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Abstract

This paper presents our system developed for
the SemEval-2024 Task 1: Semantic Textual
Relatedness for African and Asian Languages.
The shared task aims at measuring the se-
mantic textual relatedness between pairs of
sentences, with a focus on a range of under-
represented languages. In this work, we pro-
pose using machine translation for data aug-
mentation to address the low-resource chal-
lenge of limited training data. Moreover, we ap-
ply task-adaptive pre-training on unlabeled task
data to bridge the gap between pre-training and
task adaptation. For model training, we inves-
tigate both full fine-tuning and adapter-based
tuning, and adopt the adapter framework for
effective zero-shot cross-lingual transfer. We
achieve competitive results in the shared task:
our system performs the best among all ranked
teams in both subtask A (supervised learning)
and subtask C (cross-lingual transfer).1

1 Introduction

Semantic Textual Relatedness (STR) measures the
closeness of meaning between two linguistic units,
such as a pair of words or sentences (Budanitsky,
1999; Mohammad and Hirst, 2012). For exam-
ple, one can easily tell that “I like playing games”
is more semantically related to “The game is fun”
rather than “The weather is good”, which largely
depends on their lexical semantic relation and topic
consistency. Semantic Textual Similarity (STS),
a closely related concept, indicates whether two
units have a paraphrasing relation. The difference
between these two concepts is clarified in Abdalla
et al. (2023): while similar pairs are also related,
the reverse is not necessarily true.

In stark contrast to the extensive research on
STS (Gao et al., 2021; Chuang et al., 2022; Zhang
et al., 2022; Seonwoo et al., 2023), exploration
of STR lags behind and predominantly focuses on

1Our code: https://github.com/uds-lsv/AAdaM

English (Marelli et al., 2014; Abdalla et al., 2023),
mainly due to the lack of datasets. To close this
gap, the SemEval-2024 Task 1: Semantic Textual
Relatedness (Ousidhoum et al., 2024b) is proposed
to encourage STR research on 14 African and
Asian languages. The shared task consists of 3
subtasks: supervised (subtask A), unsupervised
(subtask B), and cross-lingual (subtask C).

In this paper, we present our system AAdaM
(Augmentation and Adaptation for Multilingual
STR) developed for subtask A and C. Our system
adopts a cross-encoder architecture which takes
the concatenation of a pair of sentences as input
and predicts the relatedness score through a re-
gression head (Devlin et al., 2019). As the pro-
vided task data for non-English languages is rela-
tively limited, we perform data augmentation for
these languages via machine translation. To better
adapt a pre-trained model to the STR task, we ap-
ply task-adaptive pre-training (Gururangan et al.,
2020) which has shown effectiveness on many
tasks (Xue et al., 2021; Wang et al., 2023). For
subtask A, we explore full fine-tuning and adapter-
based tuning (Houlsby et al., 2019) combined with
previously mentioned techniques. Additionally, we
use the adapter framework MAD-X (Pfeiffer et al.,
2020) for cross-lingual transfer in subtask C.

We select the best model based on the perfor-
mance on development sets for the final submis-
sion, and our system achieves competitive results
on both subtasks. In subtask A, our system ranks
first out of 40 teams on average, and performs the
best in Spanish. In subtask C, our system ranks
first among 18 teams on average, and achieves the
best performance in Indonesian and Punjabi.

2 SemRel Dataset

To encourage STR research in the multilingual
context, Ousidhoum et al. (2024a) introduce Sem-
Rel, a new STR dataset annotated by native speak-
ers, covering 14 languages from 5 distinct lan-
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Figure 1: SemRel data distribution across languages.

guage families. These languages are mostly spo-
ken in Africa and Asia, and many of them are
under-represented in natural language processing
resources. As shown in Figure 1, the data sizes vary
widely from language to language constrained by
the availability of resources. Notably, English data
comprises 32% of the whole dataset and surpasses
other languages by a large margin.

3 System Overview

Our system employs a cross-encoder architec-
ture, which takes the concatenation of a pair of
sentences as input and predicts the relatedness
score through a regression head. Compared to
bi-encoders (Reimers and Gurevych, 2019), which
extract individual sentence representations and
then compare them using cosine similarity, cross-
encoders generally perform better, at the cost of
increased inference latency (Humeau et al., 2020).
We select cross-encoder because of its superior
performance (see Appendix A), and leave the ex-
ploration of an efficient alternative as future work.

The core techniques underlying our system are
(i) data augmentation using machine translation
(§3.1), and (ii) task-adaptive pre-training on un-
labeled task data (§3.2). We explore two training
paradigms for supervised learning combined with
the aforementioned techniques, i.e., fine-tuning
and adapter-based tuning (§3.3), and the latter is
also employed for cross-lingual transfer (§3.4).

3.1 Data Augmentation
Data augmentation (DA) serves as a widely used
strategy to mitigate data scarcity in low-resource
languages (Hedderich et al., 2021; Feng et al.,
2021). Inspired by work on DA with machine

translation (Hu et al., 2020; Amjad et al., 2020), we
create additional training data for non-English lan-
guages by translating from various English sources,
as illustrated below.

SemRel translation. As English data occupies a
significant portion of the entire SemRel dataset, we
perform augmentation by translating the English
subset to other target languages.

STS-B translation. STS-B (Cer et al., 2017), a
semantic similarity dataset, is highly relevant to
STR, and we translate the STS-B training set in
English to other target languages.

It worth noting that using translations as data aug-
mentation yields a mixed data quality. For instance,
the translation process may introduce artifacts that
reduce data validity. Additionally, the concepts of
“similarity” and “relatedness” are relevant but not
equivalent, leading to a mismatch in their annotated
scores. To leverage data in varied qualities, Zhu
et al. (2023) shows that a two-phase approach is
beneficial, in which the model is trained on noisy
data first and then trained on clean data. Our train-
ing procedure follows this two-phase scheme: (i)
training the model on augmented data as a warmup,
and (ii) subsequently training the model on the
original task data.

3.2 Task-Adaptive Pre-training
Pre-trained language models (PLMs) are trained
on massive text corpora with self-supervision ob-
jectives for general purposes (Devlin et al., 2019;
Liu et al., 2019). To better adapt PLMs to down-
stream tasks, Gururangan et al. (2020) propose task-
adaptive pre-training (TAPT), i.e., continued pre-
training on task-specific unlabeled data, and show
that it can effectively improve downstream task per-
formance. We integrate this strategy into our sys-
tem, wherein we conduct masked language model-
ing (MLM) on unlabeled task data for a given target
language before initiating any supervised training.

3.3 Fine-tuning vs. Adapter-based Tuning
Fine-tuning is the conventional approach to adapt
general-purpose PLMs to downstream tasks. It up-
dates all model parameters for each task, leading to
inefficiency with the ever-increasing model scales
and number of tasks. Recently, many works focus
on introducing lightweight alternatives to improve
parameter efficiency (Lester et al., 2021; Hu et al.,
2022; He et al., 2022). For example, adapter-based
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Model Tuning TAPT Warmup arq amh eng hau kin mar ary spa tel

FINE-TUNING

✗ ✗ 52.96 87.70 83.07 78.91 68.59 85.23 88.26 73.83 84.90
✗ SemRel 55.96 87.86 / 79.87 70.06 85.51 88.59 72.93 85.38
✗ STS-B 62.05 88.50 84.31 79.86 69.78 86.48 86.97 73.33 85.15
✓ ✗ 65.70 88.03 82.79 79.41 67.03 84.88 88.50 70.47 83.84
✓ SemRel 66.74 85.58 / 80.73 71.29 85.74 87.01 73.37 85.77
✓ STS-B 68.25 88.72 83.01 78.95 69.38 85.26 87.07 73.50 84.66

ADAPTER TUNING

✗ ✗ 55.44 87.01 82.96 78.23 70.45 84.62 86.43 72.62 84.51
✗ SemRel 59.58 87.66 / 79.15 70.56 86.54 86.88 74.90 84.88
✗ STS-B 62.83 87.63 82.97 80.29 82.01 87.18 87.53 74.18 84.17
✓ ✗ 58.81 85.61 82.74 78.40 70.48 84.56 85.78 72.15 84.34
✓ SemRel 58.47 87.57 / 79.78 71.67 87.24 87.35 76.65 85.69
✓ STS-B 59.58 87.40 82.32 79.22 73.04 87.12 87.22 73.22 83.70

Table 1: Subtask A performance on development sets (Spearman’s correlation ×100). SemRel: warmup by training
on SemRel translations; STS-B: warmup by training on STS-B translations. We underline the best performance of
fine-tuning and adapter-based tuning, and bold the best performance across all variants.

tuning (Houlsby et al., 2019) only updates small
modules known as adapters inserted between the
layers of PLMs while keeping the remaining param-
eters frozen. In particular, it has shown impressive
performance in cross-lingual transfer (Pfeiffer et al.,
2020; Ansell et al., 2021; Pfeiffer et al., 2022).

We explore both fine-tuning and adapter-based
tuning to compare their effectiveness on multilin-
gual STR. For fine-tuning, we update all model
parameters at each stage, namely the TAPT stage,
the warmup stage and the final training stage using
the original task data. For adapter-based tuning,
we utilize the MAD-X framework (Pfeiffer et al.,
2020) which consists of language-specific adapters
and task-specific adapters. The language adapters
are pre-trained with an MLM objective on unla-
beled monolingual corpora. To this end, we collect
open-source data from the Leipzig Corpus Collec-
tion (Goldhahn et al., 2012) for pre-training.2 The
task adapters are trained on labeled task-specific
data (augmented or original), while keeping the
language adapters fixed. Note that when applying
TAPT, only language adapters are updated. In sub-
task A, we apply fine-tuning and adapter-based
tuning in combination with TAPT and warmup
techniques, and select the best model based on the
performance on development sets.

3.4 Cross-lingual Transfer with Adapters
The high modularity of MAD-X enables efficient
zero-shot cross-lingual transfer. During inference,
we simply replace the source language adapter with
the target language adapter while retaining the

2Details are provided in Appendix B.

source task adapter. This task adapter has been
trained on labeled data from the source language,
without prior exposure to the target language.3 A
crucial challenge for cross-lingual transfer lies in
source language selection, as improper sources may
lead to negative results (Lange et al., 2021). To
determine the best source language, we explore
the following metrics to rank sources: (1) linguis-
tic distance (Littell et al., 2017), (2) token over-
lap (Wu and Dredze, 2019), and (3) development
set performance.4 Results in Appendix C demon-
strate that development set performance serves as
the most reliable indicator of transfer performance.
For subtask C, we select the optimal source from
the adapters trained in subtask A based on their
performance on development sets.

4 Experimental Setup

Model. Our backbone model is AfroXLMR-
large-61L (Adelani et al., 2024), adapted from
XLM-R (Conneau et al., 2020) through multilin-
gual adaptive fine-tuning (Alabi et al., 2022). We
use NLLB (nllb-200-distilled-600M) (Team
et al., 2022) to translate from English resources
to other languages as data augmentation.

Implementation. All experiments are conducted
on a single NVIDIA A100 GPU with a batch size
of 16. For MLM, we set the learning rate to 5e-5

3Note that when transferring from any other language to
English, we ensure that the source task adapter has not been
trained on augmented data translated from English resources,
thereby eliminating the effect of data leakage.

4The existence of development sets is not realistic in the
true zero-shot scenario, and we leave further discussion to the
Limitations section.
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Model arq amh eng hau kin mar ary spa tel Avg.↑

Overlap♢ 40. 63. 67. 31. 33. 62. 63. 67. 70. 55.11
LaBSE♢ 60. 85. 83. 69. 72. 88. 77. 70. 82. 76.22

PALI 67.88 88.86 86.00 76.43 81.34 91.08 86.26 72.38 86.43 81.85
king001 68.23 88.78 84.30 74.72 81.69 89.68 85.97 72.12 85.34 81.20
NRK 67.36 86.42 83.29 67.20 75.69 87.93 82.70 68.99 83.42 78.11
saturn 57.77 84.51 - 69.91 75.53 87.28 79.77 - 87.34 -
AAdaM (Ours) 66.23 86.71 84.84 72.36 77.91 89.43 83.50 74.04 84.77 79.98

Table 2: Subtask A performance on test sets (Spearman’s correlation ×100). ♢: baseline results from Ousidhoum
et al. (2024a). We bold the best performance across submitted systems.
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Figure 2: Subtask C performance on development sets (Spearman’s correlation ×100) using different types of
language adapters. Boxes highlight the optimal performances for each target language, and we select the best source
for final submission.

and train models for 10 epochs. For fine-tuning,
we conduct a grid-search of learning rate from {2e-
5, 5e-5} on SemRel development sets and train
models for 6 epochs. For adapter-based tuning, we
select the optimal learning rate from {1e-4, 2e-4,
5e-5} and train adapters for 15 epochs.

5 Results and Analysis

5.1 Subtask A: Supervised Learning
In Table 1, we compare the performance on devel-
opment sets using fine-tuning and adapter-based
tuning along with various techniques. Fine-tuning
achieves the best performance in most languages
(6 out of 9), which is unsurprising as it optimizes
the entire parameter space. Notably, adapter-based
tuning demonstrates comparable performance to
fine-tuning in Hausa (hau) and Telugu (tel), while
even surpassing it in Kinyarwanda (kin), Marathi
(mar) and Spanish (spa). Looking at the effec-
tiveness of TAPT and warmup, we observe that
they provide benefits in most cases compared to
using no techniques at all. Nonetheless, the im-
provements are sometimes marginal, particularly
in languages such as Amharic (amh), English (eng),

and Moroccan Arabic (ary), where the baseline per-
formances are already relatively strong compared
to other languages.

In our final submission, we selected the best
model for each language based on the performance
of development sets. As shown in Table 2, our ap-
proach largely improves the baseline results (Ousid-
houm et al., 2024a), especially for Algerian Arabic
(arq), Kinyarwanda (kin), and Moroccan Arabic
(ary). In comparison to several top-performing sub-
mitted systems, we achieve the best performance
in Spanish (spa). There were a total of 40 final
submissions in subtask A, and our system ranks
first on average in the official leaderboard.5

5.2 Subtask C: Cross-lingual Transfer
In subtask C, we replace source language adapters
from subtask A with target language adapters. We
analyze two groups of language adapters: base lan-
guage adapters trained only on Leipzig corpora and
TAPT language adapters further trained on unla-
beled task data. The cross-lingual transfer results

5PALI and king001 also achieved competitive perfor-
mance; however, they are not ranked in the official leaderboard
due to missing system descriptions.
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Model afr arq amh eng hau hin ind kin arb ary pan spa Avg.↑

Overlap♢ 71. 40. 63. 67. 31. 53. 55. 33. 32. 63. -27. 67. 45.67
LaBSE♢ 79. 46. 84. 80. 62. 76. 47. 57. 61. 40. -5. 62. 57.42

king001 81.00 61.44 87.83 - 73.35 84.39 37.58 62.99 65.68 81.96 - 70.76 -
UAlberta 80.57 44.13 81.60 - 67.85 82.78 44.90 63.58 67.15 60.22 -1.74 57.16 -
ustcctsu 74.87 41.44 70.90 78.40 47.63 65.80 46.02 45.41 46.87 61.32 -24.79 68.51 51.87
umbclu 82.23 12.63 4.30 78.75 45.69 15.52 51.53 48.36 3.54 -3.75 -7.75 60.89 32.66
AAdaM (ours) 81.39 55.07 86.29 79.37 72.88 83.86 52.80 64.99 65.32 60.03 15.53 62.05 64.97

Table 3: Subtask C performance on test sets (Spearman’s correlation ×100). ♢: baseline results from Ousidhoum
et al. (2024a). We bold the best performance across submitted systems.

on development sets are shown in Figure 2. We ob-
serve a discrepancy in the optimal source languages
selected with two types of adapters, indicating a
behavior shift after applying TAPT. Furthermore,
the performance for target languages shows high
sensitivity to the choice of source language. For
example, using Spanish (spa) as the source lan-
guage for Indonesian (ind) performs significantly
better than using Kinyarwanda (kin), showcasing
the importance of careful source language selection.
When examining each target language, we find that
in the case of Amharic (amh), the cross-lingual
transfer performance is comparable to its super-
vised learning performance. However, it remains a
challenge for a few languages, such as Indonesian
(ind) and Punjabi (pan).

The results for test sets are shown in Table 3.
Compared to LaBSE (Feng et al., 2022), a multilin-
gual sentence embedding model, our cross-lingual
transfer approach achieves better performance on
most languages, especially for Algerian Arabic
(arq), Hausa (hau), Moroccan Arabic (ary), and
Punjabi (pan). However, our system is surpassed
by the simple word overlap baseline in Indonesian
(ind), Moroccan Arabic (ary) and Spanish (spa).
This highlights the need for nuanced investigation
of data distributions across various languages.
Subtask C received 18 submissions in total, and
we perform the best in the official leaderboard.
In particular, we achieve the best performance in
Indonesian (ind) and Punjabi (pan), which seem
harder for other teams. For Punjabi (pan), where
most teams get negative correlation scores, our
method maintains its effectiveness.

5.3 Analysis
We partition ground-truth relatedness scores, rang-
ing from 0 to 1, to different levels for fine-grained
analysis. Figure 3 shows the detailed model per-
formance for several under-performing languages.
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Figure 3: Performance on test sets (Spearman’s correla-
tion ×100) in different relatedness levels.

Although our evaluation scores on the entire test
sets are all positive, some subsets exhibit negative
correlations, particularly those with lower related-
ness scores. Moreover, AAdaM largely lags behind
the simple word overlap baseline for Algerian Ara-
bic (arq) and Indonesian (ind) within the 0 to 0.25
range. These observations highlight the complexity
of capturing nuanced relationships within specific
categories, possibly affected by the data annotation
procedure and unbalanced learning.

6 Conclusion

In this paper, we introduce our multilingual STR
system, AAdaM, developed for the SemEval-2024
Task 1, which achieves competitive results in both
subtask A and subtask C. We see noticeable im-
provements by using data augmentation and task-
adaptive pre-training, and demonstrate that adapter-
based tuning is an effective approach for super-
vised learning and cross-lingual transfer. Despite
these strengths, our fine-grained analysis reveals
that capturing nuanced semantic relationships re-
mains a challenge, highlighting the need for further
granular investigation and modeling improvements.
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Limitations

Although our approach has demonstrated impres-
sive performance, relying on development sets for
source language selection undermines its practical
value in the true zero-shot setting. While linguistic
(dis)similarity (Littell et al., 2017) is a commonly
used estimator for cross-lingual transfer perfor-
mance, it alone does not explain many transfer re-
sults (Lauscher et al., 2020). Philippy et al. (2023)
survey different factors that impact cross-lingual
transfer performance, finding contradictory conclu-
sions from previous studies. In future work, we
plan to scrutinize the interplay among various fac-
tors, and select the optimal source language without
relying on post-hoc evaluation.
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A Model and Architecture Selection

In our preliminary study, we examine the capacity
of different pre-trained models with or without any
training. To assess their out-of-the-box effective-
ness, we extract contextual embeddings for pairs
of sentences from various multilingual models, and
use the cosine similarity to predict the semantic re-
latedness score. The multilingual models include:

• sentence transformers: mpnet-base-v26 and
LaBSE (Feng et al., 2022)

• general-purpose models: XLMR-large (Con-
neau et al., 2020), AfroXLMR-large (Al-
abi et al., 2022), AfriBERTa-large (Ogueji
et al., 2021), AfroXLMR-large-61L and
AfroXLMR-large-75L (Adelani et al., 2024)

Additionally, we add two simple baselines for
comparison: word overlap7 and fastText (Mikolov
et al., 2018). For both fastText vectors and contex-
tual embeddings, we employ mean pooling to get
sentence embeddings.

In Table 4, we can see that sentence transformers
achieve superior performance in most languages
when no training is conducted. This observation
is not unsurprising, as they have been trained for
sentence embeddings that can better capture the
semantic relationships. However, this trend shifts
upon fine-tuning the models on task data with either
bi-encoder or cross-encoder architecture. Notably,
with the cross-encoder architecture, AfroXLMR-
large-61L achieves comparable performance to
LaBSE. To satisfy the requirement in subtask C, for

6https://huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2

7https://github.com/semantic-textual-relatedness/
Semantic_Relatedness_SemEval2024/blob/main/STR_
Baseline.ipynb

which the pre-trained model should not be trained
on any relatedness or similarity datasets, we adopt
AfroXLMR-large-61L as our backbone model with
the cross-encoder architecture for all our experi-
ments.

B Pre-training Data Collection

To pre-train language adapters, we collect open-
source corpora from the Leipzig Corpus Collec-
tion and use the recent data derived from news
and wikipedia domains. Data statistics are shown
Table 5. As the SemRel data spans over diverse do-
mains, there is a potential risk of domain mismatch
between the pre-training data and task data, which
needs a further investigation.

C Source Language Selection

To determine the best source language for cross-
lingual transfer, we explore three metrics to esti-
mate the transfer performance:

Linguistic distance. We use the average of six
distances obtained from the URIEL Database (Lit-
tell et al., 2017) to measure the similarity between
a pair of languages. These distances include syntac-
tic, phonological, inventory, geographic, genetic,
and featural distances. A lower distance indicates
that the two languages are more similar, potentially
facilitating more effective transfer.

Token overlap. We follow (Wu and Dredze,
2019) to measure how many tokens are shared in
the source training set and the target test set. A
higher token overlap indicates that more tokens
were encountered during training in the source lan-
guage, potentially transferring more supervision
from the source to the target.

Development set performance. As small devel-
opment sets are available in the shared task, we use
their performance as an indicator of the transfer
performance on test sets, assuming that they share
a similar data distribution.8

In Figure 4, we show the metric values across dif-
ferent source languages, along with the best source
languages identified by distinct metrics. After post-
hoc evaluation following the release of test sets, we
find that the performance of the development set
indeed serves as the most reliable indicator, as the

8When training is allowed, it might be more advantageous
to use small development sets for training directly rather than
source selection, which needs to be further explored.
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Model eng amh arq ary spa hau mar tel Avg.↑

Baselines w/o training:
Overlap 56.57 63.28 44.00 53.76 58.67 38.86 57.52 60.61 54.16
FastText 55.69 60.64 44.27 22.12 57.47 9.19 59.23 69.39 47.25

mpnet-base-v2 81.94 69.94 26.35 34.40 56.58 30.86 72.43 56.33 53.60
LaBSE 72.14 76.49 40.80 38.58 63.11 41.51 73.83 75.99 60.31
XLMR-large 39.53 42.07 27.91 4.15 47.59 7.34 40.51 56.36 33.18
AfroXLMR-large 16.55 39.82 20.30 -0.46 30.42 8.13 35.94 30.74 22.68
AfriBERTa-large 53.12 69.23 16.04 13.36 56.68 35.14 20.84 9.73 34.27
AfroXLMR-large-61L 44.10 52.96 32.15 0.35 51.07 17.62 37.66 47.17 35.39
AfroXLMR-large-75L 22.61 37.93 29.38 -2.39 43.58 13.86 32.13 40.42 27.19

Bi-encoders w/ supervised training:
mpnet-base-v2 85.07 80.43 56.73 75.51 65.29 58.62 81.53 74.49 72.21
LaBSE 84.45 82.59 59.49 78.29 69.02 68.94 83.97 76.35 75.39
AfroXLMR-large-61L 82.81 74.61 40.02 66.58 66.65 66.51 38.51 65.73 62.68

Cross-encoders w/ supervised training:
mpnet-base-v2 80.26 75.04 60.25 80.31 64.92 53.66 65.36 68.54 68.54
LaBSE 86.13 84.75 60.75 82.55 67.23 69.31 81.10 77.25 76.13
AfroXLMR-large-61L 86.65 84.88 46.61 81.56 69.08 74.65 75.55 80.94 74.99

Table 4: Performance of 10-fold cross-validation on training sets (Spearman’s correlation ×100). For each language,
we bold the best performance achieved in w/o training and w/ supervised training settings.

Language Family / Subfamily Domain Corpus Size

English (eng) Indo-Europoean / Germanic News, Wikipedia 1.2M
Afrikaans (afr) Indo-Europoean / Germanic News, Wikipedia 68k
Amharic (amh) Afro-Asiatic / Semitic Community, Wikipedia 250k
Modern Standard Arabic (arb) Afro-Asiatic / Semitic News, Wikipedia 110k
Algerian Arabic (arq) Afro-Asiatic / Semitic News 244k
Moroccan Arabic (ary) Afro-Asiatic / Semitic News 564k
Spanish (spa) Indo-Europoean / Italic News, Wikipedia 444k
Hausa (hau) Afro-Asiatic / Chadic Community, Wikipedia 564k
Hindi (hin) Indo-European / Indo-Iranian News, Wikipedia 472k
Indonesian (ind) Austronesian / Malayic News, Wikipedia 92k
Kinyarwanda (kin) Niger-Congo / Atlantic–Congo Community 320k
Punjabi (pan) Indo-European / Indo-Iranian Wikipedia 412k
Marathi (mar) Indo-European / Indo-Iranian News, Wikipedia 856k
Telugu (tel) Dravidian / South-Central News, Wikipedia 756k

Table 5: Data statistics for pre-training corpora collected from the Leipzig Corpus Collection.

optimal source languages it selected closely align
with the ground truth selections.
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0.0 0.56 0.63 0.52 0.63 0.46 0.57 0.53 0.64 0.56 0.55 0.57

0.56 0.0 0.55 0.52 0.58 0.56 0.54 0.54 0.58 0.57 0.59 0.57

0.63 0.55 0.0 0.6 0.66 0.61 0.49 0.69 0.54 0.7 0.7 0.7

0.52 0.52 0.6 0.0 0.57 0.54 0.55 0.59 0.62 0.59 0.62 0.65

0.63 0.58 0.66 0.57 0.0 0.65 0.55 0.64 0.58 0.61 0.5 0.57

0.46 0.56 0.61 0.54 0.65 0.0 0.57 0.57 0.66 0.6 0.65 0.59

0.57 0.54 0.49 0.55 0.55 0.57 0.0 0.62 0.32 0.68 0.56 0.51

0.6 0.57 0.71 0.67 0.57 0.66 0.57 0.44 0.59 0.61 0.5 0.33

0.57 0.52 0.74 0.66 0.64 0.65 0.65 0.44 0.69 0.58 0.62 0.5

linguistic distance
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mar

tel

96.3 11.2 12.1 60.4 63.6 63.5 4.6 12.2 5.6 50.6 59.4 7.5

15.6 97.8 13.7 9.4 8.6 9.3 4.6 12.0 5.4 15.4 10.0 7.5

13.6 10.0 97.9 8.9 5.7 8.6 91.3 3.0 81.3 15.1 9.1 5.9

43.1 9.5 14.0 99.1 62.6 31.8 4.5 2.9 5.3 38.7 35.3 6.0

49.4 11.0 13.5 59.2 97.3 42.6 4.5 12.1 5.4 41.9 40.5 6.2

55.6 10.0 11.1 55.7 57.1 91.3 4.6 12.1 5.6 46.0 51.4 7.3

7.4 6.5 67.6 3.8 2.8 3.2 98.1 1.8 63.2 3.9 3.3 4.8

15.6 10.0 12.7 9.5 9.5 9.9 4.5 74.0 5.4 15.1 10.1 7.3

15.6 10.9 14.0 9.4 8.7 9.7 4.6 12.3 5.5 16.1 10.1 7.6

token overlap
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(a) Left: Linguistic distances between source and target languages. The smallest distance for each target language is highlighted
with a box. Right: Token overlaps between source and target languages. The highest overlap for each target language is
highlighted with a box. The corresponding source languages are predicted as the best sources for cross-lingual transfer.
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83.0 87.6 60.8 69.1 42.5 63.9 60.0 85.6 53.5 37.8 54.6 12.2

73.7 87.7 56.7 69.4 43.7 60.2 51.8 80.5 62.2 41.7 43.8 11.2

63.6 69.2 87.5 64.3 37.9 61.4 46.7 75.1 53.5 39.6 23.0 5.4

75.9 78.3 43.7 80.3 43.5 55.5 49.6 78.9 62.8 30.8 56.4 18.3

66.0 62.4 30.6 59.6 72.0 47.3 48.9 70.1 48.2 0.8 52.1 23.7

64.7 71.5 70.7 35.5 10.8 74.9 56.3 74.9 60.2 45.2 32.6 -0.1

68.0 78.8 54.1 60.6 37.1 60.2 62.8 81.4 48.4 20.5 44.5 9.0

77.5 82.9 66.8 74.6 41.9 61.4 55.5 87.7 65.9 26.4 58.2 16.3

74.9 83.4 57.6 73.3 43.0 64.8 59.8 88.1 70.3 36.1 37.1 19.2

w/ base language adapter
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82.7 85.8 64.1 68.9 41.5 64.4 54.7 87.4 65.2 41.0 51.1 16.6

78.2 87.6 57.3 70.5 44.4 63.0 49.7 83.4 59.0 37.6 44.6 7.3

61.8 76.8 87.4 66.7 42.0 58.0 48.8 78.9 59.7 40.1 45.5 2.3

76.6 79.1 53.2 79.8 44.2 59.2 56.0 84.7 69.8 28.0 58.5 16.0

64.4 59.0 27.9 64.8 73.0 46.1 44.1 78.6 44.1 7.8 54.1 22.6

67.5 71.7 67.9 42.3 14.8 76.6 49.8 76.0 51.4 43.9 43.2 -0.1

66.4 73.9 56.4 59.2 33.1 55.9 59.6 79.5 72.5 18.2 68.3 15.2

76.4 82.6 67.7 73.6 41.2 63.6 58.8 88.2 63.8 39.8 48.7 14.6

81.0 80.6 50.3 69.6 41.0 64.2 51.0 85.7 60.8 20.7 35.8 24.8

w/ TAPT language adapter
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(b) Performance on development sets (Spearman’s correlation ×100) using different types of language adapters. Boxes are used
to highlight the optimal performances for each target language, and the corresponding source languages are predicted as the best
sources for cross-lingual transfer.
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84.4 84.0 68.1 68.5 62.7 59.0 55.1 80.4 63.9 44.7 81.7 -3.8

78.5 88.2 61.2 68.7 65.0 54.5 47.9 78.0 57.1 45.1 80.4 1.0

70.4 72.7 84.4 64.3 54.0 50.5 50.2 71.1 57.1 39.8 73.6 -6.3

77.6 83.0 54.9 72.4 67.0 53.4 44.6 78.2 60.0 31.9 78.3 7.5

68.1 67.8 36.8 56.3 77.8 46.3 34.4 61.1 40.6 13.3 70.9 15.5

70.5 74.6 60.0 36.7 46.7 73.7 48.4 71.5 46.4 52.5 76.7 -10.6

73.9 72.4 51.5 60.2 60.6 54.1 64.6 77.8 61.8 30.5 78.2 -3.3

79.4 82.5 66.0 71.7 65.7 56.6 54.1 84.3 62.8 31.7 81.4 3.3

77.8 85.7 67.6 70.8 65.5 59.7 54.7 82.8 65.3 37.0 81.4 5.3

w/ base language adapter
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84.2 86.3 66.2 69.4 66.6 62.0 51.5 82.5 64.7 46.3 82.0 1.9

80.2 89.2 60.9 68.2 60.6 58.9 49.7 80.8 61.0 42.6 80.8 -4.4

71.3 81.9 83.7 68.3 64.7 55.8 49.0 74.0 54.1 41.8 78.6 -12.3

76.7 84.8 59.2 74.2 71.1 55.9 49.2 80.7 61.2 30.1 80.4 5.0

61.1 63.3 22.5 60.6 77.9 44.4 34.8 68.8 36.5 8.0 72.1 13.2

71.2 75.4 56.6 46.7 50.7 73.8 41.6 70.9 49.2 52.8 79.0 -11.2

77.1 74.8 54.5 57.9 60.0 53.2 65.6 75.9 54.6 22.0 76.8 5.9

79.8 85.3 67.5 72.9 67.0 57.4 52.6 83.9 63.1 40.6 80.8 -1.5

79.2 82.5 56.0 67.5 64.2 58.1 49.8 81.8 56.7 27.2 80.9 10.1
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(c) Performance on test sets (Spearman’s correlation ×100) using different types of language adapters. Boxes are used to highlight
the optimal performances for each target language, and the corresponding source languages are the ground-truth best sources for
cross-lingual transfer.

Figure 4: Comparison of different source language selection methods.
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