinical trial reports (CTRs).
The current repository contains a vast number of
documents and is rapidly growing, a trend that
correlates with the increasing prevalence of cross-
national, cross-ethnic, and multi-center clinical
studies (Bastian et al., 2010). This growth necessi-
tates a scalable approach to evaluate and interpret
the massive amount of data in these reports (Gold-
berg et al., 2017; Li and Bergan, 2020).

Recent advances in Natural Language Process-
ing (NLP) offer promising avenues for the auto-
mated analysis of CTRs. Such analyses include
medical evidence understanding (Nye et al., 2021),
information retrieval (Wang et al., 2023b), causal
relationship identification (Cai et al., 2017), and

the inference of underlying reasons for trial out-
comes (Steinberg et al., 2023). Integrating natural
language inference (NLI) with CTRs has the po-
tential to revolutionize the large-scale, NLP-based
examination of experimental medicine (Kim and
Delen, 2018). Despite the progress in NLP, the
application of large language models to this task
presents several challenges, including susceptibil-
ity to shortcut learning, hallucination, and biases
stemming from word distribution patterns within
the training data (Huang et al., 2023).

To address these issues, we propose a novel
method that leverages generative language models,
such as GPT-3.51, and biomedical domain knowl-
edge graphs to enhance data diversity. Our ap-
proach introduces three types of data augmenta-
tion: numeric question-answering data generation,
semantic perturbations, and domain-tailored lexical
substitutions for the biomedical field. By combin-
ing these data augmentation techniques with multi-
task learning and the DeBERTa (He et al., 2021)
architecture, we have achieved significant improve-
ments in terms of faithfulness and consistency on
the NLI4CT 2024 dataset. This paper outlines our
approach, elaborates on the design of the pertur-
bations and the multi-task learning process, and
demonstrates the efficacy of our method through
rigorous evaluation.

2 Background

In a crucial field like healthcare, where misinterpre-
tations can have severe implications, NLI models
must present precise predictions and reliable in-
terpretations. This highlights the importance of
accurate and trustworthy reasoning in these NLI
models.

SemEval 2024 Task 2 (Jullien et al., 2024) pro-
vides multi-sentence textual data consisting of pa-
tient case histories and medical reports. The objec-

1https://openai.com/chatgpt
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tive of this task is to predict the logical relationship
between the CTR and a given statement, includ-
ing entailment and contradiction. The evaluation
emphasizes prediction accuracy as well as the ro-
bustness to the controlled interventions, helping
increase healthcare practitioners’ trust in the sys-
tem’s predictions.

Enhancing the robustness of NLI models for
healthcare can be strategically achieved using data
augmentation techniques. Synthetic data genera-
tion via techniques like conditional text genera-
tion can expand training data diversity and volume
to improve model generalization capabilities (Liu
et al., 2020; Puri et al., 2020; Bayer et al., 2023).
Meanwhile, multi-task learning with auxiliary ob-
jectives related to logical reasoning and explana-
tion generation can enhance faithful reasoning abil-
ities (Li et al., 2022). Useful domain knowledge
can be captured by training language models on
domain-specific medical textual datasets (Singhal
et al., 2023; Tian et al., 2024). Complementary
data-centric methods can augment model architec-
ture design to develop more capable, trustworthy,
and clinical NLI systems.

3 System overview

In this section, we describe the proposed system to
tackle the NLI problem and enhance the model’s ro-
bustness against interventions spanning numerical,
vocabulary, and semantic dimensions, as shown in
Figure 1.

3.1 Data for Numerical Question Answering
Task

A major limitation of many language models lies
in their tendency to learn linguistic patterns and
features from large-scale textual data while lacking
capabilities for numerical and quantitative reason-
ing (Geva et al., 2020). Such capabilities are crucial
for analyzing relationships between CTRs and cor-
responding claims. Although BERT-based models
pre-trained on NLI tasks, i.e. DeBERTa, can con-
duct general linguistic inference, they remain vul-
nerable to numerical perturbations in statements.

Therefore, we propose to leverage GPT-3.5 to
generate data tailored to the numerical question-
answering task based on original entailed state-
ments: The entailed statement, denoted as x, cor-
responding to a given CTR, is converted into a
question q that requires numerical reasoning. Sub-
sequently, three candidate choices c are enumer-

ated, each accompanied by an answer a extracted
from the original statements. The loss function em-
ployed for this task is binary cross-entropy and is
expressed as follows:

LNQA =

{
− log gθ (CTR, q, c; ) c = a
− [1− log gθ (CTR, q, c)] c ̸= a

where g(·) is the function to determine if the can-
didate choice is the correct answer, and θ is the
corresponding parameters for the DeBERTa back-
bone network and the additional classifier.

This numerical question-answering task serves
as an auxiliary task to enhance numerical reasoning
abilities. The final loss function for the system
combines the losses from this task and the main
NLI task, i.e.

L = LNLI + λLNQA

where λ is the hyper-parameter to be tuned in the
validation phase.

3.2 Semantic Perturbation
We utilize GPT-3.5 to generate perturbed state-
ments based on the original entailed input, ob-
taining both semantic-altering variants labeled as
“contradictions” and semantic-preserving variants
labeled as “entailment”. Specifically, to produce
contradictory versions, guiding keywords such as
“contradicted” and “minor changes” are injected
into the input prompt to slightly modify the origi-
nal statement while altering the semantics to create
a contradiction. Conversely, to generate entailed
versions, guiding phrases such as “paraphrase” are
included in the prompt to rephrase the statement
extensively while retaining semantic equivalence.
This controlled semantic perturbation of the input
statement via guided text generation allows us to
efficiently augment the dataset with both contra-
dicting and entailing variants of the original input.

3.3 Vocabulary Replacement
When we analyze textual data in the clinical do-
main, we need to pay attention to the vocabulary
because it contains many terms that are specific to
this domain (Wang et al., 2018). However, most
NLI models are pre-trained on data from general
domains, and they are unaware of the meaning
or relevance of these terms (Wang et al., 2023a).
To address this problem, we use a combination of
biomedical knowledge graph embedding and statis-
tical model, which can help us find the most impor-
tant keyword to replace the term in the statement
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57% of patients in cohort 1 of the primary trial had pathological complete response rates at surgery.

What percentage of 
patients in cohort 1 of the 
primary trial had 
pathological complete 
response rates at surgery?
a)47%  b)57%  c)67%
Answer: b

At the primary trial, 57% 
of patients in cohort 1 
exhibited pathological 
complete response rates 
during surgery.

57% of patients in cohort 2 
of the primary trial had 
pathological complete 
response rates at surgery, 
not cohort 1.

57% of patients in cohort 1 
of the primary trial had 

compulsive complete 
response rates at surgery.

Generative AI Bio KG

Original Entailed
Statement

Augmented 
Data

Resources for 
Augmentation

Data for numerical QA task Semantic perturbation
(entailed and contradicted statements)

Vocabulary replacement in 
bio-medical domain

++
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DeBERTa Classifiers
Entailment

Contradiction
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Figure 1: The overall demonstration of the proposed system. The upper part of the demonstration involves
the application of data augmentation techniques to entailed statements extracted from the original NLI dataset,
leveraging generative artificial intelligence (AI) and biomedical domain knowledge graphs. Specifically, we
undertake the following procedures: 1) Transformation of statements into multiple-choice questions accompanied by
corresponding answers; 2) Introduction of semantic perturbations to the original entailed statements; 3) Employing
a statistical method to identify keywords within the original entailed statements, followed by their substitution with
synonyms sourced from the biomedical knowledge graph. In the lower part of the demonstration, we incorporate
the original entailed statements, augmented data, and CTRs as training data to develop a classifier based on the
DeBERTa architecture.

and generate the augmented data to improve the vo-
cabulary alignment. Specifically, given a statement
x, consisting of n words, i.e. x = {w1, w2, ..., wn}
and the set of all the statements, denoted as D, we
first remove all the stop-words and apply Term-
Frequency-Inverse Document Frequency (TF-IDF)
to identify the most important term in the statement,
i.e.

w∗ = argmax
wi∈x

TF(wi, x)× IDF(wi, D)

Subsequently, we locate a term in the biomedi-
cal embedding space that shares the same part-of-
speech and has the highest similarity score with the
chosen term, using it as the substitute, i.e.

ŵ∗ = argmax
w∈V

{sim(w∗, w) |

PoS(w) = PoS(w∗)}

where V is the biomedical term vocabulary and
PoS(·) is the part-of-speech of a word. In this way,
we can substitute w∗ in the original statement with
ŵ∗ to generate a new adversarial sample to enhance
the model robustness in the vocabulary aspect.

4 Experimental setup

4.1 Dataset

Ent. Con. Alt. Pres. SUM

Train 850 850 - - 1,700
Val. 100 100 1,606 336 2,142
Test 250 250 4,136 864 5,500

Table 1: Statistics of the validation and test set. “Ent.”
and “Con.” stands for entailment and contradiction,
while “Alt.” and “Pres.” stands for altering and preserv-
ing.

We conducted experiments on the NLI4CT 2024
dataset (Jullien et al., 2024), generated by clinical
domain experts and sourced from a large database
for clinical studies2. The statistic of this dataset
is summarized in Table 1. The training data is the
same as the NLI4CT 2023 dataset (Jullien et al.,
2023) while there are perturbed samples in the val-
idation and testing sets.

2https://ClinicalTrials.gov
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4.2 Metrics

We first assessed the performance of the original
statements without any perturbation and recorded
the corresponding F1 score, precision, and recall.
Then, we assessed the performance of the contrast
set, consisting of interventions. Specifically, to
evaluate the model’s robustness to the semantic-
preserving interventions, we used consistency as
the metric, i.e.

Consistency =
1

N

N∑

1

1−
∣∣f(x′

i)− f(xi)
∣∣

x′
i ∈ C : Label(xi) = Label(x′

i)

Where C is the contrast set, and N is the num-
ber of the statements in the contrast set. x′i is the
perturbed statement for xi and f(·) computes the
final prediction from the model. For the semantic-
altering interventions, we evaluated the model us-
ing faithfulness, i.e.

Faithfulness =
1

N

N∑

1

∣∣f(x′
i)− f(xi)

∣∣

x′
i ∈ C : Label(xi) ̸= Label(x′

i), and f(xi) = Label(xi)

4.3 Implementation details

We downloaded DeBERTa models from the Hug-
gingface repository3 and implemented our pro-
posed method based on Python 3.10 and Pytorch
2.1.1. During the model training, we used the
Adam optimizer and set the learning rate to 5e− 6
with a batch size of 4, following the original work
(He et al., 2021). The maximum sequence length
the model can take was set to 512. The epoch num-
ber was set to 20, and the early stopping based on
the validation set was applied to avoid overfitting.
The input format for the NLI task in this work is
structured as follows: [CLS] + CTR + [SEP] +
claim + [SEP]. In this structure, [CLS] serves as
the initial token for classification in DeBERTa, and
[SEP] acts as a separator token. For the vocabu-
lary replacement, we used the bio-medical domain
embedding from the work by (Zhang et al., 2019),
which has been pre-trained over the MeSH knowl-
edge graph4. For preprocessing, such as stop word
filtering and part-of-speech tagging, we used the
NLTK library5 in Python. We include prompts for
numerical question-answering data generation and
semantic perturbation in Table 2.

3https://huggingface.co/
4https://www.ncbi.nlm.nih.gov/mesh/
5https://www.nltk.org/

5 Results

We conducted experiments with different-sized De-
BERTa models, iteratively adding augmented data
from three different interventions to the training
set. As shown in Table 3, incorporating all three
types of augmented data greatly improved the av-
erage faithfulness and consistency scores. Specifi-
cally, we witnessed gains of 8.17% on DeBERTa-l
and 2.37% on DeBERTa-b. This result also sug-
gests that the augmented training data provided
more benefit to the larger-sized DeBERTa model
in terms of robustness. The additional augmented
examples may have provided useful regularization,
helping it generalize better on both the unaltered
control and contrast datasets. Our best-performing
model ranked 12th in terms of faithfulness and 8th
in terms of consistency, respectively, out of the 32
participants.

From this iterative process, we can see that se-
mantic perturbation with generative AI contributes
mainly to the performance gain for both NLI mod-
els. Compared with this, vocabulary replacement
in the biomedical domain has only a minor effect.
This may suggest that vocabulary replacement in
our work may be relatively less effective in this
case because it only swaps out individual words,
while semantic perturbation modifies the whole
statement. Hence, semantic perturbation provides
more meaningful variations to augment the training
data.

While the augmented data improved the robust-
ness to interventions, we noticed a slight perfor-
mance drop in the control set. For example, the
F1 score on the control set decreased by 3.16%
for DeBERTa-l and 0.48% for DeBERTa-b after
adding all the augmented data. This performance
decline indicates there may have been a small trade-
off between improving robustness to interventions
and maintaining strong performance on the original
data. One of the reasons accounting for this could
be that the generative AI may generate noisy or
irrelevant data. For example, in numerical ques-
tion answering data generation, if the original en-
tailed statement discusses an assumption about a
50-year-old patient not mentioned in the CTR, the
generative model may create an unrelated question
about the patient’s age that cannot be inferred from
the given information. Another example involves
vocabulary replacement: we observed that there
exist some cases where even two words having
very similar embeddings in the biomedical domain
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Prompt

NQA

Please convert the statement to a multiple choice question that requires the numerical
or quantitative reasoning, and each question has 3 choices,
using the given template: \n
Question: [Question] \n Choices: 1. [Choice 1]\n 2. [Choice 2]\n 3. [Choice 3]\n
Correct Answer: [Correct Answer].

SP.-Ent. Please rephrase the given statement:

SP.-Con.
Please generate a contradictory statement based on the given statement,
with a minor change:

Table 2: Prompts for numerical question-answering data generation and semantic perturbation. NQA stands for
numerical question answering. SP.-Con. and SP.-Ent. means semantic perturbation to generate statements labeled as
contradiction and entailment, respectively.

Method Validation Test
F1 Prec. Rec. Faith. Con. F1 Prec. Rec. Faith. Con.

DeBERTa-l 81.82 90.00 75.00 73.81 71.48 77.25 80.80 73.99 67.13 71.06
+SP 81.77 83.00 80.58 85.42 75.16 75.52 72.80 78.45 78.24 74.01

+VR 81.00 81.00 81.00 86.01 74.16 75.05 71.60 78.85 78.59 74.42
+NQA 80.60 81.00 80.20 86.61 74.91 74.09 69.20 79.72 79.98 74.54

DeBERTa-b 70.87 73.00 68.87 49.40 60.02 62.53 60.40 64.81 57.75 59.33
+SP 71.84 74.00 69.81 51.49 60.65 62.08 59.60 64.78 60.65 59.70

+VR 70.59 72.00 69.23 52.38 60.71 62.21 59.60 65.07 60.76 59.72
+NQA 70.30 71.00 69.61 52.98 60.77 62.05 59.20 65.20 61.92 59.89

Table 3: Results on the development set and testing set for NLI4CT 2024 dataset. DeBERTa-l and DeBERTa-b are
the large version and base version of the DeBERTa model, respectively. SP and VR stand for semantic perturbation
and vocabulary replacement. The best results for F1 score on the control set, faithfulness, and consistency are
highlighted.

knowledge graph embedding space may not be very
closely related in the context of the current state-
ment. Including these illogical examples in the
augmented training data could mislead the original
DeBERTa model, resulting in worse performance
on the unaltered control set.

6 Conclusion

In this work, we proposed a data augmentation ap-
proach to enhance the robustness of natural lan-
guage inference models for clinical trial report
analysis. Our method leverages generative AI and
biomedical knowledge graphs to augment training
data along three dimensions: numerical reasoning,
semantic perturbations, and domain-tailored lex-
ical substitutions. Experiments on the NLI4CT
2024 dataset demonstrate that our approach effec-
tively improves model faithfulness and consistency
against controlled interventions, with significant

gains against the DeBERTa baselines.
However, we observed a slight performance drop

on the unaltered test set, indicating a trade-off be-
tween robustness to perturbations and maintain-
ing strong performance on original data. Future
work will focus on: 1) generating higher-quality
augmented examples using numerical question-
answering data generation to minimize or avoid per-
formance drop; 2) validating the perturbed samples
to help remove noisy or irrelevant examples (Wang
et al., 2023c); 3) incorporating external structured
knowledge via pre-training on knowledge graphs
and not just lexical substitution, which can provide
more contextual domain information.

7 Acknowledgments

We would like to thank all the anonymous review-
ers for their valuable feedback. We would like to
acknowledge the financial support provided by the

92



Postgraduate Research Scholarship (PGRS) (con-
tract number PGRS-20-06-013) at Xi’an Jiaotong-
Liverpool University. Additionally, this research
has received partial funding from the Jiangsu Sci-
ence and Technology Programme (contract num-
ber BK20221260) and the Research Development
Fund (contract number RDF-22-01-132) at Xi’an
Jiaotong-Liverpool University.

References
Hilda Bastian, Paul Glasziou, and Iain Chalmers. 2010.

Seventy-five trials and eleven systematic reviews a
day: how will we ever keep up? PLoS medicine,
7(9):e1000326.

Markus Bayer, Marc-André Kaufhold, Björn Buchhold,
Marcel Keller, Jörg Dallmeyer, and Christian Reuter.
2023. Data augmentation in natural language pro-
cessing: a novel text generation approach for long
and short text classifiers. International journal of
machine learning and cybernetics, 14(1):135–150.

Ruichu Cai, Mei Liu, Yong Hu, Brittany L Melton,
Michael E Matheny, Hua Xu, Lian Duan, and
Lemuel R Waitman. 2017. Identification of adverse
drug-drug interactions through causal association
rule discovery from spontaneous adverse event re-
ports. Artificial intelligence in medicine, 76:7–15.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958.

Richard M Goldberg, Lai Wei, and Soledad Fernandez.
2017. The evolution of clinical trials in oncology:
defining who benefits from new drugs using innova-
tive study designs.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Maël Jullien, Marco Valentino, and André Freitas. 2024.
SemEval-2024 task 2: Safe biomedical natural lan-
guage inference for clinical trials. In Proceedings of
the 18th International Workshop on Semantic Evalua-
tion (SemEval-2024). Association for Computational
Linguistics.

Mael Jullien, Marco Valentino, Hannah Frost, Paul
O’Regan, Dónal Landers, and Andre Freitas. 2023.
NLI4CT: Multi-evidence natural language inference

for clinical trial reports. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 16745–16764, Singapore.
Association for Computational Linguistics.

Yong-Mi Kim and Dursun Delen. 2018. Medical in-
formatics research trend analysis: A text mining ap-
proach. Health informatics journal, 24(4):432–452.

Allen Li and Raymond C Bergan. 2020. Clinical trial
design: Past, present, and future in the context of big
data and precision medicine. Cancer, 126(22):4838–
4846.

Wei Li, Wenhao Wu, Moye Chen, Jiachen Liu, Xinyan
Xiao, and Hua Wu. 2022. Faithfulness in natural
language generation: A systematic survey of analysis,
evaluation and optimization methods. arXiv preprint
arXiv:2203.05227.

Ruibo Liu, Guangxuan Xu, Chenyan Jia, Weicheng Ma,
Lili Wang, and Soroush Vosoughi. 2020. Data boost:
Text data augmentation through reinforcement learn-
ing guided conditional generation. arXiv preprint
arXiv:2012.02952.

Benjamin E Nye, Jay DeYoung, Eric Lehman, Ani
Nenkova, Iain J Marshall, and Byron C Wallace.
2021. Understanding clinical trial reports: Extracting
medical entities and their relations. AMIA Summits
on Translational Science Proceedings, 2021:485.

Raul Puri, Ryan Spring, Mostofa Patwary, Mohammad
Shoeybi, and Bryan Catanzaro. 2020. Training ques-
tion answering models from synthetic data. arXiv
preprint arXiv:2002.09599.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023. Large language models encode clinical
knowledge. Nature, 620(7972):172–180.

Ethan Steinberg, Nikolaos Ignatiadis, Steve Yadlowsky,
Yizhe Xu, and Nigam Shah. 2023. Using public clin-
ical trial reports to probe non-experimental causal
inference methods. BMC Medical Research Method-
ology, 23(1):204.

Shubo Tian, Qiao Jin, Lana Yeganova, Po-Ting Lai,
Qingqing Zhu, Xiuying Chen, Yifan Yang, Qingyu
Chen, Won Kim, Donald C Comeau, et al. 2024. Op-
portunities and challenges for chatgpt and large lan-
guage models in biomedicine and health. Briefings
in Bioinformatics, 25(1):bbad493.

Yanshan Wang, Sijia Liu, Naveed Afzal, Majid Rastegar-
Mojarad, Liwei Wang, Feichen Shen, Paul Kingsbury,
and Hongfang Liu. 2018. A comparison of word em-
beddings for the biomedical natural language process-
ing. Journal of biomedical informatics, 87:12–20.

Yuqi Wang, Wei Wang, Qi Chen, Kaizhu Huang, Anh
Nguyen, Suparna De, and Amir Hussain. 2023a. Fus-
ing external knowledge resources for natural lan-
guage understanding techniques: A survey. Infor-
mation Fusion, 92:190–204.

93

https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/2023.emnlp-main.1041
https://doi.org/10.18653/v1/2023.emnlp-main.1041


Yuqi Wang, Zeqiang Wang, Wei Wang, Qi Chen, Kaizhu
Huang, Anh Nguyen, and Suparna De. 2023b. Zero-
shot medical information retrieval via knowledge
graph embedding. In International Workshop on
Internet of Things of Big Data for Healthcare, pages
29–40. Springer.

Zimu Wang, Wei Wang, Qi Chen, Qiufeng Wang, and
Anh Nguyen. 2023c. Generating valid and natural
adversarial examples with large language models.
arXiv preprint arXiv:2311.11861.

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin,
and Zhiyong Lu. 2019. Biowordvec, improving
biomedical word embeddings with subword infor-
mation and mesh. Scientific data, 6(1):52.

94


