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Abstract

This paper introduces a system designed for
SemEval-2024 Task 1 that focuses on assess-
ing Semantic Textual Relatedness (STR) be-
tween sentence pairs, including its multilin-
gual version. STR, which evaluates the co-
herence of sentences, is distinct from Seman-
tic Textual Similarity (STS). However, Large
Language Models (LLMs) such as ERNIE-
Bot-turbo, typically trained on STS data, of-
ten struggle to differentiate between the two
concepts. To address this, we developed a
self-instruction method that enhances their per-
formance distinguishing STR, particularly in
cases with high STS but low STR. Beginning
with a task description, the system generates
new task instructions refined through human
feedback. It then iteratively enhances these
instructions by comparing them to the orig-
inal and evaluating the differences. Utiliz-
ing the Large Language Models’ (LLMs) nat-
ural language comprehension abilities, the sys-
tem aims to produce progressively optimized
instructions based on the resulting scores.
Through our optimized instructions, ERNIE-
Bot-turbo exceeds the performance of conven-
tional models in Track A,achieving a score en-
hancement of 4 to 7% on multilingual develop-
ment datasets.

1 Introduction

SemEval-2024 Task 1(Ousidhoum et al., 2024)
addresses the challenge of Semantic Textual Re-
latedness (STR), which goes beyond paraphras-
ing and entailment of Semantic Textual Similar-
ity (STS)(Agirre et al., 2012, 2016; Cer et al.,
2017; Xu et al., 2015) by considering topics and
logical connections between sentence pairs. This
task is particularly complex due to the nuanced
context required for STR, a feature not fully cap-
tured by existing models trained predominantly on
STS data. This gap can lead to black-box Large
Language Models (LLMs) misinterpretations like

ERNIE-Bot-turbo1.
Our study introduces a self-instruction method

to enhance the distinction between STS and STR
in LLMs(Chen et al., 2023; Zhang et al., 2023;
Hou et al., 2022; Wei et al., 2021). In our ap-
proach, back translation(Sennrich et al., 2016)
converts low-resource language sentence pairs
into English as inputs for LLMs. With a task de-
scription as the starting point, the black-box LLMs
generate a new task instruction, which will be re-
fined based on human feedback. The system iter-
atively refines the enhanced instruction by assess-
ing it against the original and using the resulting
score to produce increasingly optimized instruc-
tions. Our method improves how LLMs deal with
tricky cases of similar but unrelated texts. Using
our optimized instructions, ERNIE-Bot-turbo out-
performs standard models and boosts scores by
4 to 7% on multilingual development datasets in
Track A. The ranking of each Tack A’s test dataset
is as follows: English (36), Amharic (11), Alge-
rian Arabic (24), Telugu (24), Spanish (24), Mo-
roccan Arabic (24), Marathi (25), Kinyarwanda
(20), and Hausa (20). The remainder of this pa-
per is organized as follows. Section 2 describes
the model and method used in our system, Section
3 discusses the results of the experiments, and fi-
nally, conclusions are drawn in Section 4.

2 Methodology

Figure 1 illustrates the overall framework of our
self-instruction method. We employ back transla-
tion for datasets encompassing multiple languages
to render sentence pairs into English as the input
for LLMs. With a task description as the start-
ing point, the black-box LLMs generates a new
task instruction which will be refined based on hu-
man feedback. The enhanced instruction is sub-
sequently assessed against the original, generat-

1https://yiyan.baidu.com/
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Figure 1: The framework of self-instruction method

ing a score that informs the optimization cycle.
The system progressively refines the instructions
in response to this score, resulting in progressively
more optimized directives. The ensuing section
will delve into a detailed analysis of this iterative
optimization process.

2.1 Design of task instruction

Using sentences from the Amharic dataset as ex-
amples of hard sample with high Semantic Tex-
tual Similarity (STS) yet subtle Textual Related-
ness (STR) for instance, What made him so cer-
tain? What contributed to his happiness? (original
Amharic: "ይህን ያህል እርግጠኛ እንዲሆን ያደረገው
ምንድን ነው? ደስተኛ እንዲሆን አስተዋጽኦ ያደረገው
ምንድን ነው?"; goal label: 0.39) we underscore
the significance of three components: instruction,
the Chain of Thought (CoT)(Wei et al., 2022), and
easily confused examples(Zhang et al., 2022; Li
and Qiu, 2023). Human generated instructions aid
LLMs in grasping the primary task but may not ad-
equately explicate the concept of semantic textual
relatedness (Figure 2.a) (Pred Score: 0.83). The
CoT process facilitates LLMs in logical reason-
ing and analyzing sentence pairs, yet it encounters
obstacles with complex samples prone to creating
illusions (Figure 2.b) (Pred Score: 0.77). Easily
confused examples are practical in dissecting hard
samples but can skew the assessment of standard
samples (Figure 2.c) (Pred Score: 0.67). Conse-
quently, merging these approaches could provide
more practical guidance for LLMs in discerning

the relatedness of sentence pairs (Figure 2.d) (Pre-
diction Score: 0.35). Detailed findings from the
ablation study are discussed in Section 3.

2.2 Two fundamental components to
generate the task instruction

Making use of natural language task descrip-
tion. LLMs excel in understanding natural lan-
guage and simplifying the definition of optimiza-
tion tasks. Capitalizing on this, we employ LLMs
to convert the initial task description into detailed
task instruction, guiding the LLMs to perform
tasks such as STR analysis effectively, as indicated
in Figure 3.a.
Refining task instruction through human feed-
back and evaluating their performance. While
Large Language Models (LLMs) can generate task
instructions from description, these instructions of-
ten fall short of being optimal and thus require
human refinement and critical feedback. For in-
stance, LLMs may overlook the significance of
high and low relatedness (Figure 3.b). Subse-
quently, the improved instructions are evaluated,
and their scores and instructions are integrated
into the original framework, streamlining the sub-
sequent optimization process (Figure 3.c).

2.3 LLMs as the black-box optimizer

After obtaining the original instruction-score (Fig-
ure 4.a), we utilize LLMs as the black-box opti-
mizer to update and optimize the instructions iter-
atively. In each optimization step, the optimizer
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Figure 2: The process of task instruction design. (a)instruction(b)instruction + chain of thought(c)instruction +
easily confused examples(d)instruction + chain of thought + easily confused examples

Figure 3: The process of original instruction optimiza-
tion:(a)task instruction(b)task instruction optimization
(c)overall process

LLM generates candidate optimal instructions by
analyzing the strengths of high-scoring and the

Figure 4: The process of utilizing LLM as the black-
box optimizer

weaknesses of low-scoring instructions (Figure
4.b). Subsequently, the new instruction is evalu-
ated and added to the instruction-score list for sort-
ing. From the instruction-score list, the top five
high-scoring and the bottom five low-scoring in-
structions are selected and added to the instruction
optimization template. The optimization process
continues until the LLMs cannot propose new so-
lutions with better optimization scores or the max-
imum number of optimization steps is reached.
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Table 1: The evaluation scores of representative models
from the four model methods on the training set.

BERT Dual Sentence Encoding

Model Score Model Score

bert-base-uncased 0.673 all-mpnet-base-v2 0.787
bert-large-uncased 0.609 all-MiniLM-L6-v2 0.824

distilbert-base-uncased 0.673 all-MiniLM-L12-v2 0.816
deberta-base 0.668 all-distilroberta-v1 0.802

deberta-large 0.678 sentence-t5-base 0.805
deberta-large-mnli 0.659 sentence-t5-large 0.81
deberta-xlarge-mnli 0.651 sentence-t5-xl 0.805
distilroberta-base 0.618 moco-sentencebertV2.0 0.797

roberta-base 0.635
roberta-large 0.44

roberta-large-mnli 0.439

Contrastive Learning LLM

Model Score Model Score

sup-SimCSE-VietNamese-phobert-base 0.64 t5-base 0.705
sup-simcse-roberta-large 0.743 t5-large 0.702
sup-simcse-roberta-base 0.744 flan-t5-base 0.665

sup-simcse-bert-base-uncased 0.8 flan-t5-large 0.679
unsup-simcse-roberta-large 0.769 ERNIE-Bot-turbo(w/o opt) 0.782

diffcse-bert-base-uncased-sts 0.783 ERNIE-Bot-turbo(w/ opt) 0.883
diffcse-bert-base-uncased-trans 0.761

diffcse-roberta-base-sts 0.774
diffcse-roberta-base-trans 0.78
esimcse-bert-base-uncased 0.778

esimcse-bert-large-uncased 0.798
esimcse-roberta-base 0.792
esimcse-roberta-large 0.764
pcl-bert-base-uncased 0.776

pcl-bert-large-uncased 0.799
pcl-roberta-base 0.766
pcl-roberta-large 0.755

3 Experimental Result

Datasets. The STR task dataset comprises
datasets in 14 distinct languages, including 9 lan-
guages specifically for Track A. Each language
dataset contains pairs of sentences, where each
pair in the training, development, and test sets is
assigned a gold score. This score reflects the de-
gree of STR between the two sentences, ranging
from 0 to 1, as determined by manual annotation.
Figure 5 below presents the composition of the
training, test, and development sets for Track A.
Evaluation Metrics. The STR in Track A is eval-
uated using the spearman rank correlation coeffi-
cient(Sedgwick, 2014), which measures how well
the system predicted rankings of test instances
align with human judgment. The metric will be
calculated as follows:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(1)

where di represents the difference between the
ranks of the i-th pair of sentences,n is the num-
ber of pairs of sentences,ρ is the spearman rank
correlation.

3.1 Implementation Details

Our approach, addressing the scarcity of low-
resource languages, uses back translation to con-
vert their sentence pairs into English for (LLMs)
inputs. This experiment prioritizes scoring on
English datasets to select the most effective
score model. We assess four baseline methods:
BERT(Devlin et al., 2019; Sanh et al., 2019; He
et al., 2020; Delobelle et al., 2020; Raffel et al.,
2020; Chung et al., 2022), dual sentence encod-
ing(Reimers and Gurevych, 2019; Ni et al., 2022),
contrastive learning(Gao et al., 2021; Song et al.,
2020; Wang et al., 2020; Chuang et al., 2022; Wu
et al., 2022b,a) , and LLMs. These models were
evaluated using the training set, with results pre-
sented in Table 1. Considering our experimental
objective of analyzing hard samples and scoring
sentence pair STR, ERNIE-Bot-turbo was chosen
as the scoring model. The LLMs utilized as the
optimizer and scorer are: (a)optimizer LLM: gpt-
3.5-turbo and (b)scorer LLM: ERNIE-Bot-turbo.

3.2 Desigin of task instruction

At the experiment’s outset, we performed adapta-
tion tests on the English training dataset using four
variations of instruction templates: (1) instruction
only, (2) instruction with chain-of-thought, (3) in-
struction with easily confused examples, and (4)
instruction with both chain-of-thought and easily
confused examples. The experimental results in
Figure 6 suggest that combining instruction, chain-
of-thought, and easily confused examples signifi-
cantly aids LLMs in semantic textual relatedness
analysis.

3.3 Prompt optimization

The score LLM operates at a temperature of 0, en-
suring deterministic decoding, whereas the opti-
mizing LLM uses a temperature of 0.95 promot-
ing creativity in instruction generation. Figure
7.a illustrates the accuracy fluctuations during the
model’s evaluation on the English training dataset.
Figure 7.b presents the scores for Track A’s de-
velopment in three scenarios: without optimiza-
tion, optimized (val-score: 0.8360) and further op-
timized (val-score: 0.8839). Figure 8 delves into
the impact of these three optimization scenarios
on hard samples. Consequently, our methodology
effectively reduces the hallucinations of LLMs in
STS and STR tasks. This leads to a more compre-
hensive analysis of hard samples and consistently
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Figure 5: The composition of the Track A’s training(a), test(b), and development(c) dataset

Figure 6: The ablation tests for four variations of in-
struction templates: 1.instruction 2. instruction + chain
of thought 3.instruction + easily confused examples
4.instruction + chain of thought + easily confused ex-
amples

improves performance evaluations on the training
dataset through an iterative process.

3.4 Result and Discussion

Results. Our final evaluation compared the ’no
optimization’ approach to ’optimization’ across
Track A’s nine language development datasets us-
ing back translation, as shown in Figure 9.The out-
comes indicate that optimized instructions signif-
icantly enhanced performance by 4 to 7% over
the non-optimized approach.The ranking of each
test dataset are as follows: English (36), Amharic
(11), Algerian Arabic (24), Telugu (24), Spanish
(24), Moroccan Arabic (24), Marathi (25), Kin-
yarwanda (20), and Hausa (20).
Discussion. The experimental results suggest the
following:

• Our self-instruction method effectively re-
duces confusion between STS and STR in
Large Language Models (LLMs), thereby im-
proving accuracy and enhancing the LLMs’s
capability to analyze standard samples, par-
ticularly in examining hard sample.

Figure 7: (a) shows changes in accuracy during eval-
uation on the English training dataset. (b) shows the
development scores for Track A in scenarios: without
optimization, optimized (val-score: 0.8360), and fur-
ther optimized (val-score: 0.8839).

• However, the experimental outcomes are
somewhat modest due to the coarse granular-
ity of the STR task and the considerable over-
lap between semantic textual similarity and
relatedness.
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Figure 8: It demonstrates how the scoring model assesses the impact of these three optimization scenarios on hard
samples.(red: score, brown: chain-of-thought optimization,blue: example analysis optimization, purple: instruc-
tion optimization)

Figure 9: The performance of no optimization and op-
timization in development dataset.

• The back translation method encounters no-
table challenges when utilized with low-
resource languages such as Arabic. This
is primarily due to significant language bi-
ases between low-resource and high-resource
languages like English within the seman-
tic space, directly influencing the scoring
model’s judgment.

• The limitation of the score model is still an
obstacle to performance. ERNIE-Bot-turbo
(score model), trained on Chinese and En-
glish datasets corpus, demonstrates weaker

proficiency in evaluating English sentence
pairs.

4 Conclusion

In this paper, we developed a self-instruction
method that enhances LLMs’ ability to distinguish
between Semantic Textual Similarity (STS) and
Semantic Textual Relatedness (STR), particularly
in hard samples(High STS but low STR).Through
this method, ERNIE-Bot-turbo (score LLM) not
only surpasses the performance of conventional
models, achieving a score enhancement of 4 to 7 %
on multilingual development datasets, but also ef-
fectively reduces confusion between STS and STR
in Large Language Models (LLMs). Additionally,
it achieved a commendable ranking in the final test
evaluation. Our work demonstrates that optimized
instructions, chain of thought, and easily confused
examples enable LLMs to mitigate errors even in
few-shot samples. Future research will aim to re-
fine LLMs’ capacity to grasp the overall semantic
meaning of sentences further.
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