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Abstract

Finding evidence for claims from content pre-
sented in experimental results of scientific arti-
cles is difficult. The evidence is often presented
in the form of tables and figures, and correctly
matching it to scientific claims presents automa-
tion challenges. The Context24 shared task is
launched to support the development of sys-
tems able to verify claims by extracting sup-
porting evidence from articles. We explore dif-
ferent facets of this shared task modelled as a
search problem and as an information extrac-
tion task. We experiment with a range of meth-
ods in each of these categories for the two sub-
tasks of evidence identification and grounding
context identification in the Context24 shared
task.

1 Introduction

Finding evidence relating to scientific claims in
research articles is a time-consuming task. These
claims can be supported by the article’s text, figures
or tables. The Context24 international shared task1,
organised as part of the Scholarly Document Pro-
cessing workshop at the ACL 2024 Conference, set
a challenge for developing methods for two tasks:
(1) Evidence Identification, where given a scientific
claim and a relevant research paper, participating
systems should identify key figures or tables from
the article that provide supporting evidence for the
claim; and, (2) Grounding Context Identification
where given a scientific claim and a relevant re-
search article, participating systems should identify
all grounding contexts that discuss the experiment
that led to the claim. The grounding context can be
found in different research article sections, such as
in the results sections, including figures and tables.

Our team participated in both tasks with meth-
ods drawing from information retrieval and natural

1https://sdproc.org/2024/sharedtasks.
html#context24

language processing (NLP) research, including sta-
tistical ranking models, dense retrieval and the use
of large language models (LLMs), including multi-
modal LLMs.

2 Background and Related Work

Searching for Evidence In 2020, when the
COVID-19 pandemic hit the world, the informa-
tion retrieval community through TREC, estab-
lished an international shared task called TREC-
COVID (Roberts et al., 2021) in response to the
overwhelming amount of publications on COVID-
19 emerging. This task was designed to research
search algorithms to find scientific evidence on
what COVID-19 is, what are the symptoms of the
disease, and what preventive methods are approved
by the public health authorities (e.g., mask-wearing,
what type of mask). Due to the public interest in
this, there was a need to access reputable informa-
tion and sift through misleading information (i.e.,
information without any scientific basis). While
this task was largely tackled as an information re-
trieval problem known as pandemic information
retrieval (Nguyen et al., 2020), it paved the way
for further research in the NLP community. Some
data have been proposed in the scientific domain as
well, such as SciFact-Open (Wadden et al., 2022a).

Fact Checking and Fake News Detection News
is the most common way to disseminate infor-
mation rapidly. However, fake news— charac-
terised by low-quality, intentionally misleading
information— poses significant threats by distort-
ing public perception and causing negative impacts
on both individuals and society at large (Shu et al.,
2017). Addressing the problem has become im-
perative, prompting researchers to focus on the
automatic verification of facts and detection of fake
news.

Numerous studies and public datasets have been
developed for the task, covering various domains
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Task 1 Task 2

Dataset Domain Training Test Training Test

akamatsulab Cell biology 213 51 28 49
BIOL403 Cell biology 60 — — —
dg-social-media-polarization Social sciences (political science, economics,

HCI)
78 — — —

megacoglab Various (HCI, psychology, economics, CS,
public health)

123 60 14 60

Total 474 111 42 109

Table 1: Dataset specifications. Sizes in the last four columns represent the number of claims in each dataset.

and applications. AVERITEC (Schlichtkrull et al.,
2024) and MultiFC (Augenstein et al., 2019) are
examples of such datasets. To increase the popu-
larity of the task and the development of effective
systems, shared tasks such as Fact Extraction and
VERification (FEVER) (Thorne et al., 2018) have
been organised. FEVER focuses on verifying fac-
toid claims using evidence from Wikipedia and
also introduced new methods, including machine
learning algorithms for fact verification (Ahmad
et al., 2020; Barnabò et al., 2023; Nie et al., 2019;
Sahoo and Gupta, 2021), the application of LLMs
for detecting fake news (Hu et al., 2024), and fact-
checking using multi-modality sources such as im-
ages (Fung et al., 2021; Jindal et al., 2020) and
videos (Micallef et al., 2022).

Scientific Claim Verification Evaluating the va-
lidity of claims in scientific texts is a specialised
area of research essential due to the rapid increase
in scientific publications. This task aims to deter-
mine whether proposed scientific claims are sup-
ported or refuted by retrieving relevant evidence
from scientific documents, which may include sen-
tences, figures, or tables. Wadden et al. (2020) intro-
duce the task with the SciFACT dataset, consisting
of scientific claims with corresponding abstracts
that either support or refute the claim, with a base-
line method for the task. The success of retrieval-
based approaches has led to the development of
document-level (Pang et al., 2020) and sentence-
level (Soleimani et al., 2020) methods for the task.
With advancements in LLMs, new systems on this
task employ LLMs for document retrieval (Pradeep
et al., 2021a,b), multi-task label prediction for sci-
entific fact verification (Li et al., 2021; Wadden
et al., 2022b), and automatically generating veri-
fiable scientific claims and fact-checking (Wright
et al., 2022; Singh et al., 2024).

3 Dataset

The claims and papers used in the Context24 shared
task come from four separate datasets, each of
which comes from a different set of research do-
mains. Table 1 shows a breakdown of the claims
per dataset for both sub-tasks. For Task 1, the num-
ber of claims is 474 for training and 111 for testing,
and for Task 2, it is 42 for training and 109 for
testing. Task 1 involves 193 articles in the training
set and 46 in the testing set, while Task 2 includes
31 training articles and 44 testing articles, demon-
strating that an article may contain one or more
claims.

Silver Dataset annotation In addition to the an-
notated data, we constructed a silver-annotated
dataset utilising a silver data corpus containing
17,007 (unannotated) articles provided by the
shared task organisers. We used the GPT3.5 model
fine-tuned with the training set of Task 2 (see Sec-
tion 4.2) to automatically generate claims and cor-
responding evidence for each of the articles (as
opposed to generating evidence, given an article
and a claim, which was the objective of task 2).
Similar to the main dataset, the silver-annotated
dataset includes multiple claims per article.

4 Methods

4.1 Task 1: Evidence Identification

As mentioned above, this task requires a ranked list
of relevant key figures and tables based on a given
scientific claim and a research paper. All images
of figures and tables alongside the article’s full text
are provided.

We tackle evidence identification as an informa-
tion retrieval task. As described below, we experi-
ment with multiple methods of document prepro-
cessing, representation, indexing, and ranking.
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Article Chunking We experiment with three
approaches to splitting full-text articles into
fragments. We use sentence splitting, fixed-
size chunking, and semantic splitting using
semantic_splitter Python library. The in-
tention is to capture the articles’ text content at
different granularity levels.

Indexing Logic Our experiments cover two sepa-
rate base approaches to creating indices. In the first
one (henceforth referred to as ‘element-guided’),
we directly index representations of tables and
figures aggregated from article chunks (see pre-
vious paragraph) that cite them. We detect table
and figure citations using a simple rule-based ap-
proach that searches the chunks for specific expres-
sions, such as: ‘Table NUM’, ‘Figure NUM’, ‘Tab.
NUM’, etc. For example, to represent FIG 1 in a
specific article, we concatenate all citing chunks
(i.e., those containing mentions of ‘Figure 1’, ‘Fig.
1’, ‘FIG 1’, etc.) found in this article. This con-
catenated text becomes a document in our index.
We then rank the evidence (so, tables and figures)
using the claim’s text as a query and calculating
the relevance of the documents (so, representations
of tables and figures) to the query using a specific
method (as discussed further in this section). We
create a single index for all the evidence across the
entire article corpus, which is important for index-
ing methods that use corpus statistics for relevance
calculations (in particular, inverted indices with
BM25 relevance).

In our second approach (henceforth referred to
as ‘chunk-guided’), articles are first chunked at spe-
cific levels of granularity (sentences, paragraphs,
and chunks of 128, 256, 512, and 1024 tokens).
These chunks are indexed in separate indices us-
ing Elasticsearch, that is, sentences and paragraphs,
and each window-size chunk results in a separate
index of chunks. In this setup, the claims are used
as queries to rank the snippets of the corresponding
document. This produces a ranked list of snippets.
We then extract table and figure mentions from the
ranked elements of this list. We contemplate three
evidence-ranking methods for the chunk-guided
approach:

1. Since each snippet may reference more than
one figure or table, we score the tables and
figures using reciprocal rank fusion – we sum
the inverse rank score of all citing snippets
for every table and figure. We refer to this
approach as ‘rank fusion scoring’.

2. One could reasonably assume that relevant ev-
idence should be mentioned in one of the most
relevant paragraphs. We, therefore, concate-
nate the snippets from the relevance-ranked
list and rank the tables and figures by the order
of mentions in this concatenated text.

3. We delegate the task of producing the ranked
list of evidence to an LLM (Llama 3 70B); the
ranked list of snippets is included in the LLM
prompt together with the claim text.

Indexing and retrieval methods For the
element-guided approach, we evaluate two index-
ing and relevance scoring models. Our baseline
experiments use a traditional inverted index with
BM25 relevance scoring. We also evaluate an
embedding-based approach, where the evidence
representations and the claim are vectorised using
a Mistral E5 embedding model, and relevance is
then calculated as a cosine similarity of the embed-
ding vectors.

For the experiments with the chunk-guided ap-
proach, we have used a hybrid index combining
BM25 relevance and embeddings, implemented us-
ing DeBIR (Nguyen et al., 2023).2 In this setup, we
evaluate two universal embedding models: Mistral
E5 and BGE v1.5 Large.

Image Retrieval Experiment We use a multi-
modal embedding model CLIP (Radford et al.,
2021)– which is OpenAI Contrastive Learning In
Pretraining—to generate embedding from images
and claim texts. The evidence in this experiment is
ranked directly by relevance, i.e., the cosine similar-
ity between the text (claim) embedding and image
(figure or table) embedding.

Use of Captions We also carry out some experi-
ments that leverage text extracted with OCR from
caption images. In the element-guided approach,
we would append the corresponding caption to the
(concatenated) textual representation of a specific
figure or table. In the chunk-guided approach, each
caption is considered a separate document for re-
trieval.

Use of a LLM to Rewrite the Evidence Rep-
resentations We also present experiments with
the reformulation of the table and figure textual

2Preliminary testing on the training set showed that BM25
significantly outperforms embedding-only approaches. We,
therefore, only compared against BM25 as we are limited by
the number of runs during the shared task.
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Run Name (as submitted) Description

Top-k merge Round-robin ranking fusion of all our runs except near identical and other round-
robin mergers

RS Merge w/ Rank s=2 Reciprocal ranking fusion of all runs, except other round-robin mergers, where
the ranking of the run is also considered for fusion.

top-k merge all-runs Round-robin ranking fusion of all our runs except other round-robin mergers
E5 on LLM-rephrased descriptions Element-guided Mistral E5 indexing with LLM-rephrased descriptions (original

chunk size of 1500 characters with semantic chunking)
E5 Element-guided Mistral E5 indexing with a chunk size of 100 tokens
Hier-Caption+E5+DeBEIR Hierarchical retrieval approach over all granularities using the DeBEIR scorer

with E5 embeddings and rank-score fusion. Captions are excluded from retrieval.
e5+HierAll+DeBEIR+RS Same as above, except captions, are also considered.
e5+HierCapSent512+DeBeIR Similar to the above, however, only the captions, sentences and chunk size of 512

are considered for retrieval.
E5 w. semantic chunking Element-guided Mistral E5 indexing with semantic chunking with a chunk size

of 1000 characters
Plain BM25 100 word chunks Element-guided inverted index with BM25 ranking and 100-token chunking
BM25 (Articles as Document) + UM Chunk-guided retrieval of documents (chunk size of 512) using unique merging.
BM25 (Articles as Document) + RS Chunk-guided retrieval of documents (chunk size of 512) using reciprocal rank-

score fusion and BM25 relevance scoring.
BGE + DeBEIR + 512 + RS Chunk-guided retrieval of documents (chunk size of 512) using reciprocal rank-

score fusion and BGE embedding model and cosine similarity.
BM25 ’element-as-document’ Element-guided inverted index with BM25 ranking and semantic chunking with

chunk size of 1000 characters
BM25 with citing contexts and captions Element-guided inverted index with BM25 ranking and 100-token chunking, with

captions
BM25 on LLM-rephrased descriptions Element-guided inverted index with BM25 with LLM-rephrased descriptions
Llama3-70b+figures merging Using the articles retrieved with E5 embeddings, DeBEIR and a chunk size of

512. Llama3 was used to extract and order elements.
Image_embedding (BaselLine) Text-to-image retrieval with CLIP

Table 2: Summary of submitted runs for Task 1 (evidence identification).

representations in our element-guided approach.
We used a Mistral-7B-instruct-v0.2 model with a
prompt asking what is presented in a specific fig-
ure given its text representation. That is, it cites
chunks from the scientific article. The index would
then be created using LLM-generated texts (i.e.,
the reformulations).

Hierarchical approach and ranking fusion ex-
periments Finally, our submissions also include
approaches that combine different ranking meth-
ods. In particular, we experiment with a hierar-
chical approach where the claim is used to query
chunk-guided indices at all levels of granularity
and the final result is aggregated using reciprocal
rank fusion from the resulting rankings (of different
granularities).

We further explore the idea of fusing signals
from different ranking systems with a simple round-
robin approach that merges runs by appending
unique results from a specific top portion of each
individual ranking, with the top portion growing
each of the round-robin passes.

Although the hierarchical and round-robin
merged runs employ a similar principle, the in-

tuition behind them is slightly different. With the
hierarchical runs, we investigate merging results
at different granularities, but we still use a single
retrieval approach across the merged runs. With
the round-robin merge, the intention is to combine
high-confidence results from a reasonably diverse
set of techniques.

Submitted Runs In Table 2, we summarise the
runs we submitted for evaluation, with a short de-
scription of each run. Each description conveys
how the run relates to the methods presented above.

4.2 Task 2: Grounding Context Identification

This task requires systems to generate a list of text
fragments, based on a specific research article, that
provides information on a given scientific claim.
The approaches we experiment with for this task
are described below.

Retrieval-based Approach In our approach, we
employ BM25 as a retrieval model in various con-
figurations. The documents are segmented into
sentences, and the query is the provided claim. For
a given article, we retrieve n sentences that are
most relevant to the given claim. Different systems
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Run Name (as submitted) Description

rule_based_claude_postprocess Retrieval with rule-based filtering with Claude LLM to generate evidence with
post-processing

gpt_clean_postprocess LLM (GPT4) zero-shot setting with post-processing
rule-based Retrieval with rule-based filtering approach
bm25_5_llama3 Retrieval-based approach using retrieval+LLM using a combination of BM25 and

Llama3 LLM
claude_zero_shot LLM (Claude) zero-shot setting
llama3_full_article LLM (Claude) zero-shot setting
bm25_clean_page Retrieval-based approach with collected documents
claude_clean LLM (Claude)zero-shot setting with collected documents
gpt_finetuned_clause LLM (GPT3.5) fine-tuned setting at clause level
bm25_5+claude Retrieval-based approach using a combination of BM25 and Claude LLM
debier_256 Retrieval-based approach with a chunk size of 256 using Debier as the retrieval

method
gpt_sentence LLM (GPT4) zero-shot setting at clause level instead of sentence level
bm25_5_left_neighbor Retrieval-based approach using retrieval+heuristic combination left sentences are

selected as neighbour
claude_prompt (who, how, what) LLM (Claude) zeros-hot setting with prompt using the definition of the shared task

for Task 2
llama3-8b ft 5epoch lre-6 LLM (Llama3-8B) fine-tuned setting on the training set of the shared task
sft llama3-8b silver data LLM (Llama3-8B) fine-tuned setting on silver dataset

Table 3: Summary of submitted runs for Task 2 (Grounding Context Identification).

that leverage the retrieval model are listed below:

• Simple retrieval: We apply BM25 directly
to the article, which has been split into sen-
tences, to retrieve n sentences as evidence.
This method serves as a straightforward way
to identify evidence as the most relevant sen-
tences (based on the BM25 scoring).

• Retrieval + LLM: In this approach, BM25
is used to retrieve the most promising can-
didate sentences from the article, narrowing
down the content before it is processed by
an LLM. Instead of using the entire article
in the prompt for the LLM, we only provide
the sentences retrieved by the BM25 method.
This can improve the efficiency and focus of
the LLM’s processing by concentrating on the
most relevant sentences.

• Heuristic: Here, we augment the retrieval re-
sults by concatenating adjacent (neighbour)
sentences to those retrieved by BM25, thus us-
ing them as additional evidence. This method
enhances comprehension and topic continu-
ity by using neighbour sentences to provide
additional context.

• Retrieval with rule-based filtering: Upon
inspecting the training set we observe that ev-
idence fragments often share a common writ-
ing style and, consequently, contain similar
patterns. In this approach, we build a list

of common expressions—such as ‘assigned
to’, ‘of all prior’, and ‘in the absence of’—
using the ground truth grounding contexts.
For each ground truth context, we include
the longest sub-sequence of tokens (which
includes at least one verb, adjective, noun,
or noun phrase) shared by at least one other
ground truth context. At inference, we filter
BM25 results obtained with a simple retrieval
using the list of common expressions. That
is, we discard candidate sentences that do not
contain any of the common expressions.

LLM In addition to the approaches utilising the
retrieval method, we also investigate the use of
LLMs in zero-shot, few-shot and fine-tuning sce-
narios.

Zero- and few-shot learning leverages the LLM’s
pre-trained knowledge to perform tasks without ad-
ditional task-specific training (Brown et al., 2020;
Radford et al., 2019). For this task, we provide the
article and claim in the prompt to extract evidence
in zero-shot learning and we select k in-context
samples from the train set in few-shot learning.
Fine-tuning involves adapting a pre-trained LLM
to the task using the provided annotated dataset. We
finetune two different language models: Llama3
8B (AI@Meta, 2024)3 and GPT-3.5.

Submitted Runs Table 3 summarises the runs we
submitted for evaluation, with a short description

3https://github.com/meta-llama/llama3
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of each run. Each description conveys how the run
relates to the methods presented above.

5 Experimental Setup

We use the default b and k1 parameter values in
BM25 implementation, utilising rank_bm25 library
for the element-guided approach in Task 1 and the
retrieval-based approach in Task 2, and Elastic-
search for the chunk-guided approach in Task 1.

In Task 2, we use two different tools to identify
sentences in the full-text articles: NLTK (Bird and
Loper, 2004) and SpaCy (Honnibal and Montani,
2017), with the best results reported. We use the
PoS tagger of the NLTK library for the retrieval
with the rule-based filtering approach proposed for
Task 2. We retrieved the original pdf files from the
publishers using DOIs in the original articles. This
led to a cleaner version of the document collection.
It also provided us with information missing from
the articles, such as the page numbers.

In Task 1, we use the following instructions
(prompts) to create E5 query embeddings for
element-, and chunk-guided approaches, respec-
tively:

• Given a claim, retrieve descriptions of figures
and tables that support the claim

• Given a claim, retrieve documents that contain
references to figures and tables that support
the claim

In Task 2, we use the following prompt for zero-
shot experiments of LLMs:

• Please extract evidence clauses from the given
article for the given claim CLAIM [Given Ar-
ticle Start] FULL TEXT [Given Article End]

For fine-tuning the OpenAI GPT model in Task
2, we use the provided API (OpenAI, 2023). The
steps applied before fine-tuning are the preparation
of the training data and its upload to the OpenAI
servers. The format of the training data is JSONL.
One sample template of the training data is given
below:

"messages": [
{"role": "system",
"content":

FULL TEXT},
{"role": "user", "content":
"What are evidences for the
given claim:" CLAIM},

{"role": "assistant",
"content": EVIDENCE}
]

We use the default hyperparameters of the API
for fine-tuning. After fine-tuning the GPT3.5
model, we use the following prompts for inference:

• What are evidences for the given claim:
CLAIM

• What are evidence clauses for the given claim:
CLAIM

For our experiments with LLaMA-3 8B4, we
fine-tune the model on the training data and silver
dataset separately for Task 2. Given the relatively
small size of the training dataset.

We eliminate the introductory sentences from
LLM outputs (e.g., ‘Here are two relevant evidence
sentences from the given article:’) using pattern-
based matching with colon (:) as postprocessing
in Task 2.

Metrics For both sub-tasks, we follow the eval-
uation procedure put in place by the shared task
organisers. For Sub-task 1 a typical ranking met-
ric of NDCG (Järvelin and Kekäläinen, 2002) at 5
and 10 is used. For the grounding sub-task, BERT
score (Zhang et al., 2020) and ROUGE (Lin, 2004)
variants are reported to measure the overlap be-
tween the identified context and the ground truth.

6 Experimental Results

6.1 Task 1: Evidence Identification

The test set results of our evidence identification
experiments are shown in Table 4.

Our best single-model runs are element-guided
E5 (‘E5’, nDCG@5 of .55) and element-guided
E5 with LLM-reformulated texts (‘E5 on LLM-
rephrased descriptions’, nDCG@10 of 0.60). Both
runs used fixed-sized chunking with a window size
of 100 tokens. While the method outperforms other
single model runs, our experiments indicate that it
is sensitive to prompt used for query embedding
(approximately -10% on development set) and to
chunking strategy (see ‘E5 w. semantic chunking’
run, we also observed similar trend on development
set).

4We use the code of llama-recipes https:
//github.com/meta-llama/llama-recipes and
models hosted on Hugginface https://huggingface.
co/meta-llama/Meta-Llama-3-8B.
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Run Name nDCG@5 nDCG@10

Top-k merge 0.5542 0.6160
RS Merge w/ Rank s=2 0.5598 0.5942
top-k merge all-runs 0.5464 0.6005
E5 on LLM-rephrased descriptions 0.5464 0.6005
E5 0.5542 0.5894
Hier-Caption+E5+DeBEIR 0.5309 0.5654
e5+HierAll+DeBEIR+RS 0.5251 0.5653
e5+HierCapSent512+DeBeIR 0.5116 0.5560
E5 w. semantic chunking 0.4809 0.5304
Plain BM25 100 word chunks 0.4665 0.5195
BM25 (Articles as Document) + UM 0.4636 0.5199
BM25 (Articles as Document) + RS 0.4681 0.5129
BGE + DeBEIR + 512 + RS 0.4639 0.5145
BM25 ’element-as-document’ 0.4597 0.5183
BM25 with citing contexts and captions 0.4622 0.5098
BM25 on LLM-rephrased descriptions 0.4552 0.5092
Llama3-70b+figures merging 0.4625 0.4954
Image_embedding(BaselLine) 0.2954 0.3681

Table 4: Evidence identification task results based on NDCG.

Run Name BERT Score ROUGE-1 ROUGE-2 ROUGE-L

rule_based_claude_postprocess 0.8577 0.3773 0.1955 0.2716
gpt_clean_postprocess 0.8525 0.3663 0.1968 0.2544
rule-based 0.8651 0.3485 0.1782 0.2731
bm25_5_llama3 0.8499 0.3431 0.1950 0.2718
claude_zero_shot 0.8530 0.3686 0.1812 0.2552
llama3_full_article 0.8569 0.3420 0.1781 0.2492
bm25_clean_page 0.8486 0.3462 0.1800 0.2284
claude_clean 0.8492 0.3551 0.1622 0.2367
gpt_finetuned_clause 0.8510 0.3301 0.1865 0.2330
bm25_5+claude 0.8471 0.3443 0.1768 0.2257
debier_256 0.8531 0.3426 0.1589 0.2385
gpt_sentence 0.8477 0.3122 0.1668 0.2114
bm25_5_left_neighbor 0.8411 0.2977 0.1617 0.1920
claude_prompt (who, how, what) 0.7877 0.2941 0.0877 0.1650
sft llama3-8b silver data 0.7751 0.2093 0.0394 0.1325
llama3-8b ft 5epoch lre-6 0.7743 0.2077 0.0398 0.1296

Table 5: Grounding Context Identification task results based on BERT Score.
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We have observed some improvement over sin-
gle system runs with our fused runs. More
specifically hierarchical runs outperform single-
granularity counterparts. Also, our best overall
scores are attained by the round-robin merged runs
(although, admittedly, the improvements over the
best single model E5 runs used in this scenario are
relatively small).

All of our BM25 runs scored close to 0.46 and
0.51 for nDCG@5 and nDCG@10, respectively.
This is a somewhat surprising result, as we have
observed much more pronounced differences in
the effectiveness of different BM25 flavours on the
training set.

Ranking evidence directly using an LLM yielded
scores lower than most of the BM25 baselines
(slightly). Our experiment with image and text
embeddings resulted in significantly lower scores.

6.2 Task 2: Grounding Context Identification
Table 5 demonstrates the performance of our meth-
ods on the test set of Task 2.

We achieve the highest BERT Score with the
retrieval with the rule-based filtering approach
(‘rule_based’, BERTScore of 0.87) among all meth-
ods. Most methods yield BERT scores ranging
between 0.84 and 0.87, except for the fine-tuning
LLM (Llama3-8B). Our best runs are based on
retrieval-based approach which are retrieval with
rule-based filtering (‘rule_based’, ROUGE-L of
0.27), retrieval with a combination of rule-based fil-
tering and LLM (‘rule_based_claude_postprocess’,
ROUGE-L of 0.27) and retrieval + LLM
(‘bm25_5_llama3’, ROUGE-L of 0.27) in terms
of ROUGE-L score. This indicates that selecting
evidence from the article enhances semantic simi-
larity and coherence across longer text sequences.

An important observation is that the retrieval-
based approach results achieve comparable or bet-
ter BERT scores to LLMs (e.g., claude_clean and
gpt_sentence). This suggests that the extractive
approach (BM25) remains superior for the task due
to its simplicity, despite LLMs’ remarkable perfor-
mance in other NLP tasks.

Combining the retrieval method with LLMs,
named Retrieval + LLM (e.g., bm25_5+claude
and bm25_5_llama3 ) improves ROUGE scores
by focusing the grounding context on relevant
fragments only. However, in terms of ROUGE
scores, LLM methods with zero-shot settings
(gpt_clean_postprocess and claude_zero_shot),
as well as the Retrieval + LLM approach

(rule_based_claude_postprocess) outperform other
methods.

LLMs are sensitive to provided prompts in zero-
shot settings (e.g., claude_clean and claude_prompt
(who, how, what)). Additionally, post-processing
significantly influences ROUGE scores by remov-
ing irrelevant parts of generated evidence, as
ROUGE evaluates the overlap of n-grams between
generated evidence and human-annotated refer-
ences.

7 Conclusions

We participated in the Context24 Shared Task for
multimodal evidence and grounding context iden-
tification for scientific claims. There were two
subtasks for evidence identification and ground-
ing evidence identification. For the former, we
treated it as an information retrieval task where
both statistical and dense retrieval methods were in-
vestigated. We obtained promising results with the
Mistral E5 dense retrieval model and with our rank-
ing fusion experiments. For the second subtask,
our best method used a filtering mechanism where
frequent expressions were identified from the train-
ing data. This method yielded higher results than
those we obtained using generative models.
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