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Abstract

The Large Language Models (LLMs) exhibit
remarkable ability to generate fluent content
across a wide spectrum of user queries. How-
ever, this capability has raised concerns regard-
ing misinformation and personal information
leakage. In this paper, we present our methods
for the SemEval2024 Task8, aiming to detect
machine-generated text across various domains
in both mono-lingual and multi-lingual con-
texts. Our study comprehensively analyzes var-
ious methods to detect machine-generated text,
including statistical, neural, and pre-trained
model approaches. We also detail our experi-
mental setup and perform a in-depth error anal-
ysis to evaluate the effectiveness of these meth-
ods. Our methods obtain an accuracy of 86.9%
on the test set of subtask-A mono and 83.7%
for subtask-B. Furthermore, we also highlight
the challenges and essential factors for consid-
eration in future studies.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have facilitated a wide range of applica-
tions, notably in content generation (Chung et al.,
2023). While LLMs offer creative and informa-
tive content generation capabilities, concerns such
as misinformation, fake news, personal informa-
tion leakage, legal and ethical issues have emerged
(Chen and Shu, 2023; Li, 2023; Kim et al., 2023).
Consequently, detecting machine-generated text
has become a crucial task to address these afore-
mentioned challenges.

The identification of machine-generated text is
still an open challenge because of its overlapping
similarities with human-written text. The current
text generation models produce text that is strik-
ingly similar to human language in terms of gram-
maticality, coherency, fluency, and utilization of
real-world knowledge (Radford et al., 2019; Zellers
et al., 2019; Brown et al., 2020). However, vari-
ations in sentence length, the presence of noisy
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Figure 1: Block diagram for machine-generated text
detection.

data, and the generation of incomplete sentences
are common indicators of machine-generated text.

1.1 Essence of LLLM generated text detection

LLMs’ open-ended text generation techniques have
sparked various concerns across domains (Jo et al.,
2023). It has been demonstrated that LLLMs have
the potential to generate misinformation and fake
news (Chen and Shu, 2023), which can be catas-
trophic in healthcare (Zhou et al., 2023), public
safety, education, and finance. Moreover, LLMs
can generate text without source attribution, rais-
ing the risk of plagiarism (Quidwai et al., 2023),
and can include legal and ethical concerns too (Li,
2023).

Furthermore, when LLMs are used in enterprise
applications there can be concerns of intellectual
property rights infringement (Zhao et al., 2024)
such as generated content might contain trademarks
or branding elements (Ren et al., 2024). Lastly,
LLMs can aggravate security concerns by generat-
ing phishing emails (Bethany et al., 2024), fake re-
views (Adelani et al., 2020), hallucinations (Huang
et al., 2023), biased content (Fang et al., 2023;
Dai et al., 2024), and personal information leakage
(Kim et al., 2023).

1.2 Tasks

The main objective of the competition is to differ-
entiate text based on the source of its generation
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method (see Figure 1), with specific importance
given to machine-generated text and human-written
texts (Wang et al., 2024a). The competition con-
sists of three tasks Subtask A, Subtask B, and Sub-
task C. Our study focuses on Subtasks A and B.
Subtask A. Binary Human-Written vs. Machine-
Generated Text Classification: This task aims
to distinguish between human-written or machine-
generated text. This task acts as a binary classi-
fication. Subtask A is again subdivided into the
following two categories. Mono-lingual: The text
is in the English language. Multi-lingual: The text
is in English, Chinese, Russian, Urdu, Indonesian,
Arabic, and Bulgarian languages.
Subtask B. Multi-Way Machine-Generated Text
Classification: This task aims to classify the given
text into six distinct classes, which are ‘human’,
‘chatGPT’, ‘cohere’, ‘davinci’, ‘bloomz’, ‘dolly’
with each class representing the source of its gener-
ation. This task acts as a multi-class classification.
The key contributions of this work include, 1)
We present a comprehensive analysis of various
machine-generated text detection techniques for
multi-domain mono and multi-lingual data, 2) We
provide a detailed experimental setup for statis-
tical, neural, and pre-trained models along with
corresponding error analysis, 3) We emphasize the
discussions and future perspectives derived from
the findings of the study.

2 Related Work

Recent works on LLM-generated' text detection
has shown promising results. Statistical methods
are used to detect the LLM-generated text by uti-
lizing the entropy (Shen et al., 2023), and N-gram
frequency (Tassopoulou et al., 2021). Some other
studies uses the fact that language models assign
high probability for the repeated sentences which is
often Al model generated and ranks the Al model
generated sentence Krishna et al. (2022). In a study,
OpenAl has trained a classifier to detect LLM-
generated text using the RoBERTa-based model
(Solaiman et al., 2019).

Some of the widely-used methods adopted the
GPT detectors such as OpenAl detection classi-
fier?, GPTZero?, and ZeroGPT*. Another variant
is DetectGPT (Mitchell et al., 2023), which works

'We interchangeably use the terms ‘LLM-generated’ or
‘machine-generated’

Zhttps://platform.openai.com/ai-text-classifier

*https://gptzero.me/

*https://www.zerogpt.com/

on the assumption of LLM-generated text lies in
the negative curvature region of the log-likelihood.
Using this approach, DetectGPT perturbs the input
text using masked language models, such as BERT
(Devlin et al., 2018), BART (Lewis et al., 2019), T5
(Raffel et al., 2019) and compare the log probabil-
ity of the text and masked filled variants. Similarly,
few works utilized the different decoding strategies
including top-k, nucleus, and temperature sampling
to generate the text from GPT2 and BERT based
models employed to perform binary classification
to label text as human-written or machine gener-
ated (Ippolito et al., 2020).

Recently, watermarking methods have been used
in enterprises to protect the intellectual properties
and fair use of the generation models. However
these techniques simplify the detection of the LLM-
generated output text by synonym replacement over
generated outputs and text level posthoc lexical sub-
stitutions (Li et al., 2023; Sadasivan et al., 2023),
and soft watermarking was introduced in (Kirchen-
bauer et al., 2023) using green and red token lists.
Hidden space operations were also introduced by
injecting secret signals into the probability vector
of each target token (Zhao et al., 2023).
Bhattacharjee and Liu (2023) proposed a method
which triggers when the text has common words
randomly assembled as it is easier to find than iden-
tifying unique and rare tokens. Sadasivan et al.
(2023) focused on zero-shot Al text detection by
using two clusters depending on watermarked or
not. Another study (Wang et al., 2024c¢), proposed a
benchmark framework consists of an input module,
a detection module and an evaluation module for
machine generated text detection against human-
written text. In contrast to existing works, this study
presents the multi-domain multi-lingual machine
generated text detection techniques.

3 Datasets

This section given an overview of the dataset uti-
lized and the corresponding analysis.

3.1 Source and acquisition

The task organizers provided the dataset® for all
the tasks (§1.2). The dataset is an extension of the
M4 dataset (Wang et al., 2024b). The dataset pro-
vided for this task consists of machine-generated
text and human-written text. The human-written
text is gathered from various sources such as

>https://github.com/mbzuai-nlp/SemEval2024-task$8
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Subtask - A (Mono-lingual) Subtask - A (Multi-lingual) Subtask - B
Train Development Test Train Development Test Train Development Test
# Samples 119757 5000 34272 172417 4000 42378 71027 3000 18000
# Avg sentences 23 17 18 19 10 17 18 12 18
# Minimum sentences 1 1 1 0 1 1 1 1 1
# Maximum sentences 1583 699 882 1583 59 882 699 477 882
# Median sentences 14 9 18 12 10 17 12 10 17
# Avg words 530 394 437 445 222 396 398 267 414
# Minimum words 2 7 12 0 41 12 6 7 12
# Maximum words 38070 19115 2946 38070 2081 6308 19115 1484 2946
# Median words 319 213 424 296 218 379 290 217 413

Table 1: SemEval 2024 Task 8 data statistics.

Wikipedia, WikiHow (Koupaee and Wang, 2018),
arXiv, and PeerRead (Kang et al., 2018), Reddit
(Fan et al., 2019) for English, Baike and Web ques-
tion answering (QA) for Chinese, news for Urdu,
news for Indonesian and RuATD (Shamardina
et al., 2022) for Russian. On the other hand, the
machine-generated text is gathered by prompting
different multi-lingual LLMs: ChatGPT (Achiam
et al., 2023), BLOOMz (Muennighoff et al., 2023),
textdavinci-003, FlanT5 (Chung et al., 2022), Co-
here, Dolly-v2, and LLaMa (Touvron et al., 2023).

3.2 Exploratory data analysis

Preliminary analysis of data is a crucial step that is
required to understand the dataset characteristics.
We have observed that the number of sentences in
each task data varies from 1 to a few hundred. Par-
ticularly, a few samples in the multi-lingual train-
ing data consist of empty samples as well. Another
point to note is, that the number of sentences in
the multi-lingual train and development varies a
lot, which indicates the dataset obtained from dif-
ferent sources. There are a few cases, where some
of the samples consist of more than 38k tokens in
a single sample. With these observations, to ex-
periment on cleaned data, we employ two types of
pre-processing settings. The former (Version-1) ap-
plies heuristic-based pre-processing and sub-word
removal, whereas the latter (Version-2) applies only
heuristic-based pre-processing. We reported the de-
tailed analysis of the dataset statistics in Table 1.

4 System Overview

This section offers various approaches employed
to perform machine-generated text identification.
Our approaches are categorized into 1) statistical,
2) neural, and 3) pre-trained models.

4.1 Methodology
4.1.1 Statistical methods

To understand the effectiveness of statistical mod-
els, we experimented with a wide range of statisti-
cal models and their variants including ensemble
approaches. The statistical models including Logis-
tic Regression (LR), SVM, MLP, LightGBM and
some of the ensemble models detailed in Table 3.

4.1.2 Neural methods

Neural networks have demonstrated remarkable
success in various domains, from image and speech
recognition to natural language processing. We
experiment with Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Long
Short-term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and their combinations. We
utilize FastText [(Joulin et al., 2016), (Bojanowski
et al., 2017)] embeddings to capture hierarchical
patterns within the text data.

4.1.3 Pre-trained models

Self-supervised pre-trained models have been
effective for the classification tasks. In this study,
we experiment with a wide range of pre-trained
models trained on either open-source or language
model-generated data. The pretrained models
including BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), DistilRoBERTa base (Sanh
et al., 2019), RoBERTa Base OpenAl Detector
(Solaiman et al., 2019), XLM RoBERTa (Conneau
et al., 2019).

4.2 Experimental setup

For all the experiments, we have utilized the de-
fault data splits provided by the task organizers.
For all the statistical models, four types of em-
beddings were employed namely counter vectors,
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Subtask - A (Monolingual)

Subtask - A (Multilingual)

Subtask - B

Models Count Word N-gram Character Count Word N-gram Character Count Word N-gram Character
LR 0.544 0.566 0.712 0.615 0.511 0.516 0.498 0.561  0.544 0.514 0.519 0.558
Naive Bayes  0.506 0.520 0.568 0.599 0.510 0.515 0.489 0.509 0.463 0.533 0.495 0.354
SVM 0.534 0.573 0.708 0.634 0.344 0494 0.512 0.571  0.569 0.550 0.518 0.573
Random Forest 0.576 0.614 0.619 0.682  0.465 0.517 0.504 0.559 0.579 0462 0.429 0.408
XG Boost 0.584 0.623 0.639 - 0.499 0.507 0.558 - 0.605 0.619 0.591 -
MLP 0.594 0.604 0.683 0.647 0.544 0.528 0.485 0.609 0.529 0.506 0.493 0.583

Table 2: Accuracy of statistical models development set; LR refers to Logistic Regression, Subtask-B deals with

multi-class classification task.

Subtask-A

Model (Monolingual)

Subtask-B

Naive Bayes + SGDClassifier +

LightGBM 0.714

0.708

Table 3: Ensemble model Accuracy scores on develop-
ment set.

Subtask-A
Model Mono Multi Subtask-B
CNN + FastText 0.711 0.545 0.652
RNN + LSTM + FastText 0.682 0.615 0.549
Bidirectional RNN + FastText 0.689 0.579 0.582

Table 4: Accuracy of neural models on development set.

word, n-gram, character-level TF-IDF vectors and
spaCy embeddings. Moreover, we used the de-
fault configurations mentioned in the scikit-learn®.
Whereas for pre-trained models the list of hyper-
parameters details are listed in Table 6. We have
not performed any hyperparameter-tuning for our
experiments. We conduct most of our experiments
using four Nvidia GeForce RTX 2080 Ti (11GB)
GPUs. To evaluate all the models, we reported the
‘Accuracy’ scores.

5 Results and Analysis

This section provides a detailed analysis of the
models utilized for subtasks A and B. Our experi-
ments aim to showcase the effectiveness of several
machine-generated text detection techniques.

5.1 Subtask A Mono-lingual

We experiment with the statistical and neural mod-
els to perform subtasks A and B. All the statistical
and ensemble models experimental results on de-
velopment data are mentioned in Table 2 and Ta-
ble 3. The results on test data mentioned in Table 7.
In the case of statistical models, Logistic Regres-

6https://scikit—learn.org/stable/supervised_
learning.html

Task Model Accuracy
BERT Base 0.825
BERT Base_v1 0.807
?&TESI;'A BERT Base_v2 0.813
© BERT Base_v2 0.809
RoBERTa Base OpenAl Detector 0.766
BERT Multilingual Base_v2 0.622
(Sl\‘jﬁltﬁis)l“A XLM-RoBERTa 0.766
BERT Multilingual Base 0.622
RoBERTa Large 0.751
Subtask-BRoBERTa Base OpenAl Detector 0.753
DistilRoBERTa Base 0.733

Table 5: Pre-trained models Accuracy scores on devel-
opment set; Where vl and v2 indicates different pre-
processing strategies.

sion obtains the superior performance of 71.2%
accuracy using n-gram level TF-IDF embeddings
compared to other methods on the development
dataset. Whereas in the case of the performance of
the test set, our ensemble surpass all the remaining
models. We built the ensemble model by creating a
custom tokenizer by combining spaCy embedding
and TF-IDF with n-gram level range of (3-5) em-
bedding. Moreover, we trained an ensemble model
with Naive Bayes, SGDClassifier’, and LightGBM
models which gave 86.9% accuracy on the test set.
We experiment with a few neural models with fast-
Text embeddings and out of them CNN+fastText
outperforms the other models. We have listed re-
sults in Table 4. Moving ahead, we fine-tuned
transformer-based pre-trained language models like
RoBERTa Base OpenAl detector (Solaiman et al.,
2019), which gave 76.6% accuracy on the devel-
opment set and 78.7% accuracy on test set, BERT
base model which gave 82.5% accuracy on the de-
velopment set and 71.7 % accuracy on test set. The
results are detailed in Table 5. Furthermore, we use
the pre-processing steps discussed in Section 3.2.

"https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.SGDClassifier.
html
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Model Batch size Epochs Vocab size

BERT Base 16 10 30522
OpenAl Detector 16 10 50265
BERT Multilingual Base 8 3 30522
XLM-RoBERTa 8 5 250002
RoBERTa Large 4 2 50265
DistilRoBERTa Base 16 10 29409

Table 6: Experimental setup for pre-trained models. For
all the models max source length set to 512 and learning
rate 5e O,

Fine-tuned the BERT base model with version-1’s
pre-processed data gave 80.7% on the development
dataset and 71.7% on the test set. Then we fine-
tuned the BERT base model with version-2 pre-
processed data gave 81.3% on the development
dataset and 69.7% on the test set. We secured 24"
rank out of 137 participants.

We observed that statistical models that performed
modestly on the development set generalized ef-
fectively to the test set, whereas some pre-trained
language models, despite performing well on the
development set, struggled to generalize on test
set. This discrepancy may stem from the differ-
ing sources of the training and development sets
(‘arxiv’, ‘reddit’, ‘wikihow’, ‘wikipedia’, ‘peer-
read’) compared to the test set, potentially causing
over-fitting of the pre-trained models on the train-
ing data and hindering their performance on the
test set.

5.2 Subtask A Multi-lingual

For subtask A multi-lingual, we fine-tuned BERT
Multilingual Base and XLLM RoBERTa base mod-
els. BERT Multilingual Base along with version-2
pre-processed data resulted in 62.2% accuracy on
the development set and 73.8% accuracy on the
test set. Moreover, despite the decent performance
of XLM-RoBERTa on the development set with
76.6% accuracy, the performance of on test set is
sub-par. Furthermore, the BERT Multilingual base
gave 62.2% accuracy on the development set and
73.1% accuracy on the test set. As mentioned in
Section 3.2, we observed that, the multi-lingual
data consists of empty samples. Hence, we fine-
tuned the BERT Multilingual Base model on the
version-2 of the pre-processed data, which helped
in improving the accuracy of the test set even if we
had the same accuracy on development set.

5.3 Subtask B

Subtask B deals with multi-class classification task.
For this task, we have conducted experiments using
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Task Model Accuracy

Baseline 0.74

Naive bayes + SGDClassifier 0.869
Subtask - A + LightGBM* :

(Mono) RoBERTa Base 0.787
OpenAl Detector ’

BERT Base_v1 0.717

BERT Base 0.715

BERT Base_v2 0.697

Subtask - A Baseline 0.72

(Multi) BERT Multilingual Base_v2  0.738

BERT Multilingual Base 0.731

XLM-RoBERTa * 0.50

Baseline 0.75

Subtask - B RoBERTa Base 0.837
OpenAl Detector :

DistilRoBERTa Base* 0.791

Naive bayes + SGDClassifier+ 0.650

LightGBM

Table 7: Test set accuracy results; *entries are the offi-
cial submission models of the competition.

the statistical models as well as the pre-trained lan-
guage models. MLP model gave the best accuracy
on the development set with 60.9% accuracy. Our
ensemble approach obtains 70.8% accuracy on the
development set and 65% accuracy on the test set.
Moreover, we experimented with ROBERTa Base
OpenAl Detector gave 75.3% on the development
set and 83.7% accuracy on the test set. Whereas,
the DistilRoBERTa base obtains 73.3% accuracy
on the development set and 79.1% accuracy on the
test set and secured 17t rank out of 86 participants.

6 Conclusions

The study explores different methodologies for de-
tecting machine-generation text, leveraging statis-
tical, neural, and pre-trained models. We observe
that the ensemble models are more effective in clas-
sifying the mono-lingual data (Subtask-A mono),
while models trained on GPT2-text surpass other
models in multi-class classification.

7 Limitations

In our study, due to computational constraints, we
have not performed experiments with any large lan-
guage models. Current evaluation has been limited
to conventional ML and pre-tained language mod-
els. Some of our experimental methods perform
better on development data, where as there is a sig-
nificant drop on test data, this may result in lack of
generalization.
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