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Abstract

This paper explores first steps towards extract-
ing information about theorems and proofs
from scholarly documents to build a knowledge
base of interlinked results. Specifically, we con-
sider two main tasks: extractions of results and
their proofs from the PDF of scientific articles;
and establishing which results is used in the
proof of which, across the scientific literature.
We discuss the problem statement, methodolo-
gies, as well as preliminary findings employed
in both phases of our approach, highlighting
the challenges faced.

1 Introduction

The proliferation of academic publications, particu-
larly in theoretical fields, presents a significant chal-
lenge in information retrieval and knowledge ex-
traction. As of May 2020 (which is the cut-off date
we used to build our dataset), the arXiv1 preprint
repository alone hosted approximately 1.7 million
academic papers (see Figure 1), a substantial por-
tion of which include theoretical results such as
theorems, lemmas, and propositions (roughly one-
third based on cursory search using keyword filter-
ing). And arXiv constitutes a fraction of the entire
collection of scientific publications (e.g., the pi-
rate Sci-Hub Web site include 88 million academic
papers, and the Crossref2 publication database con-
tains metadata about 158 million articles as of May
2024).

Researchers typically rely on academic search
engines like Google Scholar3 or AMiner4 to find
relevant literature. While effective for general

1https://arxiv.org/
2https://www.crossref.org/
3https://scholar.google.com/
4https://www.aminer.org/

searches, this method often falls short in mathe-
matical fields such as mathematics or theoretical
computer science, where the essence of the work
is encapsulated in mathematical results (theorems,
lemmas, etc.) rather than at the textual level. We
discuss in this paper first steps in a project whose
goal is to build a knowledge base of interlinked
mathematical results, directly from the scientific
literature in PDF format.

The goal of such project would be to enable
researchers to perform queries at the level of indi-
vidual mathematical results, such as:

• IR at the Theorem Level: For example, ask-
ing Which variants of the vertex cover problem
are solvable in polynomial time? Traditional
search engines lack the context-specific under-
standing to address such specialized inquiries
directly.

• Visualization of Theoretical Dependencies:
What does the graph of results used to prove
other results look like within a given research
article? A knowledge base could help visu-
alize these connections, showing how indi-
vidual results contribute to broader scientific
advancements.

• Impact Analysis of Theoretical Foundations:
How many published results depend on a par-
ticular theorem, and what would be the impact
if this theorem were proven incorrect? Under-
standing the dependency network of a theorem
could be crucial for assessing the robustness
of a field’s knowledge base.

Our methodology for constructing the knowl-
edge graph involves a two-step process, as illus-
trated in Figure 2:

1. Result Extraction: The first step focuses on
identifying and extracting theoretical results
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Figure 1: Evolution of the number of papers on arXiv published each month from its inception to May 2020 (left
panel) and the proportion of them containing mathematical results (right panel).

from academic papers, along with their proofs.
This involves sophisticated text and data min-
ing techniques to discern and isolate relevant
mathematical expressions and their accompa-
nying discussions within a dense and complex
document layout.

2. Result Connection: The second step is about
pinpointing the exact papers and specific re-
sults that are referenced within the proof of
a given result. This step is crucial for map-
ping out the dependencies and relationships
between different results, enhancing our un-
derstanding of how concepts in theoretical
fields are interconnected. Note that there are
actually two subtasks of increasing complex-
ity: identifying which paper of a given corpus
is cited in the proof of a given result; and iden-
tifying which result within that paper is used
in the proof of a given result.

In this paper, we report on preliminary work on
each task (and subtask), considered individually
(though in reality they could benefit from a unified
approach). This strategy was employed to mitigate
the risk of one task’s methodology negatively im-
pacting the others, particularly given the sequential
dependencies inherent in this work.

We briefly discuss related work in Section 2 then
explain how we built the (partly labeled) dataset
on which we operate in Section 3, along with tools
used to build it. We then discuss the methodology
employed for the three subtasks in Section 4 be-
fore presenting preliminary experimental results
in Section 5. Code, additional details, as well as
instructions to rebuild the same datasets are pro-

vided in two online repositories: https://github.
com/PierreSenellart/theoremkb for the over-
all project and https://github.com/mv96/mm_
extraction specifically for the unimodal and mul-
timodal extraction models.

2 Related Work

Result extraction. For the extraction task, two
main related works are noteworthy. Ginev et al.
(Ginev and Miller, 2020) addressed the classifi-
cation of mathematical statements as a 13-class
problem (where classes are, e.g., proposition, ex-
ample, remark). However, their evaluation was
limited to the first logical paragraph, which is eas-
ier to classify, relied solely on the text modality
without capturing sequential dependencies among
paragraphs, and, crucially, required the availability
of an HTML-ized version of the LATEX source.

In previous work (Mishra et al., 2021) we ex-
plored deep learning-based methods, including ob-
ject detection and text classification, to extract
proofs and theorems. We proposed several uni-
modal approaches across different modalities; how-
ever, there was no clear method for comparing and
evaluating these modalities. For instance, our text-
based approach used fine-tuned transformers on
text lines extracted by the pdfalto tool, while the
vision approach utilized bitmap renderings of entire
PDF pages. In Section 5, we include the line-based
approach as a baseline.

In contrast, this work proposes a modular mul-
timodal classifier that operates at the paragraph
level, incorporating text, vision, and font modali-
ties simultaneously, while also capturing sequential
information to predict paragraph labels.
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Figure 2: Two-step process for building a knowledge graph of papers: (i) result extraction; (ii) result connection

Result connection. A notable task is citation ex-
traction and disambiguation. Cohan et al. (Cohan
et al., 2019) proposed a classifier to detect citation
intent based on the sentence context. It identifies
three primary intents: Background, Result, and
Method. They used a bidirectional LSTM with
an attention layer and three independent MLPs for
training. The main task was identifying citation
intent, while auxiliary tasks included guessing the
section title.

There are other projects whose goal is to create
a structured knowledge base of mathematical re-
sults, though not by exploiting the content of PDF
articles, including:

• MBASE (Kohlhase and Franke, 2001): Pro-
posed in 2001 for formal representations
of mathematical results, but development
stopped in 2003.

• Logipedia5: A comprehensive library of for-
mal mathematical statements for theorem
provers.

• Ganesalingam and Gowers (Ganesalingam
and Gowers, 2013): An automated model that
writes proofs in a human style by mimicking
researchers’ reasoning.

5http://logipedia.inria.fr/

3 Dataset Construction

Our approach relies on training machine learning
models, which requires constructing a (sizable) la-
beled dataset. We explain in this section which
tools we use for basic parsing of PDF documents,
how we built a labeled dataset using these tools and
newly developed ones, and present the characteris-
tics of our dataset.

3.1 Information Extraction Tools
One pivotal tool in our toolkit is Grobid6 (Lopez,
2009), a robust application also used by platforms
such as Semantic Scholar7. Grobid is precisely
engineered to extract text from scientific docu-
ments and convert raw PDFs into XML files. These
files contain structured information, including seg-
mented texts at the level of sentences and para-
graphs, and further annotate critical sections such
as abstracts, introductions, author names, titles, and
references, along with their precise page numbers
and coordinates – Grobid does not extract math-
ematical statements and proofs, though, which is
our focus here.

Unlike many document AI models (Xu et al.,
2020, 2021; Huang et al., 2022) designed for ex-

6https://github.com/kermitt2/grobid
7https://www.semanticscholar.org
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tracting information from single-page documents
such as receipts or bills, Grobid leverages domain-
specific knowledge to handle scientific content. It
manages the layout complexities typical of multi-
page scientific articles, such as page breaks and
possible two-column layouts. It achieves this with
remarkable efficiency, processing documents at
≈ 10 PDFs per second on a standard computer.
We also rely on pdfalto8, a lower-level tool by the
same author as Grobid, that takes a PDF input and
produce between other things a sequence of text
lines with comprehensive font information for each
character, such as typeface and size, along with
their exact location on the page.

3.2 Automatic Labeling from LATEX Sources

In order to construct a labeled dataset for the result
extraction script, we have developed a custom tool
that extracts the coordinates of mathematical state-
ment and sources for document from which their
LATEX source is available. We insist on the fact that
the availability of LATEX source is only necessary
to build a labeled dataset for training and evaluat-
ing our result extraction approach – they are not
required at extraction time.

Even when LATEX sources are available, extract-
ing the coordinates of theorems and proofs in the
resulting PDF is not trivial: indeed, there are many
ways authors of a LATEX document can use to cre-
ate this form of environment, including by defining
their own macros – and as TEX is a Turing-complete
programming language, it is impossible to build a
robust extractor just based on analyzing the source
code. Instead of doing that, we developed a LATEX
package that performs the extraction, injected it
in the prologue of the LATEX document, and re-
compiled the entire document. The LATEX pack-
age modifies the code of the \newtheorem macro
(which is either the standard LATEX one or the one
provided by the amsthm or ntheorem package), of
the \declaretheorem command (of the thmtools
package), of the \spnewtheorem command (of
Springer’s document classes such as llncs) and
of the proof environment, in order to add, when-
ever a LATEX theorem or proof environment is used
in the paper, a PDF hyperlink around the environ-
ment. This PDF hyperlink points to a URI that
uniquely identifies the result within the document.
After compilation, we extract the coordinates of
these hyperlinks from the PDF document (we use

8https://github.com/kermitt2/grobid

pdfalto for this). Note that this does not cover all
possible cases (documents written in an obsolete
version of LATEX; documents with a fully custom
way of writing theorems and proofs; etc.) but this
is fine: the goal is to build a labeled dataset large
enough to be representative, not to have a foolproof
labeling method.

Once the coordinates of every result and proof
is obtained, we use a merging script to merge the
output of Grobid and of pdfalto to match the para-
graphs extracted by Grobid with the coordinates
of text lines and the hyperlink-labeled results given
by pdfalto. We also retrieve font information from
pdfalto and we construct bitmap renderings of ev-
ery PDF page using PyMuPDF’s fitz module9.

3.3 Dataset

We now report on the dataset used in experiments.
Extraction. We retrieved all papers (1.7 million)

published on arXiv till May 2020 using arXiv’s
Bulk Data Access through Amazon S310. This in-
cludes both PDF papers and, for documents that
were written in LATEX, their source as well. After
filtering this massive corpus to isolate papers con-
taining mathematical statements such as theorems
or proofs, we reduced the count to 460 thousand pa-
pers. Further refinement was necessary to exclude
non-English papers, and papers that failed to com-
pile using a contemporary PDF compiler (pdflatex
from TEXlive 2019), or papers that experienced fail-
ures with any of the tools in our pipeline – Grobid,
pdfalto, or bitmap rendering. This resulted in a
final dataset of 197 thousand papers. Running our
merging script on this dataset, we categorized each
paragraph into distinct classes: Proof, Theorem
(which includes other theorem-like environments
such as definitions, lemmas, corollaries, remarks),
Basic (neither proof nor theorem), and a marginal
Overlap reject class for instances where multiple
categories were erroneously grouped due to para-
graph splitting bugs in Grobid. To construct our
validation dataset, we randomly selected 3,682 pa-
pers comprising approximately 0.5 million para-
graphs with their label, each enriched with font
information, bitmap images, and the textual con-
tent present.

Connecting Papers and Results. For this task,
no automatic labeling is possible so we need to
create a smaller scale dataset. We decided to select

9https://pymupdf.readthedocs.io/
10https://info.arxiv.org/help/bulk_data_s3.html
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a topically consistent subset of papers, focusing
on the domain of computational complexity, from
2010 to 2020, obtaining roughly 6 000 scientific
articles under the “Computer Science - Computa-
tional Complexity” (cs.CC) category of arXiv. This
category was chosen due to the high likelihood of
inter-citations among papers within this specific
domain. After applying our extraction script we
obtained 4 705 papers that were compilable and did
not trigger errors with the deployed tools. Of these,
3 711 papers contained results that referenced an-
other paper within the same dataset, which we man-
ually labeled.

4 Methodology

In this section, we delve into the specific method-
ologies adopted for each of the three subtasks out-
lined in our study: the extraction task and the two
connecting tasks – results to paper and results to
results.

4.1 Extraction of Results

Intuitively, the following features can be used to
isolate results and proofs in PDF papers. Visual
Features: We identify vital visual indicators such
as bold or italic text and the presence of a QED
symbol, which typically denotes the end of a proof.
Font-Level Features: Recognizing specific fonts
used at the beginning of paragraphs, as seen in pa-
pers formatted in certain styles which consistently
uses distinctive fonts for theorem declarations. Lan-
guage Information: Analyzing the textual content
within the spatial bounds of a paragraph to discern
its nature based on linguistic patterns. Structural
Information: Utilizing page numbers, relative posi-
tions, and the context of neighbouring paragraphs
to improve prediction accuracy.

To effectively process these diverse data modali-
ties, we deploy three different classifiers:

Font Model: This model uses an LSTM (Hochre-
iter and Schmidhuber, 1997) to process se-
quences of font data extracted by pdfalto, cap-
turing dependencies in font usage throughout
the document.

Vision-Based Model: We implement a CNN,
specifically an EfficientNetV2 (Tan and Le,
2021), to analyze visual clues. This model pro-
cesses bitmap images of paragraphs, focusing
on initial word formatting and the presence of
end-of-proof symbols.

Language Model: A pretrained RoBERTa (Liu
et al., 2019) language model is used, where the
CLS token from the last layer helps identify
significant text sections. The model operates
on text extracted and structured by Grobid at
the paragraph level.

To synthesize insights from these distinctive mod-
els trained on different modalities, we employ a
GMU-based mechanism. This approach, inspired
by Gated Multimodal Units (Arevalo et al., 2020),
facilitates the integration of features from different
modalities. Each model’s output is frozen to pre-
vent updates during this phase, ensuring stability
in the embeddings they produce.

The features extracted from the Multimodal
GMU are then used as input for a CRF model that
captures sequential dependencies between blocks.
Numerous studies (Patel and Caragea, 2019), (Al-
Zaidy et al., 2019), (Wei et al., 2022) have demon-
strated the efficiency of employing a CRF-based
model on top of features extracted by a deep
learning approach to model and extract impor-
tant keyphrases, particularly within scholarly docu-
ments. CRF models have also been used to model
sequential dependencies and clustering information
over features extracted from CNN models on scien-
tific document pages (Li et al., 2018). This model
uses sequential information from the previous para-
graphs to determine the paragraph’s label across
the entire document. It incorporates contextual fea-
tures such as page numbers and coordinate infor-
mation along with information about page breaks.
This approach allows the model to understand and
classify each paragraph’s role within the broader
structure of the document.

This methodology leverages the strengths of
each modality and ensures that the extracted infor-
mation aligns with how a human would typically
look at the problem. By combining different tech-
niques across different modalities, we aim to clas-
sify and link mathematical results robustly across
various scientific literature.

4.2 Linking Results to Papers

We employed Grobid, a machine-learning tool de-
signed to convert PDFs of scientific papers into
structured XML files. This conversion crucially ex-
tracts bibliographic data (including titles, authors’
names, and publication years of cited articles) from
the article, with references to each bibliographic
entry. We also integrated data from the S2ORC
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Figure 3: Flow of the algorithm. We convert a PDF file
into an XML file with identified theorems and proofs
following our extraction methodology. Finally, we as-
sociate references with papers in the corpus to build a
graph of mathematical results

dataset (Lo et al., 2020) of Semantic Scholar, which
maps paper references to arXiv IDs.

To systematically map connections from papers
to papers within our dataset, we developed a high-
level graph extraction algorithm summarized in
Figure 3. This algorithm efficiently identifies and
represents the relationships between papers based
on their citations, creating a navigable and interac-
tive graph.

Our graph extraction algorithm is designed to
map the citations within and across papers, cre-
ating a network that can be navigated and ana-
lyzed. We proceed as follows. First, we extract
theorems and proofs from PDF articles as previ-
ously described.11 Second, within every identified
proof, we search for explicit references to formal
results (potentially from other papers), with simple
regular expression patterns capturing strings such
as “Theorem 1”, “Lemma 2.54.2”, “Problem A.1”,
“Proposition E.7.1.3.1”. We also determine whether
such a referenced link is internal (within the same
paper) or external (pointing to another document),
looking for references to bibliographic entries in
the immediate context (such as “Theorem 1 of [2]”
or “[27], Proposition 26,”). We primarily focus
on these external references for building our cita-
tion graph, ignoring internal citations (i.e., refer-
ences within the same paper), and retrieving the
corresponding bibliographic entry. In cases where
multiple results are referenced together, such as
“Theorems 1, 5 from [2]”, we split these into sepa-
rate citations for clarity. Additionally, we filter out
false bibliographic links by checking for specific
keywords that indicate non-referential usage. We

11To evaluate independently both phases of our extract–
connect approach, we can also start from the dataset with
ground truth labels for the position of theorems and proofs.

Figure 4: A clear, obvious link where the author did
specify the connecting result.

Figure 5: An ambiguous link where the author did not
specify the connecting result

finally merged the Grobid-produced bibliographic
entries with the S2ORC ones, allowing us to re-
trieve the arXiv ID of each bibliographic reference
if it exists. Note that we encountered some occa-
sional mismatches between our arXiv dataset and
the S2ORC one, coming from the fact that an arXiv
paper may have multiple versions, only the most
recent of which is available in the bulk data dump.
This means the tag used for the bibliographic entry
may not match across these two datasets but we
resolved inconsistencies by looking for a match in
the whole bibliographic entry itself.

4.3 Linking Results to Results

A crucial step in constructing a knowledge graph of
mathematical results is accurately linking specific
results between papers. Thus, when citing Theo-
rem 42 of reference [X] in the proof of a result,
when restating Theorem 42 of reference [X] with
another name in another paper (see Figure 4 for
an example), or, simply, when using reference [X]
in the proof of a result or when restating it with-
out an explicit reference to a specific result, it is
important to determine which result from the pa-
per referenced by [X] is actually mentioned (see
Figure 5 for an example of this case).

To address this linking challenge (determining
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which result from the paper referenced by [X]
is cited in the current paper), we employ a dual-
representation strategy to establish the most likely
matches between cited results in the source paper
and possible references in the target paper. This
involves the following steps:

1. Structural Representation via TF-IDF Vec-
torization: We vectorize paragraph content using
a TF-IDF word vectorizer (Jones, 2004). This tech-
nique transforms the textual content into a high-
dimensional vector space where each dimension
corresponds to a term’s frequency-inverse docu-
ment frequency score. The resulting vectors cap-
ture the structural aspects of the text, such as the
usage of specific terms and syntactic patterns often
indicative of mathematical content.

2. Semantic Representation with DistilBERT:
Parallel to the structural approach, we process the
text using a pre-trained DistilBERT model (Sanh
et al., 2019). This smaller, more efficient version of
BERT is fine-tuned on a generic classification task
to categorize text as proof, theorem, or introductory
text. We use the [CLS] token embedding from the
last layer of DistilBERT as the comprehensive vec-
tor representation of each paragraph. This semantic
vector captures deeper linguistic and contextual nu-
ances, identifying conceptual similarities between
paragraphs that the TF-IDF approach might miss.

Both vectorization methods are applied in a zero-
shot learning context, meaning no additional fine-
tuning is done for this specific task. There is no
training on specialized losses such as contrastive
loss, which could otherwise enhance the model’s
ability to distinguish connected text segments. We
compute the cosine similarity between the source
paragraph vector from the source paper and all para-
graph vectors from the target paper. The pair of
paragraphs (one from the source and one from the
target) with the highest cosine similarity is consid-
ered the likely match.

5 Experimental results

This section presents experimental results derived
from implementing our methodologies across three
specific subtasks: extraction, connecting papers,
and linking specific results. We stress that results
from the latter two tasks are preliminary at this
stage.

5.1 Extraction
The extraction task involved training multiple ma-
chine learning classifiers on different modalities to
recognize and categorize paragraph-level informa-
tion content from academic papers. Table 1 summa-
rizes the accuracy achieved by each classifier with
or without sequential paragraph information, com-
pared to two baselines: a dummy classifier that al-
ways predicts the most frequent Basic class, and the
textual model, line-based, approach from (Mishra
et al., 2021), reevaluated on the same dataset. We
report standard accuracy, as well as mean-F1 over
the three classes Basic, Theorem, Proof.

The best-performing approach is the multimodal
approach, which captures sequential information
using the CRF model. However, the gains are mod-
est with respect to the pure text-only approach aug-
mented with the CRF model. Extra experiments
are described in (Mishra et al., 2023).

5.2 Connecting results to papers
For connecting papers, we visualized the graph
of linked results across the entire arXiv corpus.
Figure 6 illustrates the interconnectedness of var-
ious papers through citations of famous theorems
and lemmas. The visualization underscores the
dense network of academic work, reinforcing the
importance of effective result linking to navigate
scholarly literature efficiently. For more details,
see (Delemazure, 2020).

Figure 6: Largest connected component of the aggre-
gated ArXiv graph generated with the networkx Python
library, using a spectral layout.
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Modality Model chosen Seq. approach #Batches #Params (M) Accuracy (%) Mean F1 (%)

Dummy always predict Basic — — — 59.41 24.85

Line-based
(Mishra et al., 2021) Bert (fine-tuned) — — 110 57.31 55.71

Font LSTM 128 cells — 11 2 64.93 45.48
CRF 11+1 2 71.50 64.51

Vision EfficientNetV2M_avg — 9 53 69.44 60.33
CRF 9+1 53 74.63 70.82

Text Pretrained RoBERTa-like — 20 124 76.45 72.33
CRF 20+1 124 83.10 80.99

Multimodal GMU — 10 185 76.86 73.87
CRF 10+1 185 84.19 82.91

Table 1: Overall performance comparison (accuracy and mean F1 over the three classes Basic, Theorem, and Proof )
of individual modality models and multimodal model, with and without the sequential approach, for each model, the
number of batches (1 000 PDF documents, roughly 200k samples) it was trained on is indicated (here “+” indicates
additional batches on which further training of sequential paragraph model).

5.3 Linking results
In the final subtask of linking specific results be-
tween papers, we evaluated the effectiveness of
two vectorization-based approaches: TF-IDF and
DistilBERT embeddings on a small dataset of 45
theorems with manually labeled matches in other
papers. The outcomes of these approaches are sum-
marized below:

TF-IDF Vectors: This approach successfully
matched 17/45 (38%) results across different pa-
pers. TF-IDF vectors, which emphasize term fre-
quency within the document context, proved partic-
ularly effective in matching results that use similar
terminologies.

DistilBERT: The DistilBERT model achieved
7/45 (15%) perfect matches. Despite its lower per-
formance than TF-IDF in this zero-shot setting,
DistilBERT captured deeper semantic relationships
that were not as transparent through lexical similar-
ity alone.

For more details, see (Brihmouche, 2022).

6 Conclusions

This paper presents a comprehensive framework
for constructing a knowledge base of mathemat-
ical results. It aims to transcend the limitations
of traditional search engines through an enhanced,
result-oriented navigation system within academic
literature. Through preliminary experiments on
distinct subtasks, we have demonstrated the fea-
sibility of our proposed solution, establishing a
proof of concept for a robust and scalable knowl-
edge management system.

In data extraction, our experiments have high-
lighted the efficacy of a multimodal approach, lever-

aging a GMU architecture followed by Sequential
CRF modelling. This approach proved adept at
capturing sequential and contextual nuances in text,
offering a slight advantage over simpler, text-only
methods. The ability of this architecture to inte-
grate various data modalities into a cohesive model
illustrates its potential for comprehensive informa-
tion extraction from complex scientific texts, set-
ting a high standard for subsequent refinement and
application.

The construction of a citation graph detailing the
connections between papers through cited results
has unveiled a rich tapestry of scholarly commu-
nication. Notably, the longest path in this citation
graph extends to 13 links, underscoring the depth
and complexity of academic discourse. However,
the aggregated nature of this graph means we must
be cautious in interpreting these paths, as they do
not guarantee a direct continuation of the topic
from one paper to another.

Our examination of methodologies for linking
specific results across papers has underscored the
importance of precise terminology in the academic
discourse of mathematics. The TF-IDF vectoriza-
tion approach outperformed the semantic capabili-
ties of the DistilBERT model, suggesting that the
reuse of exact terms and phrases is crucial for ac-
curately connecting related results, though our ex-
periments are still preliminary.

Moving forward, we consider several avenues
for exploration and development. Enhanced ma-
chine learning models, specifically tailored to the
nuances of mathematical language and structured
problem-solving in academia, could drastically re-
duce the dependency on manual labelling. Ad-
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ditionally, expanding the knowledge base to in-
clude more diverse fields of study and integrating
more advanced semantic understanding tools will
enhance the breadth and depth of the knowledge
graph, providing unparalleled access to intercon-
nected scientific knowledge.
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