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Abstract

With the rise of Al-based text generators, the
need for effective detection mechanisms has
become paramount. This paper presents new
techniques for building robust models and opti-
mizing training aspects for identifying synthet-
ically produced texts across multiple genera-
tors and domains. The study, divided into bi-
nary and multilabel classification tasks, avoids
overfitting through strategic training data limi-
tation. A key innovation is the incorporation of
multimodal models that blend numerical text
features with conventional NLP approaches.
The work also delves into optimizing ensemble
model combinations via various voting meth-
ods, focusing on accuracy as the official metric.
The optimized ensemble strategy demonstrates
significant efficacy in both subtasks, highlight-
ing the potential of multimodal and ensemble
methods in enhancing the robustness of detec-
tion systems against emerging text generators.
This strategy was applied to subtask A, mono-
lingual classification, ranking 47th with an ac-
curacy of 0.8079, and subtask B, multilabel
classification, ranking 18th with an accuracy of
0.789.

1 Introduction

In the era of digital communication, Al-based text
generators have become increasingly sophisticated,
necessitating advanced detection methods to dif-
ferentiate between human and machine-generated
content (Radford et al., 2019; Brown et al., 2020).
This paper addresses the challenge within the scope
of English language texts, emphasizing the impor-
tance of reliable detection mechanisms in main-
taining the integrity of digital discourse. The task
at hand is crucial for various applications, includ-
ing content moderation, misinformation prevention,
and ensuring the authenticity of digital communi-
cation.

The core strategy of this system lies in its ro-
bustness and the optimization of model training.

By limiting the size of the training dataset, the ap-
proach prevents models from overfitting to specific
text generators, thereby enhancing their generaliz-
ability to novel content. Furthermore, the system
leverages multimodal models that integrate tradi-
tional NLP techniques with numerical text features,
such as lexical diversity and sentence structure,
to enrich the detection capabilities. This is com-
plemented by a rigorous exploration of ensemble
methods and voting mechanisms to optimize model
performance. Specifically, our conception of mul-
timodal entails the strategic fusion of traditional,
fine-tuned language models like RoOBERTa with
extracted numerical values from the text, such as
number of grammatical errors and average sentence
length, thereby enriching the language models with
quantifiable text insights to enhance detection pre-
cision.
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Figure 1: Comparison of Original vs Predicted Label
Distribution Subtask B

Participation in this task led to the system rank-
ing 47th in the monolingual subtask A with an ac-
curacy of 0.8079 and 18th in the multilabel subtask
B with an accuracy of 0.789 (Wang et al., 2024).
These outcomes affirm the system’s robustness in
handling diverse generative models. However, the
primary challenge encountered was distinguishing
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between texts produced by similar generators. The
system struggled to consistently differentiate be-
tween certain generators, often misattributing texts
to one over another when faced with stylistically
comparable outputs. This difficulty in discerning
subtle variations between generator styles points
to the need for further refinement in the detection
algorithm, suggesting an area for future research
to enhance the sensitivity and specificity of the
model. As shown in Figure 1, the double bar graph
compares the original label distribution and the pre-
dicted label distribution. The labels represent the
model that generated each text of the samples, be-
ing 0 human, 1 chatGPT, 2 cohere, 3 davinci, 4
bloomz and 5 dolly.

2 Background

The task of detecting machine-generated text has
garnered significant attention due to the rapid ad-
vancement and widespread use of Al-based text
generators. The input for this task consists of tex-
tual content, with the output being a classification
decision indicating whether the text is human or
machine-generated in subtask A and which genera-
tor created the text in subtask B.

For this study, the dataset comprised English
texts from diverse sources, including Wikipedia
(March 2022 version), WikiHow, Reddit (ELIS5),
arXiv, and PeerRead (Koupaee and Wang, 2018;
Kang et al., 2018). The machine-generated
texts were produced using leading multilingual
Large Language Models (LLMs) such as ChatGPT,
textdavinci-003, LLaMa, FlanT5, Cohere, Dolly-
v2, and BLOOMz. These models were prompted
to create content resembling the human-written
texts from the mentioned sources, ranging from
Wikipedia articles to peer reviews and news briefs,
ensuring a rich variety of genres and styles within
the dataset. This richly varied dataset forms the
foundation of the analysis, drawing on the compre-
hensive compilation of machine-generated texts as
detailed in the work by Wang et al. (Wang et al.,
2023). As shown in Figure 2, the training data dis-
tribution illustrates the sources and quantity of data
used in the study.

This work focuses solely on the English portion
of the dataset, engaging in the monolingual clas-
sification track. The choice of English allows for
a concentrated examination of the nuances in de-
tecting machine-generated texts in a language with
extensive generative model research and develop-

ment. The task setup and dataset composition are
pivotal in understanding the challenges and innova-
tions presented in this study.

This work builds upon foundational efforts in
the field, such as "Machine-Generated Text De-
tection using Deep Learning" by Raghav Gag-
gar et al. (Gaggar et al., 2023), which empha-
sizes deep learning approaches for distinguish-
ing Al-generated content. Gaggar’s methodol-
ogy leverages traditional neural network architec-
tures, providing a critical basis for understanding
how machine learning can be applied to text de-
tection challenges. Similarly, "On the Possibili-
ties of Al-Generated Text Detection" by Souradip
Chakraborty et al. (Chakraborty et al., 2023) con-
tributes to the discourse by establishing theoretical
frameworks based on information theory, highlight-
ing the nuanced differences between human and
Al-generated texts and the implications for detec-
tion mechanisms. This paper underscores the im-
portance of sample complexity and the robustness
of detection systems to new and evolving text gen-
erators. "Ghostbuster: Detecting Text Ghostwritten
by Large Language Models" by Vivek Verma et
al. (Verma et al., 2023) methodology employs a
series of weaker language models to compute to-
ken generation probabilities, offers a specialized
perspective on model-agnostic detection. In con-
trast, this work extends the discourse by incorporat-
ing numerical text features alongside conventional
NLP techniques within a multimodal framework,
providing a more holistic analysis of text character-
istics. This integration allows for a more nuanced
distinction between human and Al-generated texts,
addressing the challenges of style and generator
diversity that single-model systems may struggle
with.

3 System Overview

The system is designed to detect machine-
generated text, combining an ensemble of
finely-tuned transformer models such as RoBERTa
(’FacebookAl/roberta-base’) (Liu et al., 2019),
ELECTRA (’google/electra-base-discriminator’)
(Clark et al., 2020), ALBERT (albert/albert-base-
v2) (Lan et al., 2020), roberta-base-openai-detector
(’roberta-base-openai-detector’), chatgpt-detector-
roberta (’Hello-SimpleAl/chatgpt-detector-
roberta’) and BERT (’bert-base-uncased’) (Devlin
et al., 2018) with custom adaptations of ROBERTa
including a one-vs-all system, that independently
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Source/ Language Total Parallel Data

Domain Human | Human Davinci003 ChatGPT Cohere Dolly-v2 BLOOMz Total
Wikipedia English 6,458,670 | 3,000 3,000 2,995 2,336 2,702 3,000 17,033
Reddit ELI5 English 558,669 | 3,000 3,000 3,000 3,000 3,000 3,000 18,000
WikiHow English 31,102 | 3,000 3,000 3,000 3,000 3,000 3,000 18,000
PeerRead English 5,798 | 5,798 2,344 2,344 2344 2344 2,344 17,518
arXiv abstract English 2,219,423 | 3,000 3,000 3,000 3,000 3,000 3,000 18,000

Figure 2: Training Data Distribution

predicts each label’s presence, treating each label
as a separate binary classification problem, and
multimodal models . A Random Forest classifier
is used to analyze numerical text features. This
ensemble integrates outputs from each model by
aggregating predictions and confidence levels
through various voting mechanisms. The process
identifies the best combination of models and
voting method, optimizing the ensemble to achieve
the highest detection accuracy and robustness.

3.1 Training Sample Optimization for
robustness
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Figure 3: Accuracy by Training Sample Size

To optimize training samples for robustness, the
number of samples used to train each model were
systematically varied, aiming to find an optimal
size that enhances robustness to new text genera-
tors while preventing overfitting. For instance, in
the case of the ALBERT model, training began
with 500 samples, then the model was reset and
trained again with increasing sizes: 1000, 2000,
5000 samples, and so on. This process revealed
that smaller sample sizes increased the model’s ro-
bustness. It was determined that the ideal average
number of samples for binary classification was
10,000, whereas multilabel classification required a
larger average of 48,000 samples to maintain high
predictive accuracy without compromising robust-
ness to unseen generators in the evaluation dataset.

As illustrated in Figure 3, the graph shows the re-
lationship between model accuracy and training
sample size.

3.2 Numerical Features
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Figure 4: Human vs Machine Grammar Errors Density
Plot

In addition to leveraging powerful transformer
models, the system uniquely incorporates the ex-
traction of numerical features from text to enhance
its analytical depth. These features are: qord count,
sentence count, lexical diversity, average sentence
length, average word length, lexical density, flesch
reading ease, gunning fog index, and grammatical
errors in english, and they offer critical insights
into the stylistic and structural elements of the text,
which might be indicative of its origin. These fea-
tures were obtained using methods from NLP li-
braries such as nltk. By analyzing these quantita-
tive aspects, the system can identify subtle patterns
and discrepancies that differentiate human-written
texts from those generated by Al models, even
when the linguistic content is convincingly human-
like. This approach not only enriches the model’s
input but also helps in capturing the essence of
text generation techniques used by various Al mod-
els, thereby contributing to a more robust detection
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mechanism. The system’s primary aim with nu-
merical features was to supplement the multimodal
model with additional information. For the numeri-
cal values, a Random Forest classifier was chosen
as it is an easy out-of-the-box solution to be used
with numerical values (Louppe, 2014). However,
this aspect was not the main focus, and further ex-
perimentation was not pursued. Future work could
explore the use of deep learning and other clas-
sification models like XGBoost to analyze these
numerical features. As depicted in Figure 4, the
density plot illustrates the distribution of gram-
mar errors between human-written and machine-
generated texts.

3.3 Multimodal Models

The system’s architecture is notably enhanced by
the inclusion of multimodal models, which not only
utilize the capabilities of traditional NLP models
like RoBERTa but also integrate numerical text
features for a more comprehensive analysis. This
approach, applicable to any large language model,
involves extending the chosen LLM’s architecture
with a custom classification head that processes
both the LLM’s output and additional numerical
features from the text. For this study, RoBERTa
was selected due to its role in establishing the base-
line performance, allowing for a direct comparison
of the improvements attributed solely to the mul-
timodal functionality. Two different multimodal
models were used. The extended version includes
all the numerical features extracted from the text,
which performs better in binary classification but
not as well in multimodal classification. The sec-
ond model uses only the features that show a clear
difference between texts written by humans and
those generated by machines. This model does
better in multilabel classification but doesn’t do as
well in binary classification. The numerical fea-
tures used in the multimodal model are word count,
average sentence length, average word length, gun-
ning fog index and grammatical errors. The ex-
tended version also includes sentence count, lexical
diversity, lexical density and flesch reading ease.
It is also worth mentioning that the performance
between multimodal versions is slight.

3.4 Optimization of Ensembles

The optimization of ensembles through various
voting mechanisms stands as a testament to the
system’s strategic design. The system tested ev-
ery combination of models to make sure each one

Model Accuracy Comparison Binary

Features Model (Random Forest) (Ensemble) 0.69
Hello-SimpleAl/chatgpt-detector-roberta 0.73
distilbert-base-uncased 0.75
google/electra-base-discriminator (Ensemble) 0.78
E bert-base-uncased 0.78
§ roberta-base (multimodal) (Ensemble) 0.83
roberta-base (Ensemble) 0.84
roberta-base (multimodal extended) (Ensemble) 0.85
roberta-base-openai-detector (Ensemble) 0.87
Ensemble Model 0.89
0.0 0.2 0.4 0.6 0.8

Accuracy

Figure 5: Substask A Models Accuracy in Training
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Figure 6: Subtask B Models Accuracy in Training

added value to the ensemble and did not take away
any useful information. Specifically, models are
chosen for their complementary strengths and di-
verse natures, ensuring a broad coverage of the
linguistic and stylistic features pertinent to text
generation detection. It used the predictions and
confidence scores from all included models along
with the correct labels. Then, it applied different
voting methods to see how they compared to the
real labels. This way, it found the best mix of mod-
els and the best voting method. The voting methods
tested included majority voting, majority score tie
break voting (confidence based), rank voting, borda
count voting and soft voting (Brownlee, 2020). In
the binary classification task, a larger variety of
models is employed to capture the nuanced differ-
ences between human and machine-generated texts,
whereas for the multilabel task, only two models
are needed, reflecting the different demands of each
subtask. Notably, multimodal models, recognized
for their high accuracy, are consistently selected
across both subtasks, reinforcing the ensemble’s
performance. The chosen strategy ensures that the
ensemble’s collective judgment is both robust and
sensitive to the nuances of text generation, signifi-
cantly enhancing the system’s overall accuracy and
reliability.

As illustrated in Figure 5, the bar graph com-
pares the accuracy of individual binary classifica-
tion models, providing insights into their perfor-
mance. The final ensemble model accuracy is also
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included. Similarly, Figure 6 presents a compari-
son of the accuracy of individual multilabel classi-
fication models. The figures illustrate the models
that were ultimately chosen to be included in the
ensemble using majority voting.

4 Experimental Setup

In this study, the optimization of the training sam-
ple size was a critical preliminary step before pro-
ceeding with the standard division of the dataset for
model training and evaluation. The objective was
to determine the most effective training sample size
that would enable the models to learn sufficiently
from the data without overfitting. This involved
iterative testing of various sample sizes to identify
the optimal balance that maximized model perfor-
mance on unseen data. Once the ideal training sam-
ple size was established, it was then split following
an 80-20 ratio, with 80% of the samples used for
training and the remaining 20% for evaluation. The
dev dataset served as the test set throughout the
experiments, ensuring a consistent benchmark for
evaluating the generalization ability of the models
across different configurations and optimizations.

Fine-tuning the models was conducted with care-
ful consideration of hyperparameters that directly
influence model performance. The hyperparam-
eters were determined by experimenting with a
range of values and choosing those that led to bet-
ter performance metrics. This approach aimed to
enhance the model’s ability to be robust to new
text generators that were present in the evaluation
dataset but not in the training dataset. The learn-
ing rate was set to 2e-5, a value chosen to ensure
steady yet effective model updates without caus-
ing large fluctuations in model weights that could
hinder learning. The batch size for both training
and evaluation phases was maintained at 16, bal-
ancing computational efficiency with the need for
granularity in gradient updates. The models under-
went training for 3 epochs, a decision underpinned
by the desire to minimize overfitting while allow-
ing sufficient iterations for the models to converge
to an optimal state. Weight decay was applied at
0.01 to regularize the model and further mitigate
overfitting. The training process incorporated an
epoch-based evaluation and save strategy, enabling
continuous monitoring of model performance and
retention of the best-performing model state at each
epoch’s conclusion, as determined by evaluation
metrics.
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Figure 7: Experimental Setup for Training

The experimental framework utilized PyTorch
for implementing the transformer-based models,
specifically leveraging the RoBERTa-base model
from the Hugging Face Transformers library for
both the multimodal models and the one-vs-all clas-
sification approach in the multilabel subtask. For
numerical feature extraction from text, the NLTK
library was employed, enriching the model inputs
with linguistic features that provide additional con-
text and depth to the analysis. The numerical
model, built using a Random Forest classifier, was
optimized using the scikit-learn library, demon-
strating the integration of traditional machine learn-
ing techniques with advanced NLP models for en-
hanced predictive performance. As depicted in
Figure 7, the diagram illustrates the experimen-
tal setup for training, showcasing the steps and
pipelines involved in the process.

5 Results

The system demonstrated commendable perfor-
mance in the task, adhering to the official evalua-
tion metric of accuracy. In Subtask A (monolingual
classification), the system attained an accuracy of
0.8079, placing it at the 47th position in the com-
petition. This ranking underscores the system’s
capability to effectively distinguish between hu-
man and machine-generated texts in a monolingual
setting. For Subtask B (multilabel classification),
the system achieved an accuracy of 0.789, rank-
ing 18th out of the total number of participants.
This notable performance highlights the system’s
robustness and effectiveness in handling more com-
plex multilabel scenarios, despite the inherently
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Models Accuracy F1  Precision Recall AUC
RoBERTa-base-openai-detector 0.87 0.86 0.94 0.78  0.87
RoBERTa-base 0.84 0.84 0.83 0.86 0.84
bert-base-uncased 0.78 0.78 0.78 0.79  0.78
google/electra-base-discriminator 0.78 0.78 0.77 0.79  0.78
distilbert-base-uncased 0.75 0.74 0.83 0.62 0.75
RoBERTa-base (baseline) 0.74 - - - -
Hello-SimpleAl/chatgpt-detector-RoBERTa 0.73 0.72 0.91 052 0.73
Features Model (Random Forest) 0.69 0.69 0.71 0.64 0.69
Multimodal Models
RoBERTa-base (multimodal extended) 0.85 0.85 0.86 0.83 0.85
RoBERTa-base (multimodal) 0.83 0.83 0.88 0.77  0.83
Ensemble model (submission) 0.89 0.89 0.87 0.91 0.89

Table 1: Results obtained for Subtask A

Models Accuracy F1  Precision Recall
RoBERTa-base 0.75 0.72 0.73 0.75
RoBERTa-base (baseline) 0.75 - - -
RoBERTa-base (one vs all) 0.73 0.7 0.71 0.73
google/electra-base-discriminator 0.68 0.65 0.68 0.68
albert-base-v2 0.67 0.65 0.66 0.67
bert-base-uncased 0.62 0.62 0.62 0.66
distilbert-base-uncased 0.65 0.63 0.66 0.65
Multimodal Models
RoBERTa-base (multimodal) 0.76 0.72 0.73 0.76
RoBERTa-base (multimodal extended) 0.74 0.71 0.73 0.74
Ensemble Model (submission) 0.77 0.73 0.73 0.77

Table 2: Results obtained for Subtask B

challenging nature of distinguishing between mul-
tiple generators. These metrics were obtained after
applying the ensemble model for each task.

In a comprehensive evaluation using the evalua-
tion dataset, tables comparing model performances
shed light on the system’s effectiveness. For Sub-
task A, comparisons between various models in
binary classification, and specifically between the
RoBERTa-base model and its multimodal exten-
sions, reveal the somewhat superior performance
of the multimodal models. These models, incorpo-
rating key numerical features, mostly outperformed
other fine tuned classificators. A similar trend
was observed in Subtask B’s multilabel classifica-
tion, where multimodal models again demonstrated
some enhanced accuracy. This data, while not from
the final test set, underscores the potential of multi-
modal approaches in effectively distinguishing be-
tween human and machine-generated texts across
different classification scenarios.

Table 1 provides a comprehensive metrics com-

parison for binary classification including multi-
modal models. It highlights the performance of
fine-tuned LLMs for binary classification, includ-
ing a Features only model built with a Random
Forest classifier, and the performance evolution
from base model RoBERTa-base to advanced mul-
timodal models that integrate numerical features.
The ensemble model is also included in this table,
showcasing its role in the collective modeling ap-
proach. Table 2 provides a similar comparison but
for multilabel classification scenarios.

5.1 Quantitative Analysis

A series of studies and comparative analyses were
conducted to dissect the impact of various design
decisions, such as the optimization of training sam-
ple sizes, the integration of numerical features, and
the selection of models within the ensemble. The
dev dataset served as the primary test bed for these
analyses, ensuring consistency in evaluating the
system’s modifications and optimizations.
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- A notable finding was the system’s increased
performance when numerical features were inte-
grated, suggesting the significant value these fea-
tures add to understanding text beyond mere se-
mantic analysis.

- The ensemble’s optimized combination of mod-
els, including transformer-based and numerical
models, was pivotal in enhancing accuracy. The
binary classification required a more diverse set of
models to capture the nuances of different text gen-
erators, whereas the multilabel task achieved high
performance with just two, indicating the strategic
importance of model selection based on the task’s
nature.

5.2 Error Analysis

The examination of errors, particularly for Sub-
task B, shed light on the complexity of multilabel
classification. The system was tasked with iden-
tifying multiple generator labels within the same
text, a challenge compounded by the nuanced dif-
ferences between generators’ styles. As depicted
in Figure 8, the confusion matrix heatmap provides
insights into the errors made by the system in mul-
tilabel classification.
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Figure 8: Confusion Matrix Heatmap Multilabel Sub-
task B

6 Conclusions

This study showcased innovative techniques aimed
at enhancing model robustness in the task of detect-
ing machine-generated text, notably through the
careful optimization of training sample size, the
strategic assembly of diverse models into optimized
ensembles, and the deployment of multimodal mod-

els. These methodologies collectively facilitated
a system that adeptly navigates the challenges of
monolingual and multilabel classifications.

The exploration of training sample sizes revealed
a delicate balance between sufficient model training
and the avoidance of overfitting, highlighting the
importance of dataset optimization. The ensemble
model’s success, derived from combining models
with varying strengths, emphasizes the value of
diversity in model architecture for robust perfor-
mance. Moreover, the integration of multimodal
models, blending traditional NLP techniques with
numerical text features, showcased a sophisticated
approach to capturing the nuanced distinctions be-
tween human and machine-generated texts.

Looking ahead, the focus will be on refining
these novel techniques to further bolster model ro-
bustness. Future work will explore more granular
adjustments to training sample sizes and investigate
the potential of dynamic ensemble configurations
responsive to the nature of the text being analyzed.
Additionally, the extension of multimodal model
frameworks to incorporate emerging linguistic and
semantic features presents a promising avenue for
enhancing detection capabilities. Applying these
advanced methodologies to other areas of model
building could advance the landscape of machine
learning, offering a blueprint for developing sys-
tems that are not only robust but also universally ap-
plicable across various NLP tasks and challenges.
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