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Abstract

This paper describes the system for the YNU-
HPCC team for SemEval2024 Task 2, focus-
ing on Safe Biomedical Natural Language In-
ference for Clinical Trials. The core chal-
lenge of this task lies in discerning the tex-
tual entailment relationship between Clinical
Trial Reports (CTR) and statements annotated
by expert annotators, including the necessity
to infer the relationships in texts subjected
to semantic interventions accurately. Our ap-
proach leverages a fine-tuned DeBERTa-v3-
large model augmented with supervised con-
trastive learning and back-translation tech-
niques. Supervised contrastive learning aims
to bolster classification ac-curacy while back-
translation enriches the diversity and quality
of our training corpus. Our method achieves
a decent F1 score. However, the results also
indicate a need for further en-hancements in
the system’s capacity for deep semantic com-
prehension, highlighting areas for future re-
finement. The code of this paper is avail-
able at: https://github.com/RGTnuw/RG_
YNU-HPCC-at-Semeval2024-Task2.

1 Introduction

Clinical trials constitute a critical component of
medical research, evaluating the safety and effi-
cacy of new treatment methods, medications, or
medical devices (Avis et al., 2006). A significant
num-ber of Clinical Trial Reports (CTRs) are gen-
erated throughout clinical trials. These reports
typically encompass information on research de-
sign, patient demographics, treatment protocols,
outcomes (such as response rates and side effects),
and overall conclusions. Such comprehensive and
transparent reporting of trial results provides the
scientific community and the public with valuable
information, informing future research and clini-
cal practice (Zhang et al., 2020). However, the
challenge is compounded by over 400,000 Clinical
Trial Reports (CTRs) and their rapidly accelerating
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Figure 1: demonstrates textual entailment and contra-
diction between the medical statements and clinical trial
records. Add interventions in the development and test
sets.

publication rate. Conducting a comprehensive re-
view of all pertinent literature when devising treat-
ments is impractical (DeYoung et al., 2020).

In response to this challenge, Natural Language
Inference (NLI) (Bowman et al., 2015; Devlin et al.,
2019) presents a viable approach for the extensive
interpretation and retrieval of medical evidence, fa-
cilitating enhanced precision and efficiency in per-
sonalized evidence-based care (Sutton et al., 2020).
This task (Jullien et al., 2024) delineates the ob-
jective as classifying the inferential relationship
between one or two CTR premises and a statement
as either entailment or contradiction. Various in-
terventions were applied to statements in the test
and development sets, preserving or inverting en-
tailment relations. It is imperative to ensure that
inferred outcomes are justified, i.e., make correct
predictions for the right reasons, and identical se-
mantics yield consistent results, as shown in Figure
1 .

In the previous task (Jullien et al., 2023b), large
language models (LLM) have achieved commend-
able performance(Zhou et al., 2023; Vladika and
Matthes, 2023). However, the model’s performance
must improve when facing numerical reasoning,
abbreviation, and other problems. DeBERTa-v3-
large (He et al., 2023) maintained competitiveness
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H[SEP]
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Figure 2: The structure of the system

with leading generative approaches, demonstrat-
ing that enhancements in model size correlate with
performance improvements. Specifically, augment-
ing the model’s scale directly boosts performance,
significantly surpassing the gains from biomedi-
cal pre-training. Thus, validating the development
set, we opted to submit results with higher experi-
mental scores. Our approach involved fine-tuning
the pre-trained DeBERTa-v3-large model, supple-
mented with supervised contrastive learning and
back-translation techniques.

Comprehensive experiments showed that our sys-
tem achieved a maximum F1 score of 0.77, secur-
ing the seventh position on the leaderboard. How-
ever, the model exhibited suboptimal performance
in faithfulness and consistency metrics, indicating
a weaker predictive capacity for data altered by in-
terventions, highlighting areas for future enhance-
ment.

The remainder of this paper is organized as fol-
lows. Section 2 describes the model and method
used in our system, Section 3 discusses the results
of the experiments, and finally, the conclusions are
drawn in Section 4.

2 System Description

This section will describe the architecture of
the proposed model in detail, including the data
loader and back translation, the pre-trained model
DeBERTa-v3-large, and supervised contrastive
learning; the system model we proposed is shown
in Figure 2.

2.1 Data preprocessing

Before feeding statements and CTRs into the
model, preprocessing is performed. Initially,
data augmentation is conducted through back-
translation, a widely adopted technique involving
translating text into another language and then back
to the original language. This process, achieved
via automatic translation systems, utilized Baidu’s
machine translation API1 in this study, effectively
doubling the training data. Given training data
D = {S,C, y}, y is the corresponding ground-true
label, S is the medical hypothesis sentences, C is
the corresponding CTR of the sentence, data loader
is applied to transform training data as:

X = [CLS]s1s2 . . . sn[SEP ]c1c2 . . . cm[SEP ] (1)

where s is the hypotheses with length n and c de-
notes the CTR reports with length m. [CLS] is a
special mark indicating the beginning of the text se-
quence; [SEP] indicates the separator between text
sequences. A similar process compares two CTRs,
appending [SEP] and concluding similarly. Se-
quences exceeding 512 tokens are truncated, while
shorter ones are padded.

2.2 Pre-trained DeBERTa-v3-large model

Given the commendable performance exhibited by
the DeBERTa-v3 model (He et al., 2023) on this
task (Jullien et al., 2023b) and the positive cor-
relation between model parameter size and per-
formance, the DeBERTa-v3-large model was se-
lected as the baseline. Furthermore, an exploration
was conducted with several DeBERTa-v3-large
models fine-tuned on other NLI datasets available
on the Hugging face2 (Sileo, 2023; Laurer et al.,
2023). The pre-trained datasets include MultiNLI,
FeverNLI, ANLI, LingNLI, and WANLI. The
DeBERTa-v3-large model has 24 layers and a hid-
den size of 1024. It has 304M backbone param-
eters with a vocabulary containing 128K tokens,
which introduces 131M parameters in the Embed-
ding layer.DeBERTa encodes the input text into the
logits,

H = Enc(X; θ) (2)

where H ∈ Rd is the logits with the dimensionality
of d. The [CLS] token, positioned at the beginning
of the input sequence, yields a hidden representa-
tion H0, signifying the sequence’s initial contex-

1https://api.fanyi.baidu.com/
2https://huggingface.co/
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tual semantic feature within the vector H . Follow-
ing the acquisition of Following the acquisition
of H0 the [CLS] representation, a fully connected
layer leverages it to predict the corresponding label
for the input text. The output is a softmax function,

ŷ = softmax(W 0H0 + (h0) (3)

where W 0 ∈ Rd×k represents the weight of the
fully connected layer, h0 represents the offset of the
fully connected layer, and k represents the number
of classification labels.

2.3 Supervised Contrastive Learning Loss
Contrastive learning (Khosla et al., 2020)is a tech-
nique that learns to embed representations of simi-
lar samples closer together in the embedding space
while pushing apart representations of dissimilar
samples. In our model training, we employed
this approach by incorporating a supervised con-
trastive loss alongside the cross-entropy loss. We
hypothesized that this method would effectively
handle interventions because it encourages the
model to learn invariant features across different
variations of the data introduced by such interven-
tions (Feng et al., 2023). This invariance is critical
for the model to generalize well to new, unseen
data that might contain similar variations. Further-
more, we experimented with the R-drop technique
R-drop(liang et al., 2021) to further enhance the
model’s generalization capabilities. However, re-
sults from Section 3 suggest that our implementa-
tion did not yield the expected improvements. This
could be attributed to suboptimal parameter set-
tings or the specific characteristics of our dataset
and model size, which might have led to underfit-
ting.

The cross-entropy loss is employed to guide the
model towards accurate classification, which mea-
sures the discrepancy between the probability dis-
tribution predicted by the model and the actual dis-
tribution of the proper labels. The contrastive loss
part hi represents a feature vector, and hi+ is an-
other feature vector within the same category. The
dot product operation effectively calculates the co-
sine similarity between normalized feature vectors,
τ which is the temperature parameter that modu-
lates the model’s ability to differentiate between
pairs of samples. As the temperature parameter in-
creases, the contrastive loss tends towards treating
all sample pairs equally. In contrast, decreasing
the temperature parameter focuses the model’s at-
tention on the most challenging negative samples.

The indicator function ensures that a sample is not
com-pared with itself. The SCL loss aims to bring
samples of the same category closer together while
pushing samples from different categories apart,
thereby enhancing the discriminative power of the
features. α and β hyperparameters are used to bal-
ance the contribution of each loss component. Ulti-
mately, we formulated our loss function as follows
to combine both losses effectively:

LCE = −
N∑

i=1

yi log (ŷi) (4)

LSCL = − 1

N

N∑

i=1

log
exp(hi · hi+/τ)

N∑
j=1

1[j+i] exp(hi · hj/τ)

(5)

L = αLCE + βLSCL (6)

3 Experimental Results

Datasets. NLI4CT (Jullien et al., 2023a) is de-
signed to assist in developing and benchmark-
ing models for clinical NLI. Which consists of
annotated Clinical Trial Reports (CTRs) focused
on breast cancer research. Each CTR is metic-
ulously structured into four key sections: (1)El-
igibility Criteria: Specifies the prerequisites for
patient inclusion in the clinical trial, detailing nec-
essary conditions and characteristics. (2)Interven-
tion: Describes the treatment regimen, including
type, dosage, frequency, and duration of the ad-
ministered treatments. (3)Results: Reports on the
trial’s participant count, outcome measures, met-
rics, and findings. (4)Adverse Events: Documents
observed signs, symptoms, and any adverse effects
encountered by patients during the clinical trial’s
course. The premises for NLI4CT are sourced from
1,000 publicly accessible Breast Cancer Clinical
Trial Reports (CTRs) in English, published on Clin-
icalTrials.gov3. There are 999 breast cancer CTRs
in the dataset. The datasets, which are divided
into train, development, and test sets, contain a
total of 2400 annotated statements. The distribu-
tion of labels be-tween the train and development
sets is even. Upon employing back-translation, the
volume of training data was effectively doubled.
Notwithstanding, the test dataset substantially ex-
ceeds the size of the training dataset, a scenario that
underscores the critical need for models to exhibit

3https://clinicaltrials.gov/
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Class Training Validation Enhancement Training Test

Contradiction 850 100 1700
Entailment 850 100 1700

Total 1700 200 3400 5667

Table 1: Data distribution

robust generalization capabilities. The distribution
of the dacctaset is shown in Table 1.

Evaluation Metrics.The task has three metrics;
the Macro F1-score is a foundational metric, of-
fering a balanced measure of precision and recall
across the dataset’s categorial spectrum without
any semantic interventions. Faithfulness quanti-
fies a model’s capacity to adjust its predictions for
the right reasons, especially when confronted with
semantic-altering interventions. This metric illumi-
nates a model’s understanding of the underlying se-
mantics, rewarding models that exhibit agile adapt-
ability to semantic nuances. Consistency gauges
a model’s reliability in producing uniform outputs
for semantically equivalent stimuli, regardless of
the correctness of the final prediction. This met-
ric champions models that demonstrate robustness
in semantic representation, ensuring that seman-
tically similar inputs yield consistent predictions.
The formula for the three indices is expressed as
follows:

F1 = 2× Precision×Recall

Precision+Recall
(7)

Faithfulness =
1

N

N∑

i=1

|f(yi)− f(xi)| (8)

where xi ∈ C with Label(xi) ̸= Label(yi) and
f(yi) = Label(yi).

Consistency =
1

N

N∑

i=1

1− |f(yi)− f(xi)| (9)

where xi ∈ C where Label(xi) = Label(yi), N is
the total number of sentences, xi and yidenote the
modified and original statements, respectively. The
F1 score primarily aims to evaluate the model’s
performance on data without interventions. At the
same time, the other two metrics assess the abil-
ity to make correct judgments post-intervention,
indicating the model’s deeper and more logical un-
derstanding of semantic information.
Implementation Details. All compared models
were downloaded from HuggingFace. We fine-
tune these models on the training set. The models

Figure 3: F1 scores on the development set for different
learning rates, using the same pre-trained model and
other parameters

Figure 4: F1 scores on the development set for Super-
vised Contrastive Learning Temperature, using the same
pre-trained model and other parameters

are evaluated on the validation every ten steps us-
ing precision, recall, and F1 scores. An Adam
optimizer (Loshchilov and Hutter, 2019) updates
the param-eters. The warmup strategy (He et al.,
2016)is used to optimize the learning rate, and a
fixed ran-dom seed is used.
Parameters Fine-tuning. Initially, manual adjust-
ments were made to the hyperparameters, includ-
ing the learning rate and the temperature for the
contrastive loss function. Due to constraints im-
posed by GPU memory capacity, the batch size for
training data was fixed at 4, with results illustrat-
ed in Figures 3 and 4. Upon identifying the ap-
proximate range of optimal parameters, the Optuna
framework (Akiba et al., 2019) was employed for
hyperparameter tuning. The parameters yielding
the highest F1 score on the development set were
selected for further training and model saving. The
inference results were then uploaded to the plat-
form.
Comparative Results and Discussion. Table 2
demonstrates that models pre-trained on additional
datasets surpass the baseline model in performance
on the development set. Nonetheless, it is shown
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Model Pre-training data Loss F1

Deberta-v3-large CE 0.8018
Deberta-v3-large 600+ tasks CE 0.8518
Deberta-v3-large MultiNLI+FeverNLI+ANLI+LingNLI+WANLI CE 0.8504
Deberta-v3-large MultiNLI+FeverNLI+ANLI+LingNLI+WANLI+Other classification tasks CE 0.8173
Deberta-v3-large 600+ tasks CE+R-drop 0.8487
Deberta-v3-large 600+ tasks CE+SCL 0.8544
Deberta-v3-large +Back Translation 600+ tasks CE+SCL 0.8625
Deberta-v3-large +Back Translation MultiNLI+FeverNLI+ANLI+LingNLI+WANLI CE+SCL 0.8834
Deberta-v3-large +Back Translation MultiNLI+FeverNLI+ANLI+LingNLI+WANLI+Other classification tasks CE+SCL 0.8755

Table 2: Comparative results of experiments in the dev set

F1(dev) F1(test) Faithfulness Consistency

0.8755 0.77 0.67 0.72
0.8834 0.75 0.73 0.74

Table 3: Optimal results of the test

that an excess of pre-training tasks yields minimal
enhancements in model performance, such as the
model that was fine-tuned with multi-task learning
across over 600 tasks from the task source collec-
tion (Sileo, 2023; Laurer et al., 2023). It was also
observed that R-drop might not be ideally suited
for this task, potentially due to suboptimal param-
eter selection. It can be seen from Figure 3 and
Figure 4 that the learning rate of the model is more
suitable in the vicinity of 5e-6.

In contrast, the temperature of comparative learn-
ing is difficult to control, and the model perfor-
mance is not linear, which needs further explo-
ration. A degree of performance improvement was
achieved through supervised contrastive learning.
The highest F1 score of 0.8834 on the development
set was achieved by combining supervised con-
trastive learning with the back-translation method.
However, an F1 score of 0.75 was only achieved by
this model on the test set, equating to the score of
11th place. Scores of 0.73 and 0.74 were reached
on the other two metrics, comparable to the scores
of the 17th and 9th places, respectively. Despite
this, only the highest F1 scores are listed on the
leaderboard. Another model of ours reached an F1
score of 0.77, placing it 9th, yet the scores on the
other two metrics were not as high, placing 17th
and 13th, respectively.

Such scores suggest that predictions are often
not based on valid reasoning by the model. Ac-
curate conclusions, when reached, may be derived
from incorrect premises or misinterpretations of the
input data, suggesting an insensitivity to semantic
changes or an incapacity to reflect these changes
accurately in its predictions. The reduction of this

score indicates the model’s prediction instability
in the absence of significant semantic alterations,
reflecting an excessive sensitivity to minor varia-
tions in input or a failure to capture and maintain
the input’s core semantic features accurately.

These findings reveal deficiencies in our sys-
tem’s ability to understand and process complex
and subtle semantic changes despite adequate per-
formance, as indicated by the F1 score. An overre-
liance on specific data distributions, a lack of gener-
alizability, or challenges in explaining decisions in
practical applications may result. To improve the
model’s Faithfulness and Consistency, it may be
necessary for further research and improvements
to be conducted on the model’s internal representa-
tions and training processes or for additional mech-
anisms to be integrated for better processing of
semantic information.

4 Conclusion

This paper introduces a system based on fine-
tuning and pre-training Deberta-v3-large for Se-
mEval2024 task 2, targeting safe biomedical NLI
for clinical trials. Achieving seventh out of 32 with
an F1 of 0.77 showcases the effectiveness of multi-
task pre-training, supervised contrastive learning,
and back-translation despite struggles with inter-
vention data and deep semantic under-standing. Is-
sues include truncated evidence from extended clin-
ical trial premises (Kong et al., 2022)and insuffi-
cient model depth for causal reasoning. Future
research should enhance semantic comprehension
and causal reasoning and refine contrastive learning
to improve the handling complex data and interven-
tions, aiming to overcome current limitations in
safe biomedical NLI.
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