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Abstract

Since Large Language Models have reached a
stage where it is becoming more and more diffi-
cult to distinguish between human and machine
written text, there is an increasing need for au-
tomated systems to distinguish between them.
As part of Sem-Eval Task 8, Subtask A: Binary
Human-Written vs. Machine-Generated Text
Classification, we explore a variety of machine
learning classifiers, from traditional statistical
methods, such as Naive Bayes and Decision
Trees, to finetuned transformer models, such
as RoBERTa and ALBERT. Our findings show
that using a finetuned RoBERTa model with
optimized hyperparameters yields the best ac-
curacy. However, the improvement does not
translate to the test set because of the differ-
ences in distribution in the development and
test sets.

1 Introduction

Large Language Models (LLMs) are becoming
more and more accessible, which has resulted in
an increase in machine-generated content across
a wide variety of domains, including education,
technology, and science. With this increase in ma-
chine generated texts from LLLMs, and with the in-
crease in the quality of LLM created texts, concerns
regarding but not limited to fake product review
generation (Adelani et al., 2019) spam/phishing
(Weiss, 2019) and fake news generation (Zellers
et al., 2019; Brown et al., 2020; Uchendu et al.,
2020) have arisen. Weiss (2019) demonstrated that
humans can only detect such misuses of LLMs at
chance level, which demonstrates the clear need
for automated systems to detect machine generated
content. In this paper, we describe the IUCL sub-
mission to SemEval task 8 (Wang et al., 2024); we
focused mostly on comparing traditional and neu-
ral models. Our best system ranked 70th out of 137
submissions.

2 Related Work

In terms of impressionistic differences between hu-
man generated text and LLM generated text, it has
been observed that LLMs tend to be more focused
(i.e. less diversion from the subject at hand), more
objective, and highly formal. Human texts, on the
other hand, are overall more emotional, subjective,
and less formal. In terms of linguistic difference,
humans use fewer nouns and conjunctions, while
employing more punctuation and adverbs. Depen-
dency relations are also shown to be shorter. Lastly,
human texts have higher type/token ratios in texts
of the same length (Guo et al., 2023) Current LLM
models include GPT-2 (Radford et al., 2019), GPT-
3 (Brown et al., 2020), CTRL (Keskar et al., 2019)
and ChatGPT.

We will first begin by discussing statistical ap-
proaches to detecting machine-generated content,
then using LLM technology itself to do so.

Solaiman et al. (2019) use a bag-of-words ap-
proach with TF-IDF feature vectors (both unigrams
and bigrams) and a logistic regression model to dif-
ferentiate between human-written web pages and
text generated web pages from GPT2. They exam-
ine a different number of parameters of the LLM
(117M, 345M, 762M and 1,542M) as well as dif-
ferent sampling methods (k-sampling, p-sampling
and pure sampling). This is because an assumption
that many researchers take is that language models
sample from the head to generate natural looking
text e.g. max sampling (Gu et al., 2017) and k-
max sampling (Fan et al., 2018). Their findings are
that the larger the LLM, the harder to detect how
machine-like the generated text is and k£ samples
are easier to detect than pure samples, probably
due to the fact that £ samples over-produce com-
mon words, which is easy to detect using statistical
methods.

Gehrmann et al. (2019) use BERT and a group of
statistical features: the probability of each word, ab-
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solute rank of each word, and entropy of the distri-
bution, and create a tool for users to see specifically
what features are more likely to be machine gener-
ated over human generated. They clearly show that
the model GPT-2 oversamples certain words; it is
worth pointing out, however, that as LLMs grow
more sophisticated, such methods may not work as
well.

Solaiman et al. (2019) use finetuning on
RoBERTa and find that it can detect text gener-
ated from GPT-2 with an accuracy of 95%. The
RoBERTa detector has also been used in detecting
fake news articles from several LLMs (Uchendu
et al., 2020), Amazon product reviews (Adelani
etal., 2019), and biomedical texts (Rodriguez et al.,
2022).

3 Data

We used the M4 dataset (Wang et al., 2023) pro-
vided by the SemEval-2024 Task 8: Multigener-
ator, Multidomain, and Multilingual Black-Box
Machine-Generated Text Detection. We used the
English data provided for Subtask A, the Monolin-
gual (English) binary classification task.

The dataset for this subtask consists of 119,757
samples of human-written and machine generated
text. There are an additional 5,000 samples as a
development set. The test set consists of 34,272
samples.

About 53% of the samples in the training set
are machine generated while the rest are human
written. The machine generated text was produced
by a range of models: ChatGPT and DaVinci by
OpenAl, Dolly by Databricks, Cohere. The sources
from which the human texts are taken are Reddit,
WikiHow, ArXiV, Wikipedia and PeerRead. In con-
trast, the development set consists of an equal ratio
of human and machine generated samples. The
machine generated samples are entirely from the
Bloomz model. The human sources are also equally
distributed between WikiHow, Wikipedia, Reddit,
ArXiV and PeerRead. In the test set, 52.5% of the
texts are machine generated with GPT4, Cohere,
ChatGPT (GPT3.5), Bloomz, Dolly, and DaVinci
as sources. Note that this means optimizing a sys-
tem on development data is difficult since the test
data are much closer to the training data than the
development data.

Further details about the data and the task are
available at the overview of the shared task (Wang
et al., 2024).

We present a comparison of a range of classifiers
(see below). For those experiments, we use the de-
velopment set of 5,000 samples for benchmarking
and finetuning the model performance.

4 Methods and Features

4.1 Features

Ratio features We started with extraction of fea-
tures from the dataset that cannot be controlled
consciously by authors: stopword ratio and average
sentence length. We used the NLTK stopwords'
(Bird et al., 2009) to calculate the stopword ratio
for the dataset. The left graph in Figure 1 shows
the distribution for the sentences generated from
different sources. The median stopword ratio for
humans and different models are around 0.40. It
is difficult to distinguish human text from machine
text as the distributions of the texts generated by
machines are similar to those of the human gener-
ated texts. We then computed the average sentence
length generated by different sources, see the right
graph in Figure 1. The average number of the sen-
tences generated in each of the category is around
21. Again, there is little difference between ma-
chine and human generated texts.

Textual features We also used TF-IDF and word

unigram features.

4.2 Statistical Learning Methods

We used the ratio features to train Multinomial
Naive Bayes, Random Forest, XGBoost, Logistic
Regression and SVC models on the data. For the
textual features, we trained SVC, Decision Tree,
Logistic Regression and Random Forest classifier
models. For all models, we used the scikit-learn
implementations (Pedregosa et al., 2011).

We chose the Naive Bayes classifier because
of its simplicity and the ability to handle missing
data values. Support Vector Classifier is better at
handling high dimensional spaces and is robust to
overfitting. Random Forest is an ensemble learning
method which is robust to overfitting and provides
feature importance ranking, helping to identify the
most influential features. Logistic Regression and
Multinomial Naive Bayes classifiers are easy to
interpret and are computationally efficient. XG-
Boost provides a gateway to handle data in a highly
efficient and scalable manner. Because of time con-
straints, we did not perform any hyperparameter

1https: //gist.github.com/sebleier/554280
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Figure 1: Stop word ratio (left) and average sentence ratio (right) generated by different models.

tuning, and used the default settings to train the
models.

4.3 Deep Learning Methods

Fully connected DL. model We used the same
data preprocessing techniques described in Sec-
tion 4.1 and trained a fully connected 2 layer neural
network having 512 hidden units with ReL U activa-
tion. We used the Binary Crossentropy to calculate
the loss and Adam optimizer to train our neural net-
work on 100 epochs. We set the batch size to 2048,
due to processing limitations and kept a learning
rate of 0.001 with an early stopping mechanism in
place.

Finetuned Language Models We also finetuned
the following language models: BERT and its
derivative models ROBERTa and ALBERT. We
use the Hugging Face library (transformers) for
this task.

BERT (Bidirectional Encoder Representations
from Transformers) is a language model developed
by Devlin et al. (2019). It is a bidirectional model
that uses a transformer architecture. We use the
BERT base model for our experiments.

RoBERTa is a variant of BERT developed by Liu
et al. (2019). It is pre-trained on a larger corpus of
texts. We use the ROBERTa base as well as large
models for our experiments. The best performing
model of our study is a RoOBERTa base model. AL-
BERT is a smaller version of BERT developed by
(Lan et al., 2020). The hyperparameters selected
are shown in Table 1.

RoBERTa BERT ALBERT
Learning Rate Se-5 2e-5 2e-5
Batch Size 8 32 16
Nr. Epochs: 3 4 4
Grad. Acc. St. 4 2 2

Table 1: Hyperparameters for the neural models

5 Results

We will first discuss our results on the development
data, then the official results of the shared task.

5.1 Results on the Development Set

The shared task provides a baseline accuracy of
74% using a ROBERTa model. Our aim is to inves-
tigate a range of models and features and incremen-
tally improve models, starting out with traditional
machine learning models and then moving on to
deep learning models.

Table 2 shows the performance of the different
combinations of models and features on the devel-
opment set.

We first look at the statistical methods combined
with the standard sparse features, bag of words,
and TF-IDF weighted bag of words features. The
results in the first block show that the TF-IDF
weighted feature results in a lower accuracy than
standard frequency counts (56.44% vs. 60.22%)
for logistic regression. For this reason, we decided
to concentrate on frequency counts. Among the
different statistical classifiers, logistic regression
reaches the highest results (60.22%), followed by
XGBoost with 59.26%.

When we use the ratio features, i.e., stop word
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Features Model Acc.
TF-IDF Logistic Regression 56.44
words Random Forest 58.86
Naive Bayes 50.54
XGBoost 59.26
Logistic Regression 60.22
Ratio features Logistic Regression 67.14
BERT Logistic Regression 63.48
Fully connected NN 67.19
Fully connected NN (optimized) 70.11
ALBERT ALBERT 66.78
RoBERTa RoBERTa BASELINE 74.00
XLM-RoBERTa Large 77.67
XLM-RoBERTa (10,000 training samples) | 78.24
XLM-RoBERTa Base Default 79.61
XLM-RoBERTa Base (optimized) 79.90

Table 2: Model comparison with respect to features and accuracy for Dev Set

ratio and average sentence ratio, combined with lo-
gistic regression, we reach an accuracy of 67.14%,
which is surprising in that this outperforms word
features by almost 6% absolute, even though they
did not show large differences in Figure 1.

Next, we investigate whether using BERT em-
beddings instead of sparse features improves re-
sults. When we use those features with logis-
tic regression, results increase by 3% absolute to
63.48%, combining them with the fully connected
neural network, we reach an accuracy of 70.11%,
outperforming the ratio features, but not reaching
the baseline provided by the shared task.

We then move on to use BERT and its vari-
ants. We start off with ALBERT, a smaller ver-
sion of BERT. This model gives us an accuracy
of 66.78%. This shows that we need a large scale
model for good performance. We find that the
XLM-RoBERTa model, a multilingual pre-trained
model performs better than a ROBERTa model. An
XLM-RoBERTa model with full data and default
parameters gives us an accuracy of 79.61%. We
add gradient accumulation to the finetuning process
to speed up training and improve performance. We
also reduce the batch size and adjust the learning
rate, to get an incremental 0.3% improvement due
to the hyperparameters. Optimizing hyperparam-
eters tuning further increases accuracy to 79.90%.
This is the best accuracy we have obtained in our
experiments. When we compare those results to
the XLM-RoBERTa large model with its higher
number of parameters, accuracy drops to 77.67%,

System Score Rank
Our submission | 74.96 70
Baseline 88.46 -
safeai 96.88 1

Table 3: Official Results (accuracy).

showing that simply increasing the number of pa-
rameters does not guarantee good performance.

A final experiment investigates the importance
of the training set size. For this experiment, we
reduce the training data to 10,000 samples. This
model gives us an accuracy of 78.24%, showing
that finetuning XLM-RoBERTa with even a small
dataset reaches competitive results. Increasing the
training set from 10,000 to about 120,000 results
in an increase in accuracy of 1.66% absolute.

5.2 Official Results

We generated our final predictions using the fine-
tuned XLM-RoBERTa system. We show our re-
sults in comparison to the best system and the base-
line in Table 3. Our submission had an accuracy
of 74.96% on the test set and was ranked 70 out of
137 teams. The best ranking team had an accuracy
of 96.88%. Note that while our system improved
over the baseline for the development data, this is
not the case for the test data. This is most likely a
consequence of the different distributions between
the development and test data.
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Figure 2: Confusion Matrix of the best model (Test Set)

5.3 Discussion

We had a closer look at the confusion matrix for
the best performing model, the optimized XILLM-
RoBERTa model, on the test data, shown in Fig-
ure 2. We notice that the model has a tendency
to incorrectly identify human samples as machine
generated (false positives) in 8,280 cases, as op-
posed to just 301 cases of false negatives.

One of the limitations of our work is that we
have not explored data processing and augmenta-
tion techniques that can help us improve the perfor-
mance of the model.

6 Conclusion and Future Work

In this project, we have investigated the perfor-
mance of various machine learning models. We
found that our best performing model is a base
XLM-RoBERTa model that is fine-tuned on the
dataset. Using the smaller ALBERT or the large
XLM-RoBERTa models resulted in decreases in
accuracy. However, we also see that finetuning
is very sensitive to underlying data characteristics,
since the gains we saw on the development set did
not translate to equivalent gains on the test set.

There is a significant scope for improvement
in the performance of the models by working on
further text preprocessing and feature engineering.
Future work includes using ensemble methods that
combines the finetuned models along with a model
using ratio features.
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