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Abstract

Large Language Models (LLMs) have shown
remarkable potential across various domains,
yet their application in addressing complex sci-
entific problems remains a formidable chal-
lenge. This paper presents a novel method-
ology to augment the problem-solving capa-
bilities of LLMs by assigning them roles as
domain-specific experts. By simulating a panel
of experts, each LLM is tasked with delivering
professional and cautious responses to scien-
tific inquiries. Our approach involves querying
multiple LLMs and assessing the consistency
of their responses. High agreement among the
LLMs suggests greater confidence in the pro-
posed solution, whereas discrepancies prompt
a collaborative discussion among the LLMs to
reach a consensus. This method emulates real-
world scientific problem-solving processes, fos-
tering a more reliable and robust mechanism
for LLMs to tackle scientific questions. Our
experimental results show that assigning roles
to multiple LLMs as domain-specific experts
significantly improves their accuracy and re-
liability in solving scientific problems. This
framework has the potential to advance the ap-
plication of Al in scientific research, enhancing
its effectiveness and trustworthiness.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success in a wide range of natural
language processing tasks, including text gener-
ation (Swanson et al., 2021; Yang et al., 2023),
machine translation (Burda-Lassen, 2023; Alves
et al., 2023), and text summarization (Laban et al.,
2023). Despite their versatility and strong perfor-
mance across various domains, the application of
LLM:s to solving complex scientific problems has
remained a significant challenge. The primary ob-
stacle lies not in the absence of domain-specific
knowledge within these models, but rather in their
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You are an expert in Classical Dynamics of Particles and Systems.
Please provide answers to the following problem. Your response
should be accurate, high-quality, and expertly written.

( The solution to this problem is as follows: ...
-

Expert]

There is an issue with step (3) of Expert 1 as he did
not use the formula correctly... The correct answer
should be ...

oy | Expert 2 is right. Here are the corrected
- answers ...
Expertl

Consensus reached: Two experts (agents) reached a consensus on
this problem. Take this consensus answer as the final answer to
the scientific problem.

Figure 1: Simulating Expert Discussions with Multi-
agent (SEDM).

limited ability to effectively harness this knowledge
when confronted with intricate scientific problems
that demand expert-level understanding and reason-
ing (Addlesee, 2024).

The application of LLLMs to scientific problem-
solving presents a unique challenge due to the strin-
gent requirements for precision and reliability in
research. Minor inaccuracies can have far-reaching
consequences, undermining the validity and trust-
worthiness of results. While LL.Ms possess exten-
sive knowledge, their current architectures often
struggle to consistently apply this knowledge to
meet the rigorous demands of scientific inquiry.
This limitation underscores the need for innovative
approaches to enhance the problem-solving capa-
bilities of LLMs in specialized domains. Improving
the performance of LLMs in accurately and reliably
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solving complex scientific problems could signifi-
cantly advance their utility in research settings and
unlock new potentials for artificial intelligence in
science.

In this study, we introduce a novel methodology
called Simulating Expert Discussions with Multi-
agent (SEDM) that enhances the problem-solving
capabilities of LLMs by assigning them roles as
domain-specific experts, as illustrated in Figure 1.
This approach involves simulating a panel of ex-
perts, where each LLM is tasked with providing
professional and cautious responses to scientific in-
quiries. By querying multiple LLMs and evaluating
the consistency of their responses, we can gauge
the confidence in the proposed solutions. High
agreement among the LL.Ms indicates greater reli-
ability, while discrepancies trigger a collaborative
discussion among the models to reach a consensus.
This method mirrors real-world scientific problem-
solving processes, fostering a more dependable
mechanism for LL.Ms to address scientific ques-
tions. We evaluate the performance of SEDM on
a range of problems across various scientific do-
mains, including physics, chemistry, and mathe-
matics. We use accuracy as the evaluation metric
and compare SEDM with baseline methods such
as direct LLM usage and few-shot learning.

In summary, our contributions are:

* We propose a novel multi-agent framework
that assigns specific expert roles to LLMs, en-
abling them to collaboratively address scien-
tific problems.

* We develop a discussion architecture for multi-
agent systems, and experiments have shown
that this architecture can effectively enable
multiple agents to reach the correct consensus.

* We demonstrate through extensive experi-
ments that our approach significantly im-
proves the accuracy LLMs in scientific
problem-solving. For instance, when using
the GPT-4 model, SEDM achieves an average
accuracy of 57.18% across all subjects, rep-
resenting an improvement of 32 percentage
points compared to direct query and 36 per-
centage points compared to few-shot learning.
These results advance the application of Al in
scientific research.

2 Related Work

Large Language Model Reasoning Large lan-
guage models (LLMs) have demonstrated signifi-
cant reasoning capabilities, especially when scaled
to hundreds of billions of parameters (Ouyang et al.,
2022; OpenAl et al., 2024). Various techniques,
such as chain-of-thought prompting (Wei et al.,
2022; Kojima et al., 2022; Shi et al., 2022) and
rationale engineering (Fu et al., 2023; Zhou et al.,
2022), have been proposed to further elicit and en-
hance the reasoning abilities of LLMs. However,
despite these advancements, LLMs still struggle
with complex reasoning tasks, particularly in the
domain of scientific problem-solving (Chen et al.,
2023; Wang et al., 2024; Ma et al., 2024). LLMs
often struggle to provide reliable and consistent an-
swers to intricate scientific questions (Wang et al.,
2024), necessitating the development of novel ap-
proaches to improve their reasoning capabilities in
this context.

Multi-Model Collaboration and Role-Playing
Previous studies have explored the benefits of role-
playing in LLMs, demonstrating that assigning dis-
tinct roles can lead to more specialized and accu-
rate outputs (Lu et al., 2024; Guan et al., 2024; Tao
et al., 2024; Bhattacharyya et al., 2024). Addition-
ally, collaborative frameworks where multiple mod-
els interact and discuss to reach a consensus have
shown promise in improving the robustness of the
generated solutions (Du et al., 2024; Lu et al., 2024;
Sadler et al., 2024; Mehta et al., 2024; Figueras
et al., 2023; Xiong et al., 2023). Considering the
complexity and rigor of scientific research, more ef-
fective methods are needed to stimulate the optimal
intelligence of multi-agent systems.

Large Language Models in Solving Scientific
Problems Recent studies have explored the po-
tential of LLMs in scientific problem-solving, in-
cluding theorem proof (Dong et al., 2023; Song
et al., 2024), hypothesis generation (Qi et al., 2023;
Yang et al., 2024) and scientific discovery (Boiko
et al.,, 2023; Al4Science and Quantum, 2023).
However, the understanding and reasoning capa-
bilities of LLMs in fundamental STEM(Science,
Technology, Engineering, and Mathematics) do-
mains remain underexplored (Wang et al., 2024;
Ma et al., 2024). While LLMs exhibit impressive
performance on high-level scientific tasks, their
ability to grasp complex scientific concepts, en-
gage in rigorous logical reasoning, and provide
reliable solutions to domain-specific problems is
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still uncertain. These challenges necessitate a more
nuanced approach to harnessing the full potential
of LLMs.

3 Method: Simulating Expert Discussions
with Multi-agent

We propose a novel approach called Simulating
Expert Discussions with Multi-agent (SEDM) to
enhance the scientific problem-solving capabilities
of large language models (LLMs) by simulating
expert discussions. The overall framework of our
methodology is illustrated in Figure 2. We assign
multiple LLMs with domain-specific expert roles
and simulate a panel discussion among these ex-
perts on a given scientific problem. By analyzing
and evaluating the consistency of the LLM experts’
responses, we derive reliable solutions.

3.1 Role Assignment

In our proposed approach, we assign domain-
specific expert roles to multiple LLMs to address a
given scientific problem within a particular domain.
This assignment of expert roles is motivated by the
following rationale:

* Fostering Collaboration and Consensus
Scientific progress often relies on collabora-
tion and consensus-building among experts
within the same domain. By assigning iden-
tical roles, we encourage LLMs to engage in
simulated collaborative discussions, challeng-
ing each other’s assumptions, reconciling dif-
ferences, and ultimately converging towards a
consensus solution.

¢ Enhancing Reliability through Ensemble
Methods Despite being instances of the
same LLM architecture, each individual
model may exhibit variations in its outputs
due to factors such as random initialization,
stochastic sampling, or sensitivity to input
perturbations. By employing an ensemble of
multiple LLMs with identical roles, we can
leverage the collective wisdom of the group,
mitigating the impact of individual model in-
stabilities and enhancing the overall reliability
of the proposed solutions.

» Exploring Diverse Reasoning Paths While
sharing the same domain knowledge and ex-
pertise, each LLM may explore different rea-
soning paths and problem-solving strategies

when presented with the same scientific prob-
lem. Assigning identical roles allows us to
capture and analyze these diverse reasoning
paths, potentially uncovering novel insights
or alternative approaches that a single LLM
might overlook.

Through this approach, we create a simulated
panel of domain-specific experts with shared exper-
tise but diverse reasoning perspectives. This setup
emulates the real-world dynamics of scientific dis-
course, where experts from the same field evaluate
and build upon each other’s work, ultimately ad-
vancing our understanding of complex scientific
problems.

3.2 Expert Discussion Simulation

At the heart of our proposed methodology lies the
simulation of a panel discussion among multiple
LLMs, each assuming the role of a domain-specific
expert within the same scientific field. The overall
overview of expert discussion simulation phase is
shown in Figure 3. This approach aims to leverage
the collective knowledge and diverse perspectives
of the LLMs to tackle complex scientific problems
effectively. The simulation process encompasses
the following key steps:

Problem Presentation The initial step in-
volves presenting a well-defined scientific problem
or inquiry to the panel of LLMs.

Individual Responses Upon receiving the
problem, each LLM, operating within its assigned
expert role, generates an independent response.
This response is based on the LLM’s knowledge
and understanding of the specific sub-discipline or
area of specialization it represents. By providing
individual responses, the LLMs contribute their
unique perspectives and insights to the problem-
solving process, mimicking the diversity of opin-
ions often encountered in real-world scientific dis-
cussions.

Response Analysis and Comparison Once
all the LLMs have provided their individual re-
sponses, the next step involves collecting and ana-
lyzing these responses for consistency and comple-
mentarity. The analysis focuses on identifying ar-
eas of agreement and divergence among the LLMs’
perspectives. High levels of agreement among the
responses suggest a strong consensus and increased
confidence in the proposed solution. Conversely,
divergent viewpoints highlight areas that require
further exploration, clarification, or synthesis, open-
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Figure 2: Framework of the SEDM (Simulated Expert Discussion with Multi-agent) approach to enhance LLM
scientific problem-solving. Key steps: (1) Role Assignment of domain-specific experts to multiple LLMs; (2) Expert
Discussion Simulation involving problem presentation, individual responses, response analysis, and collaborative
discussion; (3) Consistency Evaluation - if consensus is reached, the agreed solution is adopted; otherwise, the

solution of the most persistent expert (agent) is selected.

ing up opportunities for a more comprehensive un-
derstanding of the problem.

Collaborative Discussion and Refinement
In cases where the initial responses reveal discrep-
ancies or complementary insights, a collaborative
discussion phase is initiated. During this phase, the
LLMs engage in a simulated dialogue, exchanging
their perspectives, challenging assumptions, and
working towards reconciling any differences. This
discussion process closely resembles the way ex-
perts within the same scientific domain would in-
teract and collaborate in real-world settings, fos-
tering a rigorous and iterative refinement of ideas.
Through this iterative process of discussion, the
LLMs aim to converge towards a more comprehen-
sive and well-supported solution to the scientific
problem at hand.

The simulated expert discussion within a spe-
cific domain, as outlined above, harnesses the col-
lective knowledge and diverse perspectives of the
LLMs to tackle complex scientific problems. By
emulating the rigorous process of scientific inquiry,
where ideas are scrutinized, refined, and synthe-
sized through critical discourse among experts, our
methodology aims to enhance the problem-solving
capabilities of LLMs in scientific domains. This
approach not only leverages the strengths of indi-
vidual LL.Ms but also promotes a collaborative and
iterative problem-solving process, ultimately lead-
ing to more reliable and comprehensive solutions
to scientific challenges.

3.3 Consistency Evaluation

Upon completion of the expert discussion simula-
tion, we conduct a consistency evaluation of the
solutions proposed by the multiple LLMs assum-
ing expert roles. This evaluation process is crucial
for ensuring the reliability and robustness of the
proposed solutions. Specifically, we employ the
following strategies:

Consensus Determination When all experts
reach a unanimous agreement during the discus-
sion process, we consider that they have achieved
consensus on the given problem. In such cases,
we directly adopt the solution unanimously agreed
upon by the experts as the final result. The attain-
ment of consensus often indicates that the solution
has undergone thorough discussion and argumenta-
tion, lending it higher credibility and reliability.

Maximum Discussion Round Limit Recog-
nizing that expert discussions in the real world
cannot continue indefinitely, we set a maximum
number of discussion rounds for the expert deliber-
ations. This limit serves to prevent the discussion
process from entering an endless loop while also
encouraging the experts to reach consensus or make
decisions within a reasonable timeframe.

If the experts fail to reach complete agreement
within the maximum number of discussion rounds,
we resort to the following strategy: we select the so-
lution proposed by the expert (agent) who most per-
sistently defended their viewpoint throughout the
discussion. The rationale behind this strategy is that
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Problem Presentation

What must be the distance between point charge ¢ = 26.0uC and point
charge g2 = —47.0uC for the electrostatic force between them to have a magni-

tude of 5.70 N?

Individual Response
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Response Analysis &
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After comparison, the answers of the two are inconsistent, and the discussion stage has begun.
Prompt: Please carefully consider the opinions of other experts, but do not blindly believe them. Consider
whether you agree with this insight, how it affects your answer, and provide an updated answer.

Collaborative Discussion &
Refinement

1.387m &

1.387m &

Figure 3: Overview of expert discussion simulation phase.

the expert who firmly maintains their stance likely
possesses a deeper understanding of the problem
and has provided more comprehensive arguments,
rendering their proposed solution more convincing
and reliable.

Discussion Convergence Analysis  Although
we establish a maximum number of discussion
rounds, empirical evidence suggests that expert dis-
cussions often converge to consensus or a few pri-
mary viewpoints within a relatively small number
of rounds. We conduct a convergence analysis of
the discussion process, quantifying the frequency
of achieving consensus or converging to main view-
points at different round thresholds. Through ex-
tensive case studies, we observe that expert dis-
cussions typically reach consensus or converge to
primary viewpoints within 2-3 rounds. This finding
aligns with real-world expert discussion scenarios,
demonstrating the effectiveness and practicality of
our approach.

By employing these consistency evaluation
strategies, we effectively synthesize the opinions
of multiple experts to derive reliable and robust
problem solutions. Moreover, by analyzing the
convergence properties of the discussion process,
we validate the efficacy of our method.

4 Experiment

4.1 Experimental Setup

Dataset In our experiment, we used the SciBench
dataset (Wang et al., 2024), which is a comprehen-
sive benchmark specifically designed to evaluate
the scientific problem-solving ability of Large Lan-
guage Models (LLMs). SciBench covers university
level problems in various scientific disciplines, in-
cluding mathematics, physics, and chemistry. This
dataset includes open-ended questions from text-
books and open-ended questions from undergradu-
ate exams, ensuring a rigorous evaluation of LLM’s
reasoning and computational skills. In this experi-
ment, we use open-ended questions as testing. This
dataset provides a solid foundation for testing and
improving LLM’s ability to solve problems in com-
plex scientific environments.

Baseline To establish a baseline for our pro-
posed multi-expert framework, we conducted ex-
periments using two state-of-the-art LLMs: GPT-
3.5 and GPT-4. Specifically, we utilized the gpt-3.5-
turbo-0125 version for GPT-3.5 and the gpt-4-turbo
version for GPT-4. For each model, we employed
two query methods:

* Direct Querying: The scientific problem was
directly presented to the LLM without any
additional context or examples.
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» Few-Shot Learning (Brown et al., 2020): We
provided the LLM with a small set of rep-
resentative examples of scientific problems
and their solutions before presenting the tar-
get problem. This approach aims to prime the
model with relevant context and improve its
performance on the specific task.

4.2 Main Results

We evaluate the performance of our proposed
Simulating Expert Discussions with Multi-agent
(SEDM) approach against two baselines: direct
querying of the LLM and few-shot learning. The
experiments are conducted across three scientific
domains: physics, chemistry, and mathematics.
Each domain is further divided into subdomains,
such as thermodynamics and classical mechanics
for physics, to assess the model’s performance on
a diverse range of scientific problems. In the main
experiment, we used the setting of 2 experts and 2
discussion rounds.

Table 1 presents the accuracy scores of the
models on the test set. The results demonstrate
that SEDM significantly outperforms the base-
lines across most domains and subdomains. For
GPT-3.5, SEDM achieves an average accuracy of
33.25%, markedly higher than the 9.59% for Direct
response and 9.60% for few-shot learning. Simi-
larly, for GPT-4, SEDM attains an average accu-
racy of 57.18%, compared to 25.09% for Direct
and 21.46% for few-shot.

However, it is important to note that SEDM does
not always achieve the highest scores in every sub-
domain. For instance, in GPT-4’s performance
in statistics domain, the direct querying approach
slightly outperforms SEDM. This may be attributed
to the nature of statistical problems, which are of-
ten more standardized and formulaic compared to
other subdomains. Many statistical problems can
be solved by applying specific formulas or algo-
rithms, which aligns well with the strengths of lan-
guage models. Consequently, direct querying may
be sufficient to handle these relatively standard
problems.

Despite these few exceptions, SEDM consis-
tently demonstrates robust performance improve-
ments across the majority of subdomains, high-
lighting its effectiveness and adaptability in en-
hancing the problem-solving capabilities of LLMs.
It is worth noting that the performance of few-shot
learning is comparable to or slightly worse than
direct querying. This may be due to the limited

ability of the selected prompt examples to fully
capture the diversity of the domain, leading to a
decrease in the performance of few-shot learning.

The results also reveal some variation in perfor-
mance across subdomains. For instance, in physics,
the models achieve higher accuracy in fundamental
concepts compared to thermodynamics and clas-
sical mechanics. This suggests that the complex-
ity and specificity of the subdomain can influence
the model’s performance. Nevertheless, SEDM
consistently outperforms the baselines in almost
all subdomains, demonstrating its robustness and
adaptability.

4.3 Further Analysis

Solution Quality In addition to evaluating the ac-
curacy of the models, we also assess the quality of
the generated solutions. We randomly sample 100
problems and evaluate the solutions using LLMs
and human evaluation based on three criteria: (1)
the correctness of the reasoning steps, (2) the clar-
ity of the explanations, and (3) the appropriateness
of the mathematical notations and symbols used.
Each criterion was rated on a scale of 1 to 5, with
5 being the highest quality.

For the human evaluation, we employed three ex-
pert annotators. To ensure reliability, we calculated
the inter-annotator agreement using Fleiss’ kappa
(Fleiss, 1971) for each of the three criteria:

* Correctness of reasoning steps: k = 0.71
* Clarity of explanations: K = 0.62

* Appropriateness of mathematical notations
and symbols: k = 0.55

The overall average kappa value was 0.63, indi-
cating substantial agreement among the annotators.

The detailed prompts for LLM evaluation and
the specific guidelines for human evaluation are
provided in Appendix B. Table 2 presents the aver-
age quality scores for solutions from GPT-4. Com-
pared to baseline, SEDM consistently achieves
higher quality scores in both LLM and human
evaluations. The solutions generated by SEDM
demonstrate clearer reasoning steps, more coherent
explanations, and more precise use of mathemati-
cal notations. This suggests that the multi-expert
discussion framework not only improves the accu-
racy of the solutions but also enhances their overall
quality and readability.
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Subject Physics Chemistry Math Avg
fund thermo class quan chemmc atkins matter calc stat diff

Direct 1096 294 213 882 2051 467 204 930 2800 6.00 9.9

GPT-3.5 Few Shot 8.22 149 000 11.76 1538 5.61 4.08 1395 26.67 10.00 9.60
SEDM"* 40.85 3636 2500 3030 5526 37.4 17.02 38.10 4444 8.00 33.25

Direct 15.07 1194 851 1471 23.08 27.10 2245 4286 56.00 18.00 25.09

GPT-4 Few Shot 26.03 597 12.77 17.65 30.77 15.87 1224 3333 4933 8.00 21.46
SEDM "  81.69 2727 37.50 57.58 8158 59.05 53.19 7857 5139 44.00 57.18

Table 1: The accuracy scores (%) of different baseline methods and our proposed SEDM approach across various
scientific domains using GPT-3.5 and GPT-4 models under the setting of 2 experts and 2 discussion rounds. The

best results for each subject are in bold.

Eval. Method LLM Evaluation = Human Evaluation
Hn @ 3 Hn @ 3

Direct 320 3.40 3.80 4.00 4.25 4.25

SEDM * 420 3.60 4.60 4.75 4.25 4.50

Table 2: The average quality score of solutions from
GPT-4 evaluated by LLMs and humans.

Number of Experts We investigate the impact
of the number of experts in the panel on the perfor-
mance of SEDM. We vary the number of experts
from 2 to 5 and evaluate the accuracy of the gener-
ated solutions.Figure 4 shows the relationship be-
tween the number of experts and the average accu-
racy of GPT-3.5 and GPT-4. The results reveal that
increasing the number of experts generally leads to
higher accuracy. However, the performance gains
diminish as the number of experts exceeds 4. This
suggests that a panel of 2-4 experts strikes a balance
between performance improvement and computa-
tional efficiency. Having too many experts may
introduce redundancy and increase the computa-
tional overhead without significant performance
benefits.

Number of Discussion Rounds We also investi-
gate the impact of the number of discussion rounds
on the performance of SEDM. We conducte experi-
ments with varying numbers of discussion rounds,
ranging from 1 to 5, and measure the accuracy of
the generated solutions, as illustrated in Figure 5.
The results indicate that increasing the number of
discussion rounds generally improves the accuracy,
but the performance gains plateau after 3 rounds.
This suggests that 2-4 discussion rounds provide a
good trade-off between performance and efficiency.

Average Accuracy over Experts

—e— GPT-4
—e— GPT-3.5

Average Accuracy
N w H w [ ~
o o o o o o

-
o

1 2 3 4
Number of Experts

o

Figure 4: The relationship between the number of ex-
perts and the average accuracy of GPT-3.5 and GPT-4.

Ablation Study The ablation study results pre-
sented in Table 3 demonstrate the effectiveness of
each component in our proposed SEDM frame-
work. By comparing the performance of the full
SEDM framework with its variants, we can gain
insights into the contributions of the expert role
assignment and the expert discussion components.

When the expert role assignment is removed, the
performance of both GPT-3.5 and GPT-4 drops sig-

GPT-3.5 GPT-4
w/o Expert role 11/100 42/100
w/o Expert discussion 17 /100 557100
Full SEDM" 45/100 87 /100

Table 3: Ablation study results showing the effective-
ness of each component in our proposed SEDM frame-
work. We report the number of correctly answered
questions out of 100 test samples. "w/0" denotes the
removal of the corresponding component from the full
SEDM framework.

249



Average Accuracy over Rounds
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Figure 5: The relationship between the number of dis-
cussion rounds and the average accuracy of GPT-3.5
and GPT-4.

nificantly. GPT-3.5 achieves only 11 out of 100
correctly answered questions, while GPT-4 man-
ages to answer 42 out of 100 questions correctly.
This substantial decrease in performance highlights
the importance of assigning domain-specific expert
roles to the LLMs, as it enables them to provide
more accurate and reliable responses to scientific
inquiries.

Similarly, the removal of the expert discussion
component also leads to a notable decline in per-
formance. GPT-3.5 correctly answers 17 out of
100 questions, and GPT-4 achieves 55 out of 100
correct answers. This finding suggests that the
collaborative discussion among the LLMs plays a
crucial role in reaching a consensus and improving
the overall accuracy of the system.

The ablation study provides strong evidence for
the effectiveness of our proposed SEDM frame-
work. By assigning domain-specific expert roles
to LLMs and facilitating collaborative discussions
among them, we can significantly enhance their
performance in addressing complex scientific ques-
tions. This finding underscores the potential of our
approach to advance the application of Al in scien-
tific research, offering a more reliable and trustwor-
thy solution for tackling scientific problems.

5 Conclusion

In this paper, we have introduced a novel ap-
proach called Simulating Expert Discussions with
Multi-agent (SEDM) to enhance the scientific
problem-solving capabilities of LLMs. By assign-
ing domain-specific expert roles to multiple LLMs
and simulating a panel discussion, our method
leverages the collective knowledge and diverse per-

spectives of these models to tackle complex scien-
tific problems effectively.

The proposed SEDM framework represents a
significant step forward in harnessing the poten-
tial of LLMs for scientific problem-solving. By
simulating expert discussions and leveraging the
collective intelligence of multiple models, we can
enhance the accuracy, reliability, and robustness
of LLM-generated solutions. This approach opens
up new avenues for applying artificial intelligence
in scientific research, enabling more effective and
trustworthy problem-solving.

6 Limitations

While the Simulating Expert Discussions with
Multi-agent (SEDM) approach has shown promise
in enhancing the scientific problem-solving capa-
bilities of LLMSs, several limitations warrant further
investigation.

Firstly, the current study is limited to a subset of
scientific domains, namely physics, chemistry, and
mathematics. Future research should explore the
generalizability of SEDM to a broader range of dis-
ciplines to assess its adaptability and effectiveness
across diverse problem types and domain-specific
challenges.

Secondly, the current implementation of SEDM
employs fixed LLMs assuming expert roles within
a specific domain. Although effective, this ap-
proach may not fully capture the complexity of
real-world scientific collaborations. Future work
could investigate more dynamic role assignment
strategies, allowing for the inclusion of interdisci-
plinary experts to enrich discussions.
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A Experiment Prompts

The prompts employed in this work for the Di-
rect querying, few-shot learning, and Simulating
Expert Discussions with Multi-agent (SEDM) are
illustrated in Figures 6, 7, and 8.

B Evaluation Criteria and Prompts for
Solution Quality Assessment

The prompts used for LLM evaluation and the
guidelines provided for human evaluation of so-
lution quality are presented in Figure 9 and Table
4 respectively. These criteria focus on assessing
the correctness of reasoning steps, clarity of ex-
planations, and appropriate use of mathematical
notations.
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Please provide answers to the following problem.

Question: [scientific problem]

Please reiterate the pure numerical answer at the end of the answer.

Figure 6: The prompt for Direct querying.

Criterion 1 (Poor) 2 (Fair) 3 (Good) 4 (Very Good) 5 (Excellent)
Correctness Most steps are in- Several major er- Minor errors in Reasoning is cor- All reasoning
of Reasoning correct or missing rors in reasoning  reasoning, but rect with very mi- steps are perfectly
Steps overall approach nor oversights correct and com-
is correct plete
Clarity of Ex- Explanations are Explanations are Explanations are Explanations are Explanations are
planations confusing or ab- unclear and diffi- mostly clear but clear with minor exceptionally
sent cult to follow some points are areas for improve- clear, concise,
ambiguous ment and easy to under-
stand
Appropriateness Incorrect or miss- Several major er- Minor errors in Notations and All mathematical
of Mathemati- ing notations and rors in notation notation and sym- symbols are notations and
cal Notations symbols through- and symbol usage bol usage, but correct with very symbols are per-
and Symbols out generally appro- minor inconsis- fectly appropriate
priate tencies and consistently

used

Table 4: Human Evaluation Guidelines for Scientific Problem Solutions.
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Please provide answers to the following problem.

Question: [scientific problem]

Please reiterate the pure numerical answer at the end of the answer.

Task Example 1:

Question: The logistic model has been applied to the natural growth of the halibut population in certain areas of the
Pacific Ocean. 12 Let y, measured in kilograms, be the total mass, or biomass, of the halibut population at time ¢. The
parameters in the logistic equation are estimated to have the values » = 0.71/ year and K = 80.5 x 10° kg. If the

initial biomass is yo = 0.25K, find the biomass 2 years later.

Solution: It is convenient to scale the solution (11)

y= yoK
Yo + (K —yo)e "t

to the carrying capacity K; thus we write Eq. (11) in the form

Yy yo/K

K (yo/K) +[1 = (yo/K)] e~
Using the data given in the problem, we find that

v@ _ 025
K 025+40.75e-142 0.5797.
Consequently, y(2) 2 46.7 x 10° ke,

Task Example 2:
Question: Find the bonding and antibonding Hiickel molecular orbitals for ethene.

Solution: The equations for c; and c2 associated with Equation

Hy — ES11 Hia — ESi2

H12 - Eslg H22 - ESQQ =0

are
cla—E)+cf=0 and cif+c(a—E)=0

For E = « + (3, either equation yields ¢; = cz. Thus,
Y = ¢1(2p21 + 2p22)
The value of ¢; can be found by requiring that the wave function be normalized. The normalization condition on ¥,

gives ci(1 + 25 + 1) = 1. Using the Hiickel assumption that S = 0, we find that ¢; = 1//2.
Substituting £ = o — ( into either of the equations for ¢; and ¢ yields ¢c; = —cs, or

wa =C1 (2pz1 - 2]?22)

The normalization condition gives ¢*>(1 — 25 +1) = 1,0orc1 = 1/v/2.

Figure 7: The prompt for few-shot learning.
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You are an expert in Physical Chemistry. Please provide answers to the following problem. Your response should be
accurate, high-quality, and expertly written.

Question: [scientific problem]
Please reiterate the pure numerical answer at the end of the answer.
These are the opinions from other experts:

One expert response:[One expert response]
One expert response:[One expert response]

Please carefully consider the opinions of other experts, but do not blindly believe them. Consider whether you agree
with this insight, how it affects your answer, and provide an updated answer.

Figure 8: The prompt for Simulating Expert Discussions with Multi-agent.

Please evaluate the quality of the following solution to the given scientific problem, on a scale of 1-5 (with 5 being the
highest) for each of these criteria:

1. Correctness of the reasoning steps

2. Clarity of the explanations

3. Appropriateness of the mathematical notation and symbols used

Provide a score from 1-5 for each criterion, along with a brief justification for each score.

Scientific problem: [scientific problem]

Solution: [solution]

Figure 9: The prompt for LLM evaluation of solution quality.
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