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Abstract

We describe the University of Amsterdam In-
telligent Data Engineering Lab team’s entry for
the SemEval-2024 Task 6 competition. The
SHROOM-INDElab system builds on previ-
ous work on using prompt programming and
in-context learning with large language mod-
els (LLMs) to build classifiers for hallucina-
tion detection, and extends that work through
the incorporation of context-specific definition
of task, role, and target concept, and auto-
mated generation of examples for use in a few-
shot prompting approach. The resulting sys-
tem achieved fourth-best and sixth-best perfor-
mance in the model-agnostic track and model-
aware tracks for Task 6, respectively, and eval-
uation using the validation sets showed that the
system’s classification decisions were consis-
tent with those of the crowd-sourced human
labellers. We further found that a zero-shot
approach provided better accuracy than a few-
shot approach using automatically generated
examples. Code for the system described in
this paper is available on Github1.

1 Introduction

Prompt engineering of large language models
(LLMs) (Liu et al., 2023) has recently emerged
as a viable approach to the automation of a wide
range of natural language processing tasks. Recent
work (Allen, 2023) has focused on the development
of zero-shot chain-of-thought (Wei et al., 2022; Ko-
jima et al., 2022) classifiers, where hallucination
in generated rationales is a concern. Hallucination
detection (Ji et al., 2023; Huang et al., 2023) is
a way to determine whether the outputs of such
systems are sensible, factually correct and faithful
to the provided input. The SemEval-2024 Task 6
(Mickus et al., 2024) allows us to evaluate whether
and how applying techniques we have developed in
the above mentioned work and with related work

1https://www.github.com/bradleypallen/shroom/

on knowledge extraction (Polat et al., 2024) us-
ing zero- and few-shot classification can provide
a means of addressing this concern. Previous sys-
tems that perform prompt engineering of LLMs
as a means to implement hallucination detection
include SelfCheckGPT (Manakul et al., 2023) and
ChainPoll (Friel and Sanyal, 2023).

2 Data and Task

The challenge provides a dataset consisting of data
points containing: the specific task that a given
language model is to perform; an input given to the
language model on which to perform that task; a
target that is an example of an acceptable output,
and the output produced by the language model.
Table 1 shows an example of such a data point.

Task Definition Modeling
Input text "The Dutch would sometimes <define> inundate

</define> the land to hinder the Spanish army ."
Target text "To cover with large amounts of water; to flood."
Generated text "(transitive) To fill with water."

Table 1: Example data point from the unlabeled training
dataset for the model-agnostic task.

Hallucination detection is framed as a binary
classification task, where the classifier assigns ei-
ther ’Hallucination’ or ’Not Hallucination’ labels
with associated probability estimates to data points.
Classifier performance is evaluated by comparing
these assignments and probabilities to human judg-
ments and their probability estimates, using accu-
racy and Spearman’s correlation coefficient (ρ) for
assessment. Around 200 crowd-sourced human la-
bellers each labeled about 20 data points. The com-
petition features two tracks: model-agnostic, which
uses the basic setup, and model-aware, adding a
field for the Hugging Face model identifier of the
model generating the text for each data point. Each
track provides an unlabeled training dataset and
labeled validation and test datasets.
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Figure 1: SHROOM-INDElab system workflow.

3 Approach

Our submission for the SHROOM task is a sys-
tem that defines classifiers for hallucination detec-
tion using prompt engineering of an LLM. Figure
1 shows the two-stage workflow used to produce
the classifier and evaluate it using the SHROOM
datasets.

In Stage 1, we use in-context learning where we
ask the LLM to perform the classification accord-
ing to provided task, role, and concept definition
in a zero-shot manner without providing any exam-
ples. These classified data points provide examples
for a few-shot classifier used in Stage 2. We now
proceed to describe the query design and process-
ing steps in the workflow.

3.1 Zero- and few-shot query design

Figure 2 provides an example of the query used to
prompt an LLM to produce a classification. The
basic prompt template consists of instructions on
how to evaluate the generated text according to
a hallucination concept definition to answer the
question if the generated text is a hallucination
or not. Specific guidance is provided such that
the form of the answer is in the labels needed to
compare directly to the label test data.

The task associated with the data point deter-
mines the context for generating both the zero shot
and the few shot query based on the prompt tem-
plate, as illustrated in Figure 2. For the zero-shot
query, no examples are included.

The elements involved in instantiating the tem-
plate given a data point include the task definition
performed by another LLM to produce the gen-
erated text, a role definition that we assign the

classifier to perform, and the concept definition
that frames hallucination phenomena and criteria
to consider an output as hallucination. The use of
role play with LLMs is described by (Shanahan
et al., 2023) and its use in the context of zero-shot
reasoning is described in (Kong et al., 2023). The
role definition describes a persona that the LLM
is instructed to assume in the context of making a
classification decision. For example, for the Defini-
tion Modeling task, we instruct the LLM to assume
the persona of a lexicographer. The task and role
definitions for each task are shown in Table 2. We
also provide a single concept definition for the no-
tion of hallucination that is held constant across all
of the tasks.

Task Task definition Role definition
Definition
Modeling
(DM)

The given task is Definition Modeling,
meaning that the goal of the language
model is to generate a definition for a
specific term in the input text.

You are a lexicographer concerned that
the generated text accurately captures
the meaning of the term between the
’<define>’ and ’</define>’ delimiters in
the input text.

Paraphrase
Generation
(PG)

The given task is Paraphrase Generation,
meaning that the goal of the language
model is to generate a paraphrase of the
input text.

You are an author concerned that the
generated text is an accurate paraphrase
that does not distort the meaning of the
input text.

Machine
Translation
(MT)

The given task is Machine Translation,
meaning that the goal of the language
model is to generate a natural language
translation of the input text.

You are a translator concerned that the
generated text is a good and accurate
translation of the input text.

Text Simplifi-
cation (TS)

The given task is Text Simplification,
meaning that the goal of the language
model is to generate a simplified version
of the input text.

You are an editor concerned that the gen-
erated text is short, simple, and has the
same meaning as the input text.

Table 2: Task and role definitions used for in-context
learning.

3.2 Temperature sampling and majority
voting

Part of the task involves producing an estimate of
the probability that a data point exhibits halluci-
nation. In the SHROOM-INDELab system, the
estimated probability is calculated by performing
temperature sampling (Ackley et al., 1985), query-
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A language model has generated an output from a given input for a specific task. 
The given task is Definition Modeling, meaning that the goal of the language model is to generate a definition for a specific term in the input 
text.
You are a lexicographer concerned that the generated text accurately captures the meaning of the term between the '<define>' and
'</define>' delimiters in the input text.
You will be given three inputs: input text, target text, and generated text. 
You are asked to evaluate the generated text looking at the input text and the target text. 
Then, you need to answer the question: is the generated text a hallucination or not? 
A text contains a hallucination if and only if it contains any nonsensical or factually incorrect information, or contains any additional 
information that cannot be supported by either the input text or the target text.

Answer 'Hallucination' if the output is a hallucination, or 'Not Hallucination' if it is not a hallucination. Only answer 'Hallucination' or 'Not 
Hallucination'.
##
Input text: [ … ] Never could keep friends long , so I figured if I had a sister , I 'd at least have someone to be friends w ith , even if she was a 
crying <define> poop machine </define> for the first year . "
Target text: (informal, pejorative, or, humorous) An infant.
Generated text: (informal) A person who produces a large amount of poop.
Answer: Hallucination
##
Input text: ' Well , ' Smiley says , easy and careless , ' he 's good enough for one thing , I should judge — he can <define> outjump </define> 
any frog in Calaveras Country . '
Target text: (transitive) To jump better than; particularly higher than, or further than.
Generated text: (transitive) To jump higher than.
Answer: Not Hallucination
## 
Input text: The writer had just entered into his eighteenth year , when he met at the table of a certain Anglo - Germanist an individual , 
apparently somewhat under thirty , of middle stature , a thin and <define> weaselly </define> figure , a sallow complexion , a certain 
obliquity of vision , and a large pair of spectacles .
Target text: Resembling a weasel (in appearance). 
Generated text: Resembling or characteristic of a weasel.
Answer:

task definition

role definition

concept definition

selected examples

Figure 2: Example prompt for a Stage 2 classifier, given a Definition Modeling task data point from one of the
SHROOM datasets, and using 1 example per label.

ing the LLM multiple times to generate a sample
of classifications, and then dividing the number of
positive classifications (i.e., where the generated
label is ’Hallucination’) by the total number of clas-
sifications in the sample. Temperature sampling is
performed in producing both Stage 1 zero-shot and
Stage 2 few-shot classifications.

3.3 Example selection

In Stage 1, the algorithm processes an unlabeled
dataset to generate examples using a zero-shot
query. Following the Self-Adaptive Prompting ap-
proach described in (Wan et al., 2023a,b), for each
task type we sample 64 data points from the unla-
belled dataset, and then use a zero-shot query to
obtain a classification with estimated probability of
hallucination. This information is combined with
the data point to produce an example. We partition
the examples per task type into two pools, one with
positive examples where the label is ’Hallucina-
tion’ and the other with negative examples where
the label is ’Not Hallucination’.

The process used to select the examples to in-
clude in the prompt is shown in Algorithm 1. The
first example chosen from each pool is the one with
the maximum negative entropy of the classification
probability, as defined in Equation 1:

F0(p) = p ∗ log p+ (1− p) ∗ log (1− p) (1)

Algorithm 1 Select examples given a task and label
Require: P : generated examples for given task and label, K:

number of selections
Ensure: S: selected examples
1: S ← ∅
2: Pool← P
3: for k ← 0 to K − 1 do
4: if k == 0 then
5: sk ← argmax

p∈Pool
F0(p)

6: else
7: sk ← argmax

p∈Pool
F (p, S)

8: end if
9: S ← S ∪ {sk}

10: Pool← Pool \ {sk}
11: end for

For each remaining selection i ≤ K, the algo-
rithm selects the example that maximizes a trade-
off between the diversity of prompts and the con-
sistency of the majority voting result, as defined in
Equation 2:

F (p, S) = F0(p)− λ ·max
s∈S

(1− sim(ϕ(p), ϕ(s))) (2)

ϕ is calculated for a given data point by con-
catenating its data into a string and then using an
embedding model to produce a representation vec-
tor. This trade-off is quantified by subtracting a
weighted maximum cosine similarity of the embed-
dings from the negative entropy, with the weight λ
controlling the balance between diversity and con-
sistency. In all of our experiments, in keeping with
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(Wan et al., 2023b), λ is set to 0.2. The selected
examples for both labels are then serialized and
concatenated. This concatenated string is then used
to augment the zero-shot query prompt given the
task.

4 Experimental Setup and Results

The LLMs used in the evaluating the sys-
tem were from OpenAI (gpt-3.5-turbo,
gpt-4-0125-preview) and were invoked using
the OpenAI API with the LangChain Python
library. Stage 1 was performed once with K = 5
using gpt-4-0125-preview on 25 January 2024.
The embedding model used in the calculation of
ϕ was OpenAI text-embedding-ada-002. The
Stage 2 run for our final submission during the
evaluation period was conducted on 28 January
2024. Runs for the hyperparameter and ablation
study results reported below were conducted
between 17 February 2024 and 18 February 2024.
Approximately $500 USD in OpenAI API charges
were incurred during the above runs.

4.1 Classification performance

As shown in Table 3, using gpt-4-0125-preview
and gpt-3.5-turbo as LLMs our approach
showed a significant improvement in both accu-
racy and Spearman’s ρ over the baseline reported
for the model-agnostic and model-aware validation
sets.2

Our best-performing submission to the com-
petition used gpt-4-0125-preview as its LLM
with 1 example provided per label, 20 samples
for majority voting, and a temperature setting of
1.2. We compare it to the baseline system’s per-
formance on the test datasets together with that
reported for each of the first ranked teams in the
model-agnostic track (GroupCheckGPT) and the
model-aware track (HaRMoNEE). The SHROOM-
INDElab system ranked fourth and sixth in the
tracks, respectively.

The values of ρ can be interpreted as showing
a moderate to strong correlation between the es-
timated probability of hallucination provided by
the system and that provided by the majority vote
result of the human labellers.

2Although we submitted results for the model-aware track,
our implementation of the approach is model agnostic and
does not utilize the model field of the data point.

4.2 Hyperparameter study

The classifier has three hyperparameters; tempera-
ture, which is the parameter passed to the language
model to indicate the level of stochasticity asso-
ciated with its generation process; the number of
examples per label provided for in-context learning;
and the number of samples per query performed
and used to calculate the estimated probability as-
sociated with the classification of the data point.

We investigated the impact of varying the values
of the three hyperparameters of the classifier on the
classifier’s performance. We used gpt-3.5-turbo
to conduct this investigation, computing values of
accuracy and Spearman’s ρ by executing three dif-
ferent passes over the model-agnostic validation
dataset.

Figure 3: Classifier performance by temperature.

Figure 3 shows the best classifier accuracy is
obtained with a temperature between 0.5 and 1.0,
and that the best value for Spearman’s ρ is obtained
with a temperature between 0.5 and 1.5, given set-
tings of 1 example per label and 5 samples per
query.

Figure 4 shows that increasing the number of
examples for few-shot classification beyond one
per label led to an increase in accuracy with di-
minishing returns after 2 examples per label, but a
decrease in Spearman’s ρ, given settings of temper-
ature of 1.0 and 5 samples per query.

Figure 4: Classifier performance by examples per label.

Figure 5 shows that increasing the number of
samples per query led to an increase in both accu-
racy and Spearman’s ρ, given 1 example per label
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model-agnostic model-aware
Dataset System accuracy ρ accuracy ρ

Validation Baseline 0.649 (+0.000) 0.380 (+0.000) 0.707 (+0.000) 0.461 (+0.000)
SHROOM-INDElab (gpt-3.5-turbo) 0.773 (+0.124) 0.652 (+0.272) 0.764 (+0.057) 0.605 (+0.144)
SHROOM-INDElab (gpt-4-0125-preview) 0.814 (+0.165) 0.697 (+0.317) 0.772 (+0.065) 0.635 (+0.174)

Test Baseline 0.697 (+0.000) 0.403 (+0.000) 0.745 (+0.000) 0.488 (+0.000)
SHROOM-INDElab (gpt-4-0125-preview) 0.829 (+0.132) 0.652 (+0.249) 0.802 (+0.057) 0.605 (+0.117)
HaRMoNEE 0.814 (+0.117) 0.626 (+0.223) 0.813 (+0.068) 0.699 (+0.210)
GroupCheckGPT 0.847 (+0.150) 0.769 (+0.366) 0.806 (+0.061) 0.715 (+0.227)

Table 3: Classifier performance on SHROOM datasets. ρ = Spearman’s correlation coefficient.

and a temperature of 1.0.

Figure 5: Classifier performance by samples per query.

4.3 Ablation study

Figure 6 shows the results of an ablation study to
determine the contribution of the various elements
of the prompt provided to the language models. We
evaluated the contribution of each of the compo-
nents of the Stage 2 classifier prompt by removing
each in sequence, in the following order: the se-
lected examples, the task definition, the role defi-
nition, and finally the concept definition. The ab-
lation study was conducted using gpt-3.5-turbo,
with 1 example per label, 5 samples per query, and
a temperature of 1.0, again involving three different
passes over the model-agnostic validation dataset.

Figure 6: Ablation study using the model-agnostic vali-
dation dataset.

We interpret the results of the ablation study as
indicating that the use of examples led to poorer
accuracy but slightly better Spearman’s ρ, that the
contributions of the definitions of task and role

towards classifier performance were minimal, but
that the contribution of the definition of the concept
of hallucination was significant.

4.4 Level of agreement with human labellers

We also investigated the degree of inter-annotator
alignment exhibited with respect to the model-
agnostic data set. Based on the human labeling
data associated with each data point in the model-
agnostic validation data set, we obtained a Fleiss’
κ of 0.373, which can be interpreted as indicating a
fair level of agreement among the human labellers,
which in turn implies that the reliability of the hu-
man labeling might be reasonable, but is not highly
consistent or unanimous. Adding the classifier’s
labeling yields an increase in Fleiss’ κ to 0.405,
closer to a moderate level of agreement, which im-
plies that the classifier’s decisions are consistent
with those of the human labellers.

human consensus N accuracy κ ρ

low (2/3 split) 145 0.621 0.238 0.224
high (4/5 split) 171 0.854 0.701 0.734
unanimous 183 0.929 0.856 0.885
all 499 0.814 0.623 0.697

Table 4: Alignment between the system and human
labellers.

We then proceeded to investigate the relationship
between the degree of agreement between human
labellers and system performance. Table 4 shows
the level of agreement between the system and the
human labellers, as measured by taking subsets
of data points from the model-agnostic validation
dataset filtered by the three degrees of consistency
in human labeling and calculating the pairwise Co-
hen’s κ between the system’s labeling and the label
provided by taking the majority vote of the human
labellers. The results indicate that system agree-
ment with human labeling increases as the certainty
of the human labeling increases.
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5 Discussion and Conclusion

In summary, the SHROOM-INDElab system was
competitive with the other systems submitted for
evaluation, and system labeling was consistent with
that of human labellers.

The result in the ablation study that the exclusion
of selected examples led to better accuracy suggests
the need for further investigation with respect to
how the way in which examples are selected and
included in the classifier prompts impacts accuracy
to determine the cause of the problem. The re-
sult that the exclusion of an explicit definition of
hallucination leads to poorer accuracy and Spear-
man’s ρ suggests the utility of including intentional
definitions of concepts in prompts for LLM-based
classifiers (Allen, 2023).

Given the above results, we plan to investigate
the use of this approach to hallucination detection
in future work on the evaluation of natural language
rationale generation (Li et al., 2024) in the context
of zero- and few-shot chain-of-thought classifiers
for use in knowledge graph evaluation and refine-
ment (Allen et al., 2023).
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