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Abstract
Cross-lingual semantic textual relatedness task
is an important research task that addresses
challenges in cross-lingual communication and
text understanding. It helps establish semantic
connections between different languages, cru-
cial for downstream tasks like machine trans-
lation, multilingual information retrieval, and
cross-lingual text understanding. Based on ex-
tensive comparative experiments, we choose
the XLM -Rbase as our base model and use
pre-trained sentence representations based on
whitening to reduce anisotropy. Additionally,
for the given training data, we design a deli-
cate data filtering method to alleviate the curse
of multilingualism. With our approach, we
achieve a 2nd score in Spanish, a 3rd in In-
donesian, and multiple entries in the top ten
results in the competition’s track C. We further
do a comprehensive analysis to inspire future
research aimed at improving performance on
cross-lingual tasks.

1 Introduction

Semantic textual relatedness (STR) encompasses
a broader concept that takes into account various
commonalities between two sentences. This in-
cludes factors such as being on the same topic,
expressing the same viewpoint, originating from
the same period, one sentence elaborating on or
following from the other, and more. SemEval is
an international workshop on semantic evaluation.
In track C of SemEval-2024 task 1: Cross-lingual
(Ousidhoum et al., 2024b), participants are to sub-
mit systems,which are developed without the use
of any labeled semantic similarity or semantic relat-
edness datasets in the target language and with the
use of labeled datasets (Ousidhoum et al., 2024a)
from at least one other language.

Various methods were proposed to address the
task of textual relatedness. One common approach
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Assets

Figure 1: The description of cross-lingual semantic
textual relatedness task.

is based on feature engineering, where the syn-
tactic, semantic, and structural features of text,
such as word frequency, TF-IDF, and word em-
beddings, are extracted. Machine learning algo-
rithms are then employed for relatedness determi-
nation. Another popular approach is based on deep
learning methods, such as Convolutional Neural
Networks (LeCun et al., 1989), Recurrent Neural
Networks (Graves and Graves, 2012) , and self-
attention mechanisms (Vaswani et al., 2017). These
methods can capture semantic relationships and
contextual information within the text, and they are
trained on large-scale datasets to enhance model
performance and generalization ability.

However, there are two challenges in track C of
SemEval-2024 task 1:

• Compared with static word representation
such as Word2Vec (Mikolov et al., 2013)
and Glove (Pennington et al., 2014), the pre-
trained language models (PLM) can obtain
sentence representation for different sentence
in different contexts, thereby solving differ-
ent problems. However, the vectors of BERT-
based PLM models have limitations: BERT-
based models always induces a non-smooth
anisotropic semantic space of sentences,
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which harms its performance of semantic
similarity (Gao et al., 2019; Li et al., 2020),
which can lead to a challenge that sentences
are strikingly similar while using the cosine
similarity metric.

• Participants are not allowed to utilize labeled
datasets in the target language for training. In-
stead, they must use labeled data in different
languages as the training set to train the model
and provide predictions in the target language.
However, multilingual pre-trained models
suffer from the curse of multilingualism
(Conneau et al., 2020), that is, the overall
performance of both monolingual and cross-
lingual baselines declines when adding more
languages to training data over a certain point.
Hence, it is essential to investigate which ad-
ditional languages would be inefficient as the
training dataset for the target language.

In this paper, we used whitening techniques (Su
et al., 2021), which maps vectors to standard or-
thogonal bases, to transform the word vector rep-
resentations from anisotropic to isotropic, and sur-
prisingly, we found that whitening significantly
improves the accuracy of judging semantic sim-
ilarity. Given the absence of labeled data in the
target language, it is difficult to determine which
other language would yield better prediction results
when used as training data. Therefore, we pro-
posed that removing certain language categories
from the training data for a specific target language
contributed to improving performance.

We conducted extensive experiments to demon-
strate the effectiveness of the method we employed.
As a result, our submitted outcomes achieved a
2nd score in Spanish and a 3rd score in Indonesian
in track C of SemEval-2024’s task 1. Addition-
ally, we obtained multiple top-ten rankings in the
competition.

2 Background

The task of semantic text relatedness covers sev-
eral specific subtasks, including semantic similarity,
semantic matching, textual entailment, semantic re-
lation classification, and text pair ranking. Previous
work has proposed various methods for these spe-
cific tasks, such as: Lexical and syntactic-based
methods (Gamallo et al., 2001; Pakray et al., 2011):
These methods rely on lexical and syntactic rules,
such as word vector matching, lexical overlap, and

syntactic tree matching. However, these methods
often fail to capture higher-level semantic relation-
ships. Feature engineering-based machine learning
methods (Chia et al., 2021; Fan et al., 2019): These
methods involve using manually designed features,
such as bag-of-words models (Zhang et al., 2010),
tf-idf weights, and syntactic features, followed by
using machine learning algorithms like support vec-
tor machines and random forests for prediction.

While these methods have improved perfor-
mance to some extent, they still have limitations in
capturing complex semantic relationships. Neural
network-based models: These models use neural
networks to learn representations of text and cap-
ture semantic relationships between texts through
training data. This includes methods that fine-tune
pre-trained language models (e.g., BERT (Kenton
and Toutanova, 2019) and GPT2 (Radford et al.,
2019) etc.), as well as approaches that employ
Siamese networks, LSTM, CNN, and other archi-
tectures for text encoding and matching. Trans-
fer learning and multi-task learning (Pilault et al.,
2020; Wu et al., 2020): These methods lever-
age knowledge from pre-trained models on related
tasks to improve the performance of semantic tex-
tual relatedness tasks through transfer learning (Ko-
roleva et al., 2019). Multi-task learning combines
multiple related tasks in training to enhance the
model’s generalization ability and effectiveness.
Application of external knowledge resources: Re-
searchers have also attempted to incorporate exter-
nal knowledge resources such as word embeddings,
semantic knowledge graphs, and multilingual data
to enhance the model’s understanding of semantic
relationships.

For cross-lingual semantic similarity tasks, map-
ping texts from different languages into a shared se-
mantic space for similarity calculation is necessary.
To address this, researchers have proposed vari-
ous cross-lingual representation learning methods.
Among them, unsupervised alignment methods like
unsupervised machine translation (Lample et al.,
2017) and cross-lingual pre-training models (Liang
et al., 2020) can learn the correspondences between
multiple languages and map texts to a shared vector
space.

However, (Conneau and Lample, 2019) and
(Wang et al.) mentioned that vector representa-
tions based on the Transformer models exhibit
anisotropy, which means that the vectors are un-
evenly distributed and clustered in a narrow cone-
shaped space. Therefore, both Bert-flow (Li et al.,
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2020) and Bert-whitening (Su et al., 2021) aim to
address the same issue, which is the anisotropy and
uneven distribution of sentence embeddings.

3 System Overview

3.1 Framework Overview

In this section, we will introduce our proposed
method for STR task which has three main mod-
ules.

• PLM Encoder We adopted the pretrained lan-
guage model XLM-RoBERTa-base (XLM -
Rbase) (Conneau et al., 2020) for initial sen-
tence encoding, which combines two powerful
models: Transformer and RoBERTa. XLM -
Rbase demonstrates strong multilingual ca-
pabilities and a deep understanding of se-
mantics, surpassing some monolingual pre-
training models. After conducting a series of
tests on mBERT (Pires et al., 2019), XLM
(Conneau and Lample, 2019), and XLM -
Rbase/large, we selected XLM -Rbase as the
encoder due to its superior performance.

• Whitening Module After obtaining the sen-
tence vectors of two utterances using XLM -
Rbase, we could have directly calculated the
cosine similarity between the two vectors, but
the sentence vectors after XLM -Rbase show
anisotropy between them and are distributed
in a conical space, resulting in a high co-
sine similarity. Therefore, we introduce the
Whitening module to change the distribution
of the sentence vector space so that its distri-
bution has various anisotropies, amplifying
the differences between the vectors and stimu-
lating the performance of XLM -Rbase on the
semantic text similarity reading task.

• Data Filtering The authors of (Conneau et al.,
2020) mention the curse of multilingualism,
where adding more languages leads to an im-
provement in cross-lingual performance for
low-resource languages up to a certain point,
after which the overall performance of both
monolingual and cross-lingual baselines de-
clines. In the task of cross-lingual semantic
text similarity, to maximize the exploration
of the positive impact of other languages on
the target language, we propose a new dataset
selection method. As the influence between
languages is mutual, we utilize the unlabeled

data of the target language to detect the im-
pact of each language in track A, excluding
the target language, and infer its influence on
the target language. This allows us to select
the training dataset optimally. This approach
helps eliminate interference from certain lan-
guages on the target language and avoids the
curse of multilingualism.

3.2 PLM Encoder
Through a simple test and comparative analy-
sis of different multilingual pre-training models,
we found that XLM -Rbase outperforms mBERT.
XLM -Rbase is a cross-lingual pre-training model
based on the BERT architecture, an improvement
and extension of the original XLM model. The
goal of XLM -Rbase is to enhance the performance
and effectiveness of multilingual text processing.
XLM -Rbase utilizes larger-scale pre-training data
and more sophisticated training methods to en-
hance the model’s representation capabilities. It
undergoes deep learning on a large amount of un-
supervised data using RoBERT (Liu et al., 2019)
technology. This enables XLM -Rbase to better un-
derstand and capture the semantic and grammatical
features between different languages. Compared
to the original XLM, XLM -Rbase has made sev-
eral improvements. Firstly, it introduces a dynamic
masking mechanism that allows the model to better
perceive contextual information. Secondly, XLM -
Rbase emphasizes cross-lingual consistency learn-
ing through adversarial training, enabling better
alignment and sharing of model parameters. This
enables XLM -Rbase to provide more accurate rep-
resentations of texts in cross-lingual tasks. Com-
pared to mBERT, XLM -Rbase employs larger-
scale pre-training data, covers more languages, and
incorporates improvements through RoBERTa tech-
nology. This enables XLM -Rbase to better learn
and capture the semantic and grammatical features
between different languages, thereby enhancing
the model’s representation capabilities and perfor-
mance.

3.3 Whitening Module
Due to the existence of anisotropy among the vec-
tors obtained from the initial encoding by XLM -
Rbase, cosine similarity cannot accurately measure
the semantic similarity between sentences. There-
fore, we chose to use whitening to map the origi-
nal vector space to an isotropic space, where the
vectors are transformed into vectors in a standard
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orthogonal bases. The principle is as follows:
Suppose we have a set of sentence vectors S =

{s1, s2, . . . , sn}, the set of vectors can be trans-
formed into a set of vectors with isotropy (i.e.,
zero mean and a covariance matrix of the iden-
tity matrix) through the following transformation
S̃ = {s̃1, s̃2, . . . , s̃n}.

s̃i = (xi − µ)W (1)

If we want to make the set S̃ have a zero mean, we
need to:

µ =
1

n

n∑

i=1

si (2)

The next step is to calculate W. The covariance
matrix of S:

Σ =
1

n

n∑

i=1

(si − µ)⊤(si − µ) (3)

The covariance matrix of S̃:

Σ̃ = W⊤ΣW (4)

If we want to transform Σ̃ into the identity matrix
I , we need to:

Σ̃ = W⊤ΣW = I (5)

Then:

Σ = (W⊤)−1W−1 = (W−1)
⊤
W−1 (6)

Since Σ is a positive definite symmetric matrix as
the covariance matrix, it can be decomposed using
Singular Value Decomposition (SVD), yielding:

Σ = UΛU⊤ (7)

By combining equations (6) and (7), we obtain:

(W−1)
⊤
W−1 = UΛU⊤ = U

√
Λ
√
ΛU⊤ (8)

Then:

(W−1)
⊤
W−1 = (

√
ΛU⊤)⊤

√
ΛU⊤ (9)

Therefore, we can obtain W−1 =
√
ΛU, and fi-

nally obtain W as follows:

W = U
√
Λ−1 (10)

3.4 Data Filtering

Our experiments have shown that when selecting
training data for the target language, using a mix-
ture of multiple languages often yields better results
than using a single language. The authors of the
XLM -Rbase paper mentioned that incorporating
more languages improves the cross-lingual perfor-
mance of low-resource languages up to a certain
point. Beyond that point, the overall performance
of both monolingual and cross-lingual benchmarks
starts to decline. Additionally, we believe that there
is interdependence between languages. For exam-
ple, if including text from language A in training
set to compute whitening parameters leads to a de-
crease in the prediction performance for language
B, we expect that the opposite would hold true as
well.

Therefore, inspired by this insight, we used the
text in the target language as the dataset and indi-
vidually tested the labeled training data provided
in track A for different languages. For example, if
the target language is identified by T , we use the
text of T for whitening, and test the performance
on language TestA, TestB , TestC , TestD,... one
by one. If the prediction performance of TestA
decreases after using T compared to not using
T (measured by the Spearman correlation (Myers
and Sirois, 2004) between the gold labels and pre-
dicted labels obtained using language TestA), then
TestA is excluded from target language’s training
set.

In the case of the Spanish, using the training set
without data filtering (1,000 each of all data except
Spanish) resulted in a final spearman coefficient
of 0.6375; using the training set with data filter-
ing (1000 each of kin and ind) resulted in a final
spearman coefficient of 0.6886. Although the train-
ing data for about ten languages were reduced, the
results were are significantly improved.

4 Experimental Setup

We use the 12 labeled training data from (Ousid-
houm et al., 2024a) as training data and the test
data from track C as test data. We observe that the
amount of data for each language is concentrated
around 1,000, so we take 1,000 as the boundary,
use oversampling to make up for less than 1,000,
and use randomization to take out 1,000 for more
than 1,000 to ensure that sentence pairs of different
similarities are involved. In finding the training set
combinations for the target languages, we compute
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(a) without whitening (b) with whitening

Figure 2: The results of model without whitening and with whitening.

the µ and W of whitening using the text data of the
target languages in track C. We predict the training
data one by one for each language, and compute the
spearman coefficients using the gold labels and the
predicted labels of the training data, and compare
the results with the data without any whitening (i.e.,
the prediction result of the base model) to evaluate
whether the target language enhances a certain lan-
guage in the training data or not, and if it does not,
it is excluded from the train data. Eventually, the
remaining language data is used as a training set to
predict the target language.

The hyperparameters are set as follows: we
choose to freeze the pretrained model XLM -Rbase

while setting the topk parameter of whitening to
256. The rubric we used was the spearman coeffi-
cient, calculated using the methodology provided
by the competition officials.

5 Results

The official competition used the spearman coeffi-
cients to evaluate the results, and Table 1 gives the
results of the spearman coefficients for both Indone-
sian (ind) and Spanish (esp) languages throughout
the experiment. There is a big difference in the
multilingual ability of different model bases. We
chose XLM -Rbase, which performs better, and we
can see that the overall results are improved after
using the whitening module to transform the vector
space; XLM -Rbase with whitening is better than
baseline, and we got a good ranking in track C of
SemEval-2024 task 1, in which we ranked second
in esp and third in ind.

As can be seen from Table 1, the whitening mod-
ule improves the STR task more significantly,the

ind-test esp-test
Baseline 0.4700 0.6200
mBERT 0.4390 0.5971
XLM -Rbase 0.4390 0.5907
XLM -Rlarge 0.4267 0.6003
mBERT-whitening 0.4471 0.6411
XLM -Rbase-whitening 0.4746 0.6886
XLM -Rlarge-whitening 0.4845 0.6648

Table 1: The spearman coefficient of different models
and baseline.

baseline is given by (Ousidhoum et al., 2024a). In
order to further verify whether whitening works,
we counted the cosine similarity distribution statis-
tics of the data without whitening processing and af-
ter whitening. Figure 2 gives two cosine similarity
statistics. The left side is the cosine similarity statis-
tics without whitening. The cosine similarity of all
utterance pairs is concentrated between 0.9 and
1.0, indicating that the vector space is anisotropic.
In contrast, after adding whitening, the whole dis-
tribution tends to be normal, which indicates that
whitening plays a role in mapping the vectors to an
isotropic space, amplifying the differences between
statements.

6 Conclusion

We use XLM -Rbase with whitening and propose
a dataset filtering method that exploits the posi-
tive correlation of linguistic interactions, achieving
good rankings in SemEval-2024 task 1 track C. We
verifies that whitening performs well on utterance
characterization as well as STR task. Besides, the
proposed dataset filtering method is more efficient
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and can alleviate the multilingual curse problem in
cross-language problems to some extent.

In the future, we will further study this positive
correlation of language interactions, and we hope
that this correlation can become more detailed, not
only in terms of inter-language correlations but also
in terms of the domain of the text. We also hope
that this correlation can be better utilized in dataset
preprocessing, not only to eliminate poorly per-
forming languages but to further improve the com-
bination of datasets that can be directly selected to
correspond to the optimal solution.
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